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Abstract

The moment map is a mathematical expression of the concept of the conservation associated with
the symmetries of a Hamiltonian system. By considering topological properties of the moment map
we are lead to the definition of the abstract moment map. This map is defined from G-manifold M
to dual Lie algebra of G. We will interested study maps from G-manifold M to spaces that are more
general than dual Lie algebra of G. These maps help us to reduce the dimension of a manifold much
more.
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1 Introduction

T
he mathematical formulation of the funda-
mental laws of motion, whose foundation was

laid out by Galileo and Newton, is known as clas-
sical mechanics. The classical or Newtonian me-
chanics mainly refers to the implications of the
motion laws which highly dependents on the Eu-
clidean geometry. In contrast, Hamiltonian me-
chanics is a new viewpoint that allows us to de-
scribe the motion equation, regardless of the Eu-
clidean geometry of the system. The generaliza-
tion of the Hamiltonian mechanics, which allows
taking manifolds as our phase space, is possible
by using symplectic geometry. In other words,
the phase space of a Hamiltonian system is a
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symplectic space. This even dimensional geom-
etry is defined by a closed and non-degenerate
2-differential form whose its first stages has been
formed more than two centuries ago by an intro-
duction of lagrangian generalized coordinates.

In this field, symmetries on the phase space
of the Hamiltonian systems are important. The
symmetry of the Hamiltonian system is describ-
able by the action of a Lie group on the phase
space which leads to conservation laws on the
system. The connection between conservation
laws and symmetries was formalized by Noether.
The conserved quantities, have been used by the
founders of classical mechanics to eliminate de-
grees of freedom in the particular systems under
investigation. These procedures called reduction
theory.

The moment map is a mathematical expres-
sion of the concept of the conservation associated
with the symmetries of a Hamiltonian system and
is a fundamental tool for the study of symplec-
tic reduction of symplectic manifolds. In fact,

53

http://ijim.srbiau.ac.ir/


54 M. Dara et al., /IJIM Vol. 13, No. 1 (2021) 53-61

given the symplectic action of a Lie group on
a symplectic manifold that has a moment map,
one quotient a level set of the moment map by
the proper action of a isotropy group to form a
new symplectic manifold. The moment map has
been interoduced by Kostant [7] and Souriau [13].
Kostant introduced the moment map to general-
ize a theorem. Souriau introduced the moment
map in his article. He also studied its physical
properties moment map and finally got its formal
definition and its name.

By considering topological properties of the
moment map we are lead to the definition of the
abstract moment map. This definition introduced
by Viktor Ginzburg, Victor Guillemin, and Yael
Karshon [6]. Abstract moment map is a gener-
alization of moment map on symplectic manifold
when there is not symplectic structure, but the
relation between the map and the G-action is
kept. This map is an equivariant mapping from
G-manifold M to g∗. In this paper we will inter-
ested study maps from G-manifold M to spaces
that are more general than g∗ such that abstract
moment maps are among examples of this maps.
These maps help us to reduce the dimension of a
manifold much more.

2 Preliminaries

Let us now recall some definitions and proposi-
tion. In what follows, we will suppose that every
our manifolds, actions and maps to be smooth.
All over the text, M will be a smooth manifold
and G a Lie group acting on M . The Lie alge-
bra of G is g. We will denote the quotient space
by M/G. We will denote the fixed point set of
the action by MG where is submanifolds of M .
Hereafter we outline some preliminary definitions
and proposition of the Lie group actions that are
useful in the subsequent discussion [12, 14].

Definition 2.1 Let us be given a action ψ of G
on manifold M . For all X ∈ g, we define one-
parameter group Ψ of diffeomorphisms on M as
Ψ(t, p) = ψexp(tX)(p). The one-parameter group
Ψ is a complete flow on M . The infinitesimal
generator corresponding to this action is denoted
by XM :

XM (q) =
d

dt
(ψexp(tX)(q))

∣∣∣∣
t=0

.

Definition 2.2 For any g ∈ G,a Lie group G
acts on itself by inner automorphisms

Cg := Lg ◦Rg−1 : G→ G : x 7→ gxg−1,

where Rg right translation by g. We called dif-
ferentiable map Cg at identity element adjoint
representation and denoted by Adg, i.e. Adg :=
(Cg∗)e : g −→ g. Now define the following map

Ad : G −→ Aut(g)
g 7 −→ Adg

.

The map Ad is called adjoint action Lie group on
Lie algebra.

Proposition 2.1 Let G be a Lie group with Lie
algebra g. For any X ∈ g and g ∈ G:

exp(Adg(X)) = g exp(X) g−1.

Proposition 2.2 Let a lie group action ψ of G
on M . For every g ∈ G and X ∈ g:

(Adg(X))M = ψ∗
g−1X

M .

Proof. Let q ∈ M , according to Definition 2.1
and Proposition 2.1, we have

(Adg(X))M =
d

dt
ψexp(t Adg(X))(q)

∣∣∣∣
t=0

=
d

dt
ψ(g exp(tX) g−1)(q)

∣∣∣∣
t=0

=
d

dt
ψg ◦ ψexp(tX)(ψg−1(q))

∣∣∣∣
t=0

= (ψg∗)ψg−1 (q)
d

dt
ψexp(tX)(ψg−1(q))

∣∣∣∣
t=0

= (ψg∗)ψg−1 (q)X
M (ψg−1(q))

= ψg∗X
M = ψ∗

g−1X
M .

Definition 2.3 Assuming that T k(g∗) is the vec-
tor space of all k-covariant tensor on g. The
coadjoint action of G on T k(g∗), for k ∈ N, is
defined as follows

Ad# :G −→ Aut(T k(g∗))

g 7 −→

{
Ad#g : T k(g∗) −→ T k(g∗)

ξ 7 −→ Ad#g (ξ)
,
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where for any

X = (X1, ..., Xk) ∈ g× ...× g︸ ︷︷ ︸
k times

,

Ad#g (ξ)(X) defined by

Ad#g (ξ)(X) := (C∗
g−1)e(ξ)(X)

= ξ((Cg−1
∗
)eX)

= ξ(Adg−1(X)).

The map Ad# is called coadjoint action Lie group
on dual of Lie algebra.

3 k-ary moment map

The moment map is map of G-manifold M to g∗.
In this section, we define maps from G-manifold
M to spaces that are more general than g∗.

Definition 3.1 (k-ary moment map) Let a
action ψ : G × M −→ M . A k-ary moment
map on M is a map µ : M → T k(g∗) with the
following two properties

1. µ is G-equivariant, i.e. for any g ∈ G the
following diagram commutes.

3pcM [d]ψg [r]
µT k(g∗)[d]Ad

#
g

M [r]µT k(g∗)

2. For any closed subgroup H of G, the map
µH :M −→ T k(h∗) defined by

µH := i∗ ◦ µ :M −→ T k(h∗),

is locally constant on MH .

Remark 3.1 For k = 1, Definition 3.1 is equiv-
alent to definition Yael Karshon of abstract mo-
ment map in [6].

Lemma 3.1 If for any Lie algebra element

X = (X1, ..., Xk) ∈ g× ...× g︸ ︷︷ ︸
k times

,

the function µX where for each q ∈ M defined
by µX(q) = µ(q)(X1, ..., Xk), is locally constant
on the set of zeros of the corresponding vector
field (XM

1 , ..., XM
k ), then the second requirement

in Definition 3.1 to hold.

Proof. For any Lie algebra element

X = (X1, ..., Xk) ∈ g× ...× g︸ ︷︷ ︸
k times

,

let closed one-parameter subgroups Hi as
{exp(tXi)| t ∈ R} in G, corresponding with left
invariant vector field X1, ..., Xk respectively. If ψ
is action of G on M , then

(XM
1 (q), ..., XM

k (q)) =(
d

dt
(ψexp(tX1)(q))

∣∣∣∣
t=0

, ...,
d

dt
(ψexp(tXk)(q))

∣∣∣∣
t=0

)
=

(
d

dt
ψ|H1(q)

∣∣∣∣
t=0

, ...,
d

dt
ψ|Hk

(q)

∣∣∣∣
t=0

)
.

So the zeros of the corresponding vector
field (XM

1 , ..., XM
k ) equals to fixed points

ψ|H1(q), ..., ψ|Hk
(q). therefore enough to take

H = H1 ∩ ... ∩Hk.

Example 3.1 Let (M,ω) be a Hamiltonian G-
manifold and let µ : M −→ g∗ be a moment
map. Recall, that this means is G-equivariant
with respect to the given action ψ of G on M
and the coadjoint action Ad# of G on g∗, and for
any X ∈ g satisfies Hamilton’s equation ιXMω =
dµX . Then µ is a 1-ary moment map. Indeed, the
function µX is locally constant on the set of ze-
ros of the corresponding vector field XM , because
dµX = ιXMω = 0.

Definition 3.2 Suppose ψ is action of G on
manifold M . For each g ∈ G, the map ψg :
M −→ M is diffeomorphism of M to M . The
Riemannian metric < ·, · > on G-manifold M is
invariant, whenever for any g ∈ G, q ∈ M and
X,Y ∈ TM :

< X,Y >q=< ψg∗(X), ψg∗(Y ) >ψg(q) .

Example 3.2 (See [4]). If XM is a vector field
on M that generates a circle action, then the
function

µ(q) =< XM (q), XM (q) >,

where < ·, · > is any invariant Riemannian met-
ric, is a 1-ary moment map.
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Theorem 3.1 Let a action ψ of G on mani-
fold M . For any invariant Riemannian metric
< ·, · > on M , the following map is a 2-ary mo-
ment map.

µ :M −→ T 2(g2)

q 7 −→
{
µ(q) : g× g −→ R
µ(q)(X,Y ) =< XM , YM >q

.

Proof. First, we show that the map µ is G-
equivariant. Suppose (X,Y ) ∈ g × g, g ∈ G and
q ∈M . We have

Ad#g ◦ µ(q)(X,Y ) =

µ(q)

(
Adg−1(X), Adg−1(Y )

)
=

<

(
Adg−1(X)

)M
,

(
Adg−1(Y )

)M
>q . (3.1)

According to the Proposition 2.2, for each Z ∈ g,
(Adg−1(Z))M = ψ∗

gZ
M . Therefore (3.1) becomes

< ψ∗
gX

M , ψ∗
gY

M >q=

< ψg−1∗X
M , ψg−1∗X

M >q

=< ψg−1∗X
M , ψg−1∗Y

M >ψg−1 (ψg(q)) . (3.2)

That because < ·, · > is invariant Riemannian
metric on M , then (3.2) becomes

< XM , YM >ψg(q) = µ(ψg(q))(X,Y )

= µ ◦ ψg(q)(X,Y ).

For the second requirement in Definition 2-ary
moment map, we use Lemma 4.1. Let (XM , YM )
a vector field corresponding (X,Y ) ∈ g × g. If
q ∈ M satisfying (XM (q), YM (q)) = (0, 0), then
the map

µ(X,Y )(q) =< XM , YM >q

=< XM (q), YM (q) >= 0,

is constant. Therefore the µ is a 2-ary moment
map.

Example 3.3 Let ψ : SO(3) × R3 −→ R3 in-
duced by ψ(A, q) = Aq. Euclidean inner prod-
uct < ·, · > on space R3 is invariant Riemannian
metric under the angular action ψ. Notice that

for each X ∈ so(3), there is linear isomorphism
between so(3) and R3.

X =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

←→ X̂ ∈ R3.

Using this isomorphism, the multiplication X ∈
so(3) in q ∈ R3 defined as Xq = X̂×q, where × is
the cross product. We find that the infinitesimal
generator corresponding to X ∈ so(3) is

XR3
(q) =

d

dt
(ψexp(tX)(q))

∣∣∣∣
t=0

=
d

dt
exp(tX)q

∣∣∣∣
t=0

= Xq = X̂ × q.

Now the map µ is defined as follows is a 2-ary
moment map

µ :R3 −→ T 2(so(3)∗)

q 7 −→
{
µ(q) : so(3)× so(3) −→ R
µ(q)(X,Y ) =< X̂ × q, Ŷ × q > .

4 Properties of the k-ary mo-
ment map

In this section, we study several propositions and
theorems of functions and examine their general
properties.

Proposition 4.1 Suppose M1 and M2 are G-
manifolds with actions φ and ψ respectively. If
f : M1 → M2 is G-equivariant map and µ :
M2 −→ T k(g∗) is a k-ary moment map on M2,
then µ ◦ f is a k-ary moment map on M1.

Proof. First, we show that for any g ∈ G the
following diagram is commutative.

3pcM1[d]φg [r]
fM2[d]ψg [r]

µ T k(g∗)[d]Ad
#
g

M1[r]
fM2[r]

µ T k(g∗)

Since µ is a k-ary moment map and f is G-
equivariant map, then µ ◦ ψg = Ad#g ◦ µ and
f ◦ φg = ψg ◦ f . Therefore,

(µ ◦ f) ◦ φg = µ(f ◦ φg) = µ(ψg ◦ f)
= (µ ◦ ψg) ◦ f = (Ad#g ◦ µ) ◦ f
= Ad#g ◦ (µ ◦ f).
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Now, we show that for any closed subgroup H of
G, the (µ◦f)H :M1 → T k(h∗) is locally constant
on the submanifoldMH

1 . Assuming that q ∈MH
1 ,

then for any g ∈ G, φg(q) = q and f(φg(q)) =
f(q). Since f is G-equivariant, then for any g ∈
G:

ψg(f(q)) = f(φg(q)) = f(q),

therefore f(q) ∈MH
2 . Consequently the map (µ◦

f)H(q) = µH(f(q)) is constant.

Example 4.1 Let a lie group action ψ of G on
M . For q ∈M , consider the isotropy group Gq =
{g ∈ G | ψ(g, q) = q}. Define the action φ : G×
G/Gq −→ G/Gq, induced by φ(g, hGq) = ghGq.
Then the map{

f : G/Gq −→M
f(hGq) = ψ(h, q)

is G-equivariant, because for q ∈M :

f ◦ φg(hGq) = f(ghGq) = ψ(gh, q)

= ψg(ψ(h, q)) = ψg ◦ f(hGq).

Now, if µ :M −→ T k(g∗) is a k-ary moment map
on M , then according to Proposition 4.1, µ ◦ f is
a k-ary moment map on G/Gq.

Theorem 4.1 Assuming that M1, M2 are G-
manifolds with actions φ and ψ. Define the ac-
tion φ× ψ of G on a product manifold M1 ×M2

as follows{
φ× ψ : G× (M1 ×M2) −→ (M1 ×M2)
(φ× ψ)(g, (q1, q2)) = (φ(g, q1), ψ(g, q2))

.

If for i = 1, 2, µi is k-ary moment maps on Mi,
then G-manifoldM1×M2 has k-ary moment map
µ1⊕µ2 where defined by µ1⊕µ2(q1, q2) = µ1(q1)+
µ2(q2).

Proof. We prove µ1⊕µ2 satisfies two properties
k-ary moment map. First, we show that for any
g ∈ G the following diagram is commutative.

3pcM1 ×M2[d](φ×ψ)g [r]
µ1⊕µ2T k(g∗)[d]Ad

#
g

M1 ×M2[r]
µ1⊕µ2T k(g∗)

For any g ∈ G, (q1, q2) ∈M1 ×M2 and

X = (X1, ..., Xk) ∈ g× ...× g︸ ︷︷ ︸
k times

,

we have

Ad#g ◦(µ1 ⊕ µ2)X(q1, q2)
= Ad#g (µ

X
1 (q1) + µX2 (q2))

= Ad#g ◦ µX1 (q1) +Ad#g ◦ µX2 (q2). (4.3)

Since for i = 1, 2, µi is k-ary moment maps, then
Ad#g ◦ µXi (qi) = µXi ◦ φg(qi). Therefore (4.3) be-
comes

µX1 ◦ φg(q1) + µX2 ◦ ψg(q2)
= (µX1 ⊕ µX2 )(φg(q1), ψg(q2))

= (µ1 ⊕ µ2)X ◦ (φ× ψ)g(q1, q2).

In the following, we show that for any closed Lie
subgroup H of G, the map

(µ1 ⊕ µ2)H : (M1 ×M2) −→ T k(h∗)

is locally constant on (M1 × M2)
H . Assuming

that (q1, q2) ∈ (M1 ×M2)
H . Since for any g ∈ H

(φ× ψ)g(q1, q2) = (φg(q1), ψg(q2)) = (q1, q2)

⇒ φg(qi) = qi ; (i = 1, 2),

then qi ∈ MH
i . Since µHi is locally constant on

MH
i , thus the

(µ1 ⊕ µ2)H(q1, q2) = µH1 (q1) + µH2 (q2)

is constant.

Theorem 4.2 Let G1 and G2 be finite dimen-
sion Lie groups. Consider actions φ : G1×M1 →
M1 and ψ : G2 ×M2 → M2. Define the map F
as follows

F : ((g1, g2), (q1, q2)) 7 −→ ((g1, q1), (g2, q2))

Using the map F and actions φ and ψ, define
the action Ψ of Lie group G1×G2 on a manifold
M1 ×M2 as Ψ := (φ × ψ) ◦ F . If for i = 1, 2,
µi is k-ary moment maps on Mi, then G1 × G2-
manifold M1 ×M2 has k-ary moment map.

Proof. Since G1, G2 are finite dimension Lie
groups, then Lie algebra of G1×G2 is g1⊕g2 and
there is injective linear transformation

T : T k(g∗1)⊕ T k(g∗2) −→ T k((g1 ⊕ g2)
∗).
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Assuming that µ1 : M1 −→ T k(g∗1) and µ2 :
M2 −→ T k(g∗2) are k-ary moment maps, thus we
prove map µ defined by

µ :=M1 ×M2
µ1×µ2−−−−→T k(g∗1)⊕ T k(g∗2)

T−→ T k((g1 ⊕ g2)
∗),

is k-ary moment map. It is sufficient to prove
that µ satisfies two properties of k-ary moment
map.
1) For any (g1, g2) ∈ G1 × G2 the following dia-
gram is commutative.

3pcM1 ×M2[d]Ψ(g1,g2)
[r]µT k((g1 ⊕ g2)

∗)[d]Ad
#
g1

×Ad#g2

M1 ×M2[r]
µT k((g1 ⊕ g2)

∗)

For any X ∈ (g1 ⊕ g2)× ...× (g1 ⊕ g2)︸ ︷︷ ︸
k times

and q =

(q1, q2) ∈M1 ×M2, we have

µ◦Ψ(g1,g2)(q)(X)

= µ ◦ ((φ× ψ) ◦ F (q1, q2))(X)

= µ(φg1(q1), ψg2(q2))(X)

= T ◦ (µ1 × µ2)(φg1(q1), ψg2(q2))(X)

= T (µ1 ◦ φg1(q1), µ2 ◦ ψg2(q2))(X). (4.4)

Since for i = 1, 2, µi is k-ary moment maps, then
Ad#gi ◦ µi = µi ◦ φgi . Therefore (4.4) becomes

T (Ad#g1 ◦ µ1(q1), Ad
#
g2 ◦ µ2(q2))(X)

= T (µ1(q1), µ2(q2))((Adg−1
1
×Adg−1

2
)(X))

= T (µ1 × µ2)(q)((Adg−1
1
×Adg−1

2
)(X))

= (Ad#g1 ×Ad
#
g2) ◦ (T ◦ (µ1 × µ2))(q)(X)

= (Ad#g1 ×Ad
#
g2) ◦ µ(q)(X).

2) For any closed Lie subgroupH×K of Lie group
G1 ×G2, the map

µH×K : (M1 ×M2) −→ T k((h⊕ k)∗)

is locally constant on the (M1 ×M2)
H×K . Sup-

pose that (q1, q2) ∈ (M1×M2)
H×K . Since for any

(g1, g2) ∈ H ×K, we see

Ψ(g1,g2)(q1, q2) = (φ× ψ) ◦ F ((g1, g2), (q1, q2))
= (φg(q1), ψg(q2)) = (q1, q2),

then q1 ∈ MH
1 , q2 ∈ MK

2 . Since µH1 , µK2 are
locally constant on theMH

1 andMK
2 respectively

and T is a injective linear transformation, thus
the

µH×K(q1, q2) = T ◦ (µ1 × µ2)H×K(q1, q2)

= T ◦ (µH1 × µK2 )(q1, q2)

= T (µH1 (q1), µ
K
2 (q2)),

is constant.

Definition 4.1 (See [1]). Assuming that G is a
Lie group and g its Lie algebra. Let Λk(g∗) ⊆
T k(g∗) set of all alternating k-linear maps c :
g× ...× g︸ ︷︷ ︸
k times

−→ R. Define a linear operator ∂G :

Λk(g∗)→ Λk+1(g∗) by

∂G(c)(X0, X1, ..., Xk) =∑
i<j

(−1)i+jc([Xi, Xj ], X0, .., X̂i, .., X̂j , .., Xk).

∂G is a differential operator in
⊕∞

k=0 Λ
k(g∗) and

satisfying ∂2G = 0.

Proposition 4.2 Assuming that M is G-
manifold. If µ : M → Λk(g∗) is k-ary moment
map, then M has k + 1-ary moment map
µ̄ :M → Λk+1(g∗) so that

3pcM [dr]µ̄=:∂G◦µ[r]
µΛk(g∗)[d]∂G

Λk+1(g∗)

Proof. µ̄ is G-equivariant with respect to the
given action ψ on M and the coadjoint action.
Since ∂G is a differential operator and Ad#g =
(C∗

g−1)e, for any g ∈ G, X = (X1, ..., Xk) ∈
g× ...× g︸ ︷︷ ︸
k times

and q ∈M , we have

Ad#g ◦ µ̄(q)(X) = Ad#g ◦ (∂G ◦ µ(q))(X)

= (Ad#g ◦ ∂G) ◦ µ(q)(X)

= ∂G ◦ (Ad#g ◦ µ(q)(X)). (4.5)

Since µ is G-equivariant then (4.5) becomes

∂G ◦ (µ ◦ ψg(q)(X)) = (∂G ◦ µ) ◦ ψg(q)(X)

= µ̄ ◦ ψg(q)(X).

For second properties of k-ary moment map, it
is sufficient to prove that for any closed Lie sub-
group H and q ∈ MH , the µ̄H(q) is constant.
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Since q ∈ MH then µH(q) is constant map in
Λk(g∗). Therefore ∂G(µ

H(q)) = 0 and conse-
quently

µ̄H(q) = (∂G ◦ µ)H(q) = ∂G ◦ µH(q) = 0,

thus µ̄H(q) is constant map.

5 Reduction and applications

The reduction theory is an old subject, going back
to the early roots of mechanics. Methods of this
theory represent a synthesis of various techniques
of elimination of variables from classical mechan-
ics that are based on the existence of conserved
quantities. Early examples are the reduction to
the center of the mass frame in the n-body prob-
lem. The modern form of symplectic reduction
theory begins with the works of Meyer [10], Mars-
den and Weinstein [8]. In this abstract formula-
tion, we have a symplectic manifold M with a
moment map µ for a symplectic G-action. If for
regular value ξ of g∗, the Gξ acts freely and prop-
erly on the level manifold µ−1(ξ). Thus the sym-
plectic reduced manifold defined to be the quo-
tient manifold Mξ := µ−1(ξ)/Gξ. Therefore if
G of dimension r, acting on symplectic manifold
M , then the dimension of the symplectic reduced
manifold may be reduced by 2r.

The symplectic reduction was first generalized
to Pre-symplectic reduction for the manifolds
that have closed but not non-degenerate two-
forms [2]. The Yael Karshon et al. [4] generalized
this procedure to an abstract moment map, while
keeping track of various additional structures. In
this section, we generalize the concept of reduc-
tion for any manifold that is equipped with k-
ary moment map and reduced the dimension of a
manifold by much more than 2r. We need short
mathematical backgrounds on free and proper ac-
tions and some facts about equivariant cohomol-
ogy.

Definition 5.1 (See [9]). The action ψ of a G
on a manifold M is called a free if, for all g ∈ G
and q ∈ M , ψ(g, q) = q implies g = e. Also ψ
called proper when the map

Ψ : G×M −→M ×M : (g, q) 7→ (ψ(g, q), q)

is a proper (i.e., inverse images of compact sets
are compact).

Theorem 5.1 (See [11]). If a Lie group G acts
freely and properly on M , then there is a unique
structure of a manifold on M/G and the orbit
map π :M −→M/G is a principal G-bundle.

Definition 5.2 (See [5, 3]). (Equivariant co-
homology) Let G be a compact Lie group acting
on a manifoldM . There exists a topological space
E with a free G action whose E is contractible.
The equivariant cohomology of G-manifold M for
all k ∈ N is defined to be

Hk
G(M) := Hk

dR(
E ×M
G

),

where the cartesian product of M with E is
equipped with the diagonal action of G which
is free. This definition is well defined and in-
dependent of the choice of the space E because
(E×M)/G is unique up to homotopy equivalence.

Corollary 5.1 If G acts freely on M , Hk
G(M) =

Hk
dR(M/G) for all k ∈ N, since (E × M)/G is

a fiber bundle over M/G with a contractible fiber
E.

Theorem 5.2 (Reduction for k-ary mo-
ment maps) Assuming that M is G-manifold
with k-ary moment map µ. If ξ ∈ T k(g∗) is a
regular value of µ and that the isotropy group Gξ
under the Ad# action on T k(g∗), acts freely and
properly on µ−1(ξ), than Mξ := µ−1(ξ)/Gξ is a
smooth manifold and

dimMξ = dimM − (dim G)k − dim Gξ.

Also, the orbit map π : µ−1(ξ) −→ Mξ is a prin-
cipal G-bundle and for all k ∈ N

Hk
G(µ

−1(ξ)) = Hk
dR(Mξ).

Therefore for any equivariant cohomology class
[ω] on M , there exists a de Rham cohomology
class [ωξ] on Mξ so that π∗ωξ = i∗ξω, where

iξ : µ
−1(ξ) ↪→M is the inclusion map.

Proof. It is clear from Theorem 5.1 and Corol-
lary 5.1.

Corollary 5.2
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1. Considering all the conditions of Theorem
5.2, the condition necessary for the existence
a manifold Mξ is that dimensions M , G and
Gξ satisfies

k
√

dimM − dim Gξ > dim G.

2. In particular, if ξ is a regular value of T k(g∗)
and fixed by the coadjoint action on T k(g∗),
than Gξ = G and

dimMξ = dimM − (dim G)k − dim G.

Example 5.1 (N particles in R3) To illus-
trate these identities, Consider a physical system
of N particles moving in R3. the configuration
of this system is described by a q = (q1, ..., qN ) ∈
R3N , that

qi = (qi
1, qi

2, qi
3) ∈ R3

describing the position of the ith particle. Let
SO(3) act on the configuration space R3n by ro-
tations. As in Example 3.3, the free and proper
angular action SO(3) on R3N has 2-ary moment
map µ defined by

µ :R3N −→ T 2(so(3)∗)

q 7 −→
{
µ(q) : so(3)× so(3) −→ R
µ(q)(X,Y ) =< X̂ × q, Ŷ × q > .

Let regular value 0 ∈ T 2(so(3)∗). Since the ori-
gin is fixed by the coadjoint action then SO(3)0 =
SO(3). Let SO(3) acts freely and properly on
R3N then R3N

0 := µ−1(0)/SO(3) is a smooth
manifold and

dim R3N
0 = 3N − 32 − 3.

In this example, we could reduce the dimension
of the configuration of N particles in R3 by using
the concept k-ary moment maps. The equivariant
cohomology of this reduced space equals the equiv-
ariant cohomology of the configuration space.
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