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Abstract

Recently Samet et al. introduced the notion of α-ψ-contractive type mappings and established some
fixed point theorems in complete metric spaces. In this paper, we introduce α-(ψ,φ)-contractive
mappings and stablish coincidence and common fixed point theorems for two mapping in complete
metric spaces. We present some examples to illustrate our results. As application, we establish an
existence and uniqueness theorem for a solution of some integral equations.
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1 Introduction

F
ixed point theory has wide and endless ap-
plications in many fields of engineering and

science. Its core, the Banach contraction princi-
ple(see [3]), has attracted many researchers have
generalize it in different aspects. Recently Samet
et al. in [20] introduced the following concepts.

Let (X, d) be a metric space, T a self-map
on X, α : X × X → [0,+∞) be a function
and ψ : [0,+∞) → [0,+∞) a nondecreasing
function with

∑∞
n=1 ψ

n(t) < ∞ for all t ≥ 0,
where ψn is the nth iterate of ψ. Then T
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is called an α-ψ-contraction mapping whenever
α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X.
Also, T is called α-admissible whenever α(x, y) ≥
1 implies α(Tx, Ty) ≥ 1 [20].

In [20] the following theorem is proved.

Theorem 1.1 ([20],Theorems 2.1, 2.2 and 2.3)
Let (X, d) a complete metric space and T be an α-
admissible α-ψ-contractive mapping on X. Sup-
pose that one of the following assertions holds:

i) T is continuous,

ii) if {xn} is a sequence in X such that
α(xn, xn+1) ≥ 1 for all n ∈ N0 and xn →
x ∈ X as n → ∞, then α(xn, x) ≥ 1 for all
n.

If there exists an x0 ∈ X such that α(x0, Tx0) ≥
1, then there exists a u ∈ X such that Tu = u.

Further if, for any x, y ∈ X, there exists z ∈ X
such that α(x, z) ≥ 1 and α(y, z) ≥ 1, then T has
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a unique fixed point in X. More details about α-
ψ-contraction can be found in [8, 9, 11, 13, 18, 20].

Khan et al. in [12] initiated the use of a control
function in metric fixed point theory, which they
called an altering distance function

Definition 1.1 ([12]) A function ψ : [0,+∞) →
[0,+∞) is called an altering distance function, if
the following properties are satisfied:

i) ψ is continuous and non-decreasing,

ii) ψ(t) = 0 if and only if t = 0.

Altering distance has been used in metric fixed
point theory in a number of recent papers. (See,
for examle [2, 6, 7, 14, 15, 17, 19].) Alber and
Guerre-Delabriere [1] introduced the concept of
weak contractions in Hilbert spaces. This concept
was extended to metric spaces in [16].

Let (X, d) be a metric space. A mapping T :
X → X is said to be weakly contractive (see [16])
if, for all x, y ∈ X,

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)),

where φ : [0,+∞) → [0,+∞) is an altering dis-
tance function.

Choudhury et al. [4] introduced the concept
of a generalized weakly contractive condition as
follows.

Let (X, d) be a metric space, T a self-mapping
of X. We shall call T a generalized weakly con-
tractive mapping (see [4]) if, for all x, y ∈ X,

ψ(d(Tx, Ty)) ≤ ψ(m(x, y))

−φ(max{d(x, y), d(y, Ty)}),

where

m(x, y) := max{d(x, y), d(x, Tx), d(y, Ty),
1

2
[d(x, Ty) + d(y, Tx)]},

ψ is an altering distance function and
φ : [0,+∞) → [0,+∞) is a continuous function
with φ(t) = 0 if and only if t = 0.

We introduce the concept of an α-(ψ,φ)-
contractive type mapping as follows.

Definition 1.2 Let f and T be two self maps on
a metric space (X, d). Then f and T are said to
satisfy an α-(ψ,φ)-contractive condition if there
exists a function α : X×X → [0,+∞) such that,
for all x, y ∈ X, we have

α(Tx, Ty)ψ(d(fx, fy)) ≤ ψ (M(x, y)) (1.1)

−φ(d(Tx, Ty)),

where

M(x, y) = max{d(Tx, Ty), d(Tx, fx), (1.2)

d(Ty, fy),
1

2
[d(Tx, fy) + d(fx, Ty)]},

ψ : [0,+∞) → [0,+∞) is an altering distance
function, and φ : [0,+∞) → [0,+∞) is a contin-
uous function with φ(t) = 0 if and only if t = 0.

If T is the identity map on X, then f is an
α-(ψ,φ)-contractive mapping.

In this paper we establish some coincidence and
common fixed point results for two self-mappings
of a complete metric spaces which satisfying an
α-(ψ,φ)-contractive condition. In addition, we
study the existence and uniqueness of solutions
for a class of integral equations.

We begin with the following definitions.

Definition 1.3 ([10]) Let f and g be self map-
pings of a set X. If w = fx = gx for some x in
X, then x is called a coincidence point of f and
g, and w is called a point of coincidence of f and
g. If w = x, then x is called a common fixed point
of f and g.

Definition 1.4 ([10]) Let (X, d) be a metric
space and f, g : X → X. The pair (f, g) is
said to be compatible if lim

n→∞
d(fgxn, gfxn) = 0,

whenever {xn} is a sequence in X such that
lim
n→∞

fxn = lim
n→∞

gxn = t, for some t ∈ X.

Definition 1.5 ([10]) Let f and g be self map-
pings of a set X. The pair (f, g) is said to be
weakly compatible if they commute at each coin-
cidence point; (i.e. fgx = gfx, x ∈ X whenever
fx = gx).

It is known that compatible mappings are weakly
compatible mappings, but the converse is not true
[5].
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2 Coincidence and common
fixed point results

We begin our study with the following result.

Theorem 2.1 Let (X, d) a complete metric
space and α : X × X → [0,+∞) be a function
such that, for all x, y, z ∈ X, we have

α(x, y) ≥ 1&α(y, z) ≥ 1 ⇒ α(x, z) ≥ 1. (2.3)

Let f, T : X → X satisfy α-(ψ,φ)-contractive
condition (1.1).

We assume the following hypotheses:

i) fX ⊆ TX,

ii) f and T are continuous,

iii) the pair (f, T ) is compatible,

iv) for all x ∈ X, we have

α(fx, fy) ≥ 1, ∀ y ∈ T−1(fx). (2.4)

Then f and T have a coincidence point u ∈ X;
that is, fu = Tu.

Proof. Let x0 be an arbitrary point in X. Since
fX ⊆ TX, there exists an x1 ∈ X such that
Tx1 = fx0. Again from fX ⊆ TX, we can
choose x2 ∈ X such that Tx2 = fx1. Continuing
this process we can construct sequences {xn} and
{yn} in X defined by

yn = fxn = Txn+1, ∀n ∈ N0 = N ∪ {0}. (2.5)

Without loss of generality we may assume that
yn ̸= yn+1 for each n. For, if yn = yn+1 for some
n then, from (2.5), Txn+1 = yn = yn+1 = fxn+1,
and T and f have a coincidence point.

Equation (2.5) implies that xn+1 ∈ T−1(fxn).
Using (2.4),

α(yn, yn+1) = α(fxn, fxn+1) ≥ 1, ∀n ∈ N0.(2.6)

Using (2.6) and induction, it follows that

α(ym, yn) ≥ 1, ∀m,n ∈ N0with m < n. (2.7)

Set x = xn, y = xn+1 in (1.1) and use (2.6) to
obtain

ψ(d(yn, yn+1)) (2.8)

≤ α(yn−1, yn)ψ(d(yn, yn+1))

= α(Txn, Txn+1)ψ(d(fxn, fxn+1))

≤ ψ(M(xn, xn+1))− φ(d(Txn, Txn+1))

< ψ(M(xn, xn+1)),

since d(Txn, Txn+1) = d(yn−1, yn) ̸= 0. Using
property (ii) of ψ,

d(yn, yn+1) < M(xn, xn+1)

= max{d(Txn, Txn+1),

d(Txn, fxn),

d(Txn+1, fxn+1),

1

2
[d(Txn, fxn+1)

+ d(fxn, Txn+1)]}
= max{d(yn−1, yn),

d(yn, yn+1)}.

since d(fxn, Txn+1) = 0 and

d(Txn, fxn+1)

2
=

d(yn−1, yn+1)

2

≤ 1

2
[d(yn−1, yn)

+ d(yn, yn+1)]

≤ max{d(yn−1, yn),

d(yn, yn+1)}.

If d(yn−1, yn) ≤ d(yn, yn+1) for any n, then the
above inequality becomes

d(yn, yn+1) < d(yn, yn+1),

a contradiction. Therefore

d(yn, yn+1) ≤ d(yn−1, yn)

for all n, so that {d(yn, yn+1)} is a positive non-
decreasing sequence, and hence has a limit r ≥ 0.

Using (2.8), and the fact that ψ and φ are con-
tinuous,

ψ
(
lim
n
d(yn, yn+1)

)
≤

ψ
(
lim
n

max{d(yn−1, yn), d(yn, yn+1)}
)

− φ(d(yn−1, yn)),

or
ψ(r) ≤ ψ(r)− φ(r),

which implies that φ(r) = 0, and hence

r = lim
n
d(yn, yn+1) = 0. (2.9)

We shall now show that {yn} is a Cauchy
sequence in X. Suppose, that {yn} is not a
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Cauchy sequence. Then there exists an ϵ > 0
and two subsequences {ym(k)} and {yn(k)} with
n(k) > m(k) ≥ k, such that

d(ym(k), yn(k)) ≥ ϵ. (2.10)

With n(k) the smallest subsequence satisfying
(2.10), one has

d(ym(k), yn(k)−1) < ϵ. (2.11)

Using (2.10),(2.11) and the triangular inequality,

ϵ ≤ d(ym(k), yn(k)) ≤ d(ym(k), yn(k)−1)

+d(yn(k)−1, yn(k))

< ϵ+ d(yn(k)−1, yn(k)).

Letting k → ∞ in the above inequality and using
(2.9), we obtain

lim
n
d(ym(k), yn(k)) = ϵ. (2.12)

Again, using the triangular inequality we have∣∣d(ym(k)−1, yn(k))− d(ym(k), yn(k))
∣∣ ≤

d(ym(k)−1, ym(k)).

Letting again k → ∞ in the above inequality and
using (2.9) and (2.12), we get

lim
n
d(ym(k)−1, yn(k)) = ϵ. (2.13)

On the other hand we have

d(ym(k), yn(k)) ≤ d(ym(k), yn(k)+1)

+d(yn(k)+1, yn(k)).

Thanks to (2.9),(2.12), letting k → ∞, we have
from the above inequality that

ϵ ≤ lim
n
d(ym(k), yn(k)+1). (2.14)

Also, by the triangular inequality, we have

d(ym(k), yn(k)+1) ≤ d(ym(k)−1, yn(k)+1)

+d(ym(k)−1, ym(k))

≤ d(ym(k)−1, yn(k))

+d(ym(k)−1, ym(k))

+d(yn(k), yn(k)+1).

Taking the limit as k → ∞, and using (2.14),
yieds

ϵ ≤ lim
n
d(ym(k)−1, yn(k)+1),

similarly, we can show that
lim
n
d(ym(k)−1, yn(k)+1) ≤ ϵ, so

lim
n
d(ym(k)−1, yn(k)+1) = ϵ. (2.15)

Applying inequality (1.1) with x = xm(k) and y =
xn(k)+1, and using (2.7), we have

ψ(d(ym(k), yn(k)+1)) (2.16)

≤ α(ym(k)−1, yn(k))ψ(d(ym(k), yn(k)+1))

= α(Txm(k), Txn(k)+1)ψ(d(fxm(k), fxn(k)+1))

≤ ψ
(
M(xm(k), xn(k)+1)

)
− φ(d(Txm(k), Txn(k)+1))

≤ ψ
(
M(xm(k), xn(k)+1)

)
.

Since ψ in nondecreasingn, (2.16) implies that

d(ym(k), yn(k)+1) ≤M(xm(k), xn(k)+1),

where

M(xm(k), xn(k)+1) = max{ (2.17)

d(Txm(k), Txn(k)+1),

d(Txm(k), fxm(k)),

d(Txn(k)+1, fxn(k)+1),

1

2
[d(Txm(k), fxn(k)+1)

+d(fxm(k), Txn(k)+1)]}
= max{d(ym(k)−1, yn(k)),

d(ym(k)−1, ym(k)),

d(yn(k), yn(k)+1),

1

2
[d(ym(k)−1, yn(k)+1)

+d(ym(k), yn(k))]}.

Using (2.13), (2.9), (2.15), and (2.11) in (2.17),

lim
k
M(xm(k), xn(k)+1) = ϵ. (2.18)

Since

d(Txm(k), Txn(k)+1) = d(ym(k)−1, yn(k)),

taking the limit of (2.16), using (2.14), (2.18), and
the continuity of ψ and φ gives

ψ(ϵ) ≤ ψ(ϵ)− φ(ϵ),

which implies that φ(ϵ) = 0 and hence that ϵ = 0,
which is a contradiction. Thus {yn} is a Cauchy
sequence in X.
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To prove that f and T have a coincidence point,
from the completeness of (X, d), there exists a
u ∈ X such that

lim
n→∞

yn = u. (2.19)

From (2.5) and (2.19), we obtain

d(fxn, u) → 0, d(Txn, u) → 0. (2.20)

Since the pair (f, T ) is compatible,

d(T (fxn), f(Txn)) → 0. (2.21)

Using the continuity of f, T and (2.20), we have

d(T (fxn), Tu) → 0, (2.22)

d(f(Txn), fu) → 0.

The triangular inequality and (2.5) yield

d(Tu, fu) ≤ d(Tu, T (fxn)) (2.23)

+d(T (fxn), f(Txn))

+d(f(Txn), fu),

combining (2.21) and (2.22) and letting n → ∞
in (2.23), we obtain d(Tu, fu) ≤ 0; that is,
d(Tu, fu) = 0 and hence Tu = fu. Therefore u
is a coincidence point of f and T . ■

Theorem 2.2 Let (X, d) a complete metric
space and α : X × X → [0,+∞) be a function
which satisfies (2.3). Let f, T : X → X satisfy-
ing α-(ψ,φ)-contractive condition, with M(x, y)
replaces by

M(x, y) = max{d(Tx, Ty),
1

2
[d(Tx, fx) + d(Ty, fy)],

1

2
[d(Tx, fy) + d(fx, Ty)]}.

We assume the following hypotheses:

i) fX ⊆ TX,

ii) f and T are continuous,

iii) the pair (f, T ) is compatible,

iv) for all x ∈ X, we have

α(fx, fy) ≥ 1, ∀ y ∈ T−1(fx).

Then f and T have a coincidence point u ∈ X,
that is, fu = Tu.

Proof. Since

M(x, y) ≤ max{d(Tx, Ty)
, d(Tx, fx), d(Ty, fy),

1

2
[d(Tx, fy) + d(fx, Ty)]},

the result follows from Theorem 2.1. ■

In the next theorem we omit the continuity
hypotheses and on f and T , and the compatibil-
ity of the pair (f, T ).

Theorem 2.3 Let (X, d) a complete metric
space and α : X × X → [0,+∞) be a function
which satisfies (2.3). Let f, T : X → X satisfy-
ing α-(ψ,φ)-contractive condition, with M(x, y)
replaces by

M(x, y) = max{d(Tx, Ty),
1

2
[d(Tx, fx) + d(Ty, fy)],

1

2
[d(Tx, fy) + d(fx, Ty)]}.

We assume the following hypotheses:

i) fX ⊆ TX,

ii) TX is a closed subset of (X, d),

iii) if {xn} is a sequence in X such that
α(xn, xn+1) ≥ 1 for all n ∈ N0 and xn →
x ∈ X as n → ∞, then α(xn, x) ≥ 1 for all
n ∈ N0.

iv) for all x ∈ X, we have

α(fx, fy) ≥ 1, ∀ y ∈ T−1(fx).

Then f and T have a coincidence point u ∈ X,
that is, fu = Tu.

Proof. We take the same sequences {xn} and
{yn} as in the proof of Theorem 2.1. Then {yn}
is a Cauchy sequence in (X, d). Hence there exists
a v ∈ X such that

lim
n
yn = v. (2.24)
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Since TX is a closed subset of (X, d), there exist
a u ∈ X such that

yn = Txn+1 −→ Tu.

Therefore v = Tu. On the other hand, from (2.6)
and hypothesis (iii), we have

α(yn, v) ≥ 1, ∀n ∈ N0,

or
α(Txn, Tu) ≥ 1, ∀n ∈ N. (2.25)

Applying inequality (1.1) with x = xn and y = u,
and using (2.25), we obtain

ψ(d(yn, fu)) = ψ(d(fxn, fu)) (2.26)

≤ α(Txn, Tu)ψ(d(fxn, fu))

≤ ψ(M(xn, u))− φ(d(Txn, Tu))

≤ ψ(M(xn, u)),

where

M(xn, u) = max{d(Txn, Tu),
1

2
[d(Txn, fxn) + d(Tu, fu)],

1

2
[d(Txn, fu) + d(fxn, Tu)]}

= max{d(yn−1, v),

1

2
[d(yn−1, yn) + d(v, fu)],

1

2
[d(yn−1, fu) + d(yn, v)]}.

Since ψ is a nondecreasing function, (2.26) im-
plies that

d(yn, fu) ≤ M(xn, u)

= max{d(yn−1, v),

1

2
[d(yn−1, yn) + d(v, fu)],

1

2
[d(yn−1, fu) + d(yn, v)]}.

Letting n → ∞ in above inequality and using
(2.9) and (2.24), we find

d(v, fu) ≤ max{0, 1
2
[0 + d(v, fu)],

1

2
[d(v, fu) + 0]}

=
1

2
d(v, fu),

which implies 1
2d(v, fu) ≤ 0; that is d(v, fu) = 0

and hence
Tu = v = fu.

Therefore u is a coincidence point of f and T . ■

The next result is an immediate consequence of
Theorem 2.2 and 2.3 by taking T = IX (the
identity mapping on X).

Corollary 2.1 Let (X, d) be a complete metric
space, α : X ×X → [0,+∞) be a function which
satisfies (2.3) and let f be a self-map on X such
that

α(fx, f(fx)) ≥ 1, ∀x ∈ X.

Suppose that, for all x, y ∈ X, we have

α(x, y)ψ(d(fx, fy)) ≤ ψ (M(x, y))

− φ(d(x, y)),

where

M(x, y) = max{d(x, y),
1

2
[d(x, fx) + d(y, fy)],

1

2
[d(x, fy) + d(fx, y)]},

ψ and φ are as in Definition 1.2.
Suppose that one of the following assertions

holds:

a) f is continuous,

b) if {xn} is a sequence in X such that
α(xn, xn+1) ≥ 1 for all n ∈ N0 and xn →
x ∈ X as n → ∞, then α(xn, x) ≥ 1 for all
n ∈ N0.

Then f has a fixed point.

We shall now prove another existence and unique-
ness theorem for a pair of maps.

Theorem 2.4 In addition to the hypotheses of
both Theorems 2.2 and 2.3, suppose that, for any
x, y ∈ X, there exists u ∈ X such that

α(fx, fu) ≥ 1, α(fy, fu) ≥ 1, (2.27)

and, also in Theorem 2.3 that pair (f, T ) is weakly
compatible. Then f and T have a unique common
fixed point; that is, there exists a unique z ∈ X
such that fz = Tz = z.
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Proof. Referring to Theorem 2.2 or Theorem 2.3,
the set of coincidence points of f and T is non-
empty. We shall show that, if x and y are coinci-
dence points of f and T ; that is, if fx = Tx and
fy = Ty, then

Tx = Ty. (2.28)

From (2.27) there exists a u0 ∈ X such that

α(fx, fu0) ≥ 1, α(fy, fu0) ≥ 1. (2.29)

Similar to the proof of Theorem 2.1, we define
sequences {un} and {pn} as follows:

pn = fun = Tun+1, ∀n ∈ N0, (2.30)

and

α(pm, pn) ≥ 1, ∀m,n ∈ N0with m < n. (2.31)

Using (2.29), (2.31) and (2.3), we have

α(fx, pn) ≥ 1, α(fy, pn) ≥ 1, ∀n ∈ N0. (2.32)

Applying inequality (1.1) with x = x and y = un,
and using (2.32), we obtain

ψ(d(Tx, pn)) ≤ α(Tx, pn−1)ψ(d(Tx, pn))

= α(Tx, Tun)ψ(d(fx, fun))

≤ ψ(M(x, un))

− φ(d(Tx, Tun))

≤ ψ(M(x, un)), (2.33)

where

M(x, un) = max{d(Tx, Tun),
1

2
[d(Tx, fx) + d(Tun, fun)],

1

2
[d(Tx, fun) + d(fx, Tun)]}

= max{d(Tx, pn−1),

1

2
[0 + d(pn−1, pn)],

1

2
[d(Tx, pn) + d(Tx, pn−1)]}

= max{d(Tx, pn−1),
1

2
d(pn−1, pn),

1

2
[d(Tx, pn) + d(Tx, pn−1)]}.

Since

1

2
d(pn−1, pn) ≤

1

2
[d(pn−1, Tx) + d(Tx, pn)] ,

it follows that

M(x, un) = max{d(Tx, pn−1), (2.34)

1

2
[d(Tx, pn) + d(Tx, pn−1)]}.

Since ψ is a nondecreasing function, (2.33) im-
plies that

d(Tx, pn) ≤ M(x, un) (2.35)

= max{d(Tx, pn−1),

1

2
[d(Tx, pn) + d(Tx, pn−1)]},

Now, if M(x, un) = d(Tx, pn−1), then
d(Tx, pn) ≤ d(Tx, pn−1), and, if M(x, un) =
1

2
[d(Tx, pn) + d(Tx, pn−1)], then

d(Tx, pn) ≤
1

2
[d(Tx, pn) + d(Tx, pn−1)],

which implies that d(Tx, pn) ≤ d(Tx, pn−1).
Therefore, for any n ∈ N,

d(Tx, pn) ≤ d(Tx, pn−1).

It follows that the sequence {d(Tx, pn)} is mono-
tonic non-increasing. Hence, there exists an r ≥ 0
such that

lim
n
d(Tx, pn) = r. (2.36)

Letting n → ∞ in (2.33) and using (2.34) and
(2.36) and the continuity of ψ and φ, we get that

ψ(r) ≤ ψ

(
max{r, 1

2
(r + r)}

)
− φ(r)

≤ ψ

(
max{r, 1

2
(r + r)}

)
,

which implies that φ(r) = 0 and hence that r = 0.
Thus we have

lim
n→∞

d(Tx, pn) = 0. (2.37)

Similarly, one can show that

lim
n→∞

d(Ty, pn) = 0. (2.38)

Using (2.37) and (2.38), the uniqueness of the
limit gives us Tx = Ty.

Let us denote

z := fx = Tx.
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By the compatibility of the pair (f, T ) in Theo-
rem 2.2 or the weakly compatibility of the pair
(f, T ) in Theorem 2.3, we have

Tz = Tfx = fTx = fz,

which implies that z is a coincidence point of f
and T . From (2.28) we get

Tz = Tx = z.

This proves that z is a common fixed point of f
and T .

To prove uniqueness, suppose there is an an-
other common fixed point w; that is,

fw = Tw = w.

This implies that w is a coincidence point of f
and T . From (2.28) this implies that

w = Tw = Tz = z,

which yields the uniqueness of the common fixed
point. ■

3 Some examples

In this section we present some examples which
illustrate our results.

Example 3.1 Let X = R be endowed with the
standard metric d(x, y) = |x− y| for all x, y ∈ X
and let α : X ×X → [0,∞) be defined by

α(x, y) =

{
1 x ≥ y ≥ 0
0 otherwise.

Obviously, (X, d) is a complete metric space and
(2.3) is satisfied with α.

Define also f, T : X → X and ψ,φ : [0,+∞) →
[0,+∞) by

f(x) =

{
ln(1 + x2

2 ) x ≥ 0,
x2 x < 0,

and

T (x) =

{
x2 x ≥ 0,
x x < 0,

and ψ(t) = t2 and φ(t) =
3

4
t2. Then all the hy-

potheses of Theorem 2.1, 2.2 and 2.4 hold.

Proof. The proof of (i) and (ii) is clear. To prove
(iii), let {xn} be any sequence in X such that

lim
n
fxn = lim

n
Txn = t.

for some t ∈ X. Since fxn ≥ 0, we have t ≥ 0.
Since Txn → t as n → ∞, we have {xn} has at
most only finitely many elements lower than 0.

Thus, fxn = ln(1 + x2
n
2 ) and Txn = x2n for all

n ∈ N except at most for finitely many elements,
and we have x2n → t and x2n → 2(et−1) as n→ ∞.
By uniqueness of limit 2(et − 1) = t and hence
t = 0. Thus, fxn → 0 and Txn → 0 as n → ∞.
Since f and T are continuous, we have

lim
n
d(T (fxn), f(Txn)) = d(T0, f0)

= d(0, 0) = 0.

Thus, the pair (f, S) is compatible.
To prove (iv), let x, y ∈ X be such that y ∈

T−1(fx). If x ≥ 0, then

Ty = fx = ln(1 +
x2

2
) ≥ 0.

In this case, we must have Ty = y2. Thus, y2 =
ln(1 + x2

2 ). Hence,

fy = ln(1 +
y2

2
) ≤ y2

2
≤ y2 = ln(1 +

x2

2
) = fx,

also, fx ≥ 0 and fy ≥ 0. Therefore, we have
α(fx, fy) = 1.

If x < 0, then

Ty = fx = x2 ≥ 0.

In this case, we must have Ty = y2. Thus, y =
−x. Hence,

fy = ln(1 +
y2

2
) ≤ y2

2
≤ y2 = (−x)2 = fx,

also, fx ≥ 0 and fy ≥ 0. Therefore, we have
α(fx, fy) = 1.

In order to show that f and T do satisfy the
α-(ψ,φ)-contractive condition (1.1), let x, y ∈ X,
Case 1. x ≥ 0, y ≥ 0 and x ≥ y.

If we use mean value theorem, then we have

d(fx, fy) =

∣∣∣∣ln(1 + x2

2

)
− ln

(
1 +

y2

2

)∣∣∣∣
≤ 1

2
|x2 − y2|= 1

2
d(Tx, Ty)
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Therefore, we obtain

d(fx, fy)2 ≤ 1

4
d(Tx, Ty)2

= d(Tx, Ty)2 − 3

4
d(Tx, Ty)2

≤ M(x, y)2 − 3

4
d(Tx, Ty)2.

In this case, we have α(Tx, Ty) = α(x2, y2) = 1.
Therefore, we obtain

α(Tx, Ty)ψ(d(fx, fy)) ≤ ψ(M(x, y))

−φ(d(Tx, Ty)).

Case 2. (x ≥ 0, y ≥ 0 and x < y) or x < 0 or
y < 0.

In this case, we have α(Tx, Ty) = 0. Therefore,
we have

α(Tx, Ty)ψ(d(fx, fy)) = 0

≤ 1

4
d(Tx, Ty)2

= d(Tx, Ty)2

−3

4
d(Tx, Ty)2

≤ M(x, y)2

−3

4
d(Tx, Ty)2

= ψ(M(x, y))

−φ(d(Tx, Ty)).

Thus, f and T satisfy all the hypotheses of The-
orem 2.1 and 2.2. Therefore, f and T have a
coincidence point.

Finally, if x, y ∈ X then by definition of f , we
have fx ≥ 0 and fy ≥ 0. Now, if

u :=

{
x fx ≥ fy,
y fx < fy,

then α(fx, fu) = 1 and α(fy, fu) = 1. Thus, by
applying Theorem 2.4, we conclude that f and
T have a unique common fixed point. In fact, 0
is the unique common fixed poin of f and T . ■

We now give an example involving a func-
tion f that is not continuous.

Example 3.2 Let X = [0,+∞) be endowed with
the standard metric d(x, y) = |x−y| for all x, y ∈
X and let α : X ×X → [0,∞) be defined by

α(x, y) =

{
1 0 ≤ x, y ≤ 1

2
0 otherwise.

Obviously, (X, d) is a complete metric space and
(2.3) is satisfied with α.

Define also f, T : X → X and ψ,φ : [0,+∞) →
[0,+∞) by

f(x) =

{
x
3 0 ≤ x ≤ 1,
1

x+1 x > 1,
,

T (x) = x
2 , ψ(t) = t and φ(t) =

1

3
t. Then all the

hypotheses of Theorem 2.3 and 2.4 hold.

Proof. The proof of (i) and (ii) is clear. To
prove (iii), if {xn} is a sequence in X such that
α(xn, xn+1) ≥ 1 for all n ∈ N0 and xn → x as
n → ∞, then {xn} ⊆ [0, 12 ] and hence x ∈ [0, 12 ].
This implies that α(xn, x) ≥ 1 for all n ∈ N0.

To prove (iv), let x, y ∈ X be such that y ∈
T−1(fx). If 0 ≤ x ≤ 1, then

Ty = fx =
x

3
<

1

2
,

since Ty = y
2 , we must have y = 2

3x. Hence,

fy = f(
2

3
x) =

2

9
x <

1

2
.

Therefore, we have α(fx, fy) = 1. If x > 1, then

Ty = fx =
1

x+ 1
<

1

2
,

since Ty = y
2 , we must have y = 2

x+1 < 1. Hence,

fy = f(
2

x+ 1
) =

1

3

2

x+ 1
<

1

2
.

Therefore, we have α(fx, fy) = 1.
In order to show that f and T do satisfy the

α-(ψ,φ)-contractive condition (1.1), let x, y ∈ X,
Case 1. 0 ≤ x, y ≤ 1.

d(fx, fy) =
∣∣∣x
3
− y

3

∣∣∣ = 2

3

∣∣∣x
2
− y

2

∣∣∣
=

2

3
d(Tx, Ty)

≤ d(Tx, Ty)− 1

3
d(Tx, Ty)

≤ M(x, y)− 1

3
d(Tx, Ty).

In this case, we have α(Tx, Ty) = α(x2 ,
y
2 ) = 1.

Therefore, we obtain

α(Tx, Ty)ψ(d(fx, fy)) ≤ ψ(M(x, y))

−φ(d(Tx, Ty)).
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Case 2. x > 1 or y > 1.

In this case, we have α(Tx, Ty) = 0. Therefore,
we have

α(Tx, Ty)ψ(d(fx, fy)) = 0

≤ 2

3
d(Tx, Ty)

= d(Tx, Ty)

−1

3
d(Tx, Ty)

≤ M(x, y)

−1

3
d(Tx, Ty)

= ψ(M(x, y))

−φ(d(Tx, Ty)).

Thus, f, T, α, ψ and φ satisfy all the hypotheses
of Theorem 2.3. Therefore, f and T have a coin-
cidence point.

Finally, if x, y ∈ X then by definition of f ,
we have 0 ≤ fx, fy ≤ 1

2 . Now, if u := x then
α(fx, fu) = 1 and α(fy, fu) = 1. Thus, by
applying Theorem 2.4, we conclude that f and
T have a unique common fixed point. In fact, 0
is the unique common fixed poin of f and T . ■

Example 3.3 Let X = {1, 2, 3, 4} endowed with
the usual metric d(x, y) = |x− y| for all x, y ∈ X
and let α : X ×X → [0,+∞) be defined by

α(x, y) =


1 (x, y) = (1, 1), (2, 2), (3, 3),

(4, 4), (4, 1), (4, 2),

0 otherwise.

Clearly, (X, d) is a complete metric space and
(2.3) is satisfied with α.

Now, if {xn} is a sequence in X such that
α(xn, xn+1) ≥ 1 for all n ∈ N0 and xn → x as
n→ ∞, then there exists k ∈ N such that xn = x
for all n ≥ k. Therefore, we have α(xn, x) ≥ 1
for all n ∈ N0.

Let ψ,φ : [0,∞) → [0,∞) be defined by ψ(t) =
t3 + t and φ(t) = t

1+t2
and selfmaps f and T on

X be given by

f =

(
1 2 3 4
2 1 2 4

)

and

T =

(
1 2 3 4
4 1 2 3

)
.

It is easy to see that, f and T satisfy all the con-
ditions given in Theorem 2.3, and so f and T
have a coincidence point. In fact, 2 and 3 are
coincidence points of f and T .

4 Application to integral equa-
tions

In this section we study an existence and unique-
ness of solutions to a class of integral equations.

Consider the integral equation

x(t) =

∫ b

a
K(t, s, x(s))ds,∀t ∈ [a, b], (4.39)

where b > a ≥ 0 and K : [a, b] × [a, b] × R → R.
The purpose of this section is to give an exis-
tence theorem for a solution of (4.39) using Corol-
lary 2.1.

Consider the space X := C[a, b] of real contin-
uous functions defined on [a, b]. Obviously this
space, with the metric given by

d(x, y) = ∥x− y∥∞
= sup

a≤t≤b
|x(t)− y(t)|, ∀ x, y ∈ X,

is a complete metric space.

Let f : X → X be the mapping defined by

fx(t) =

∫ b

a
K(t, s, x(s))ds, ∀ t ∈ [a, b].

for all x ∈ X. Then the existence of a solution
to (4.39) is equivalent to the existence of a fixed
point of f .

We will now prove the following result.

Theorem 4.1 Suppose that the following hy-
potheses hold:

(i) K : [a, b]× [a, b]× R → R is continuous;

(ii) for all t, s ∈ [a, b] and x ∈ X, we have

|K(t, s, x(s))|≤ 1

b− a
;
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(iii) for all s, t ∈ [a, b] and x, y ∈ X with
∥x∥∞, ∥y∥∞≤ 1, we have

|K(t, s, x(s))−K(t, s, y(s))|2≤
p(t, s) ln(1 + |x(s)− y(s)|3),

where p : [a, b]× [a, b] → [0,+∞) is a contin-
uous function satisfying

sup
a≤t≤b

∫ b

a
p(s, t)ds <

1

b− a
.

Then, the integral equation (4.39) has a unique
solution w ∈ X.

Proof. From condition (iii), for all t ∈ [a, b] and
x, y ∈ X such that ∥x∥∞, ∥y∥∞≤ 1, we have

|fx(t)− fy(t)|2

≤

(∫ b

a

|K(t, s, x(s))−K(t, s, y(s))|ds

)2

≤
∫ b

a

12ds

∫ b

a

|K(t, s, x(s))−K(t, s, y(s))|2ds

≤ (b− a)

∫ b

a

p(t, s) ln(1 + |x(s)− y(s)|3)ds

≤ (b− a)

∫ b

a

p(t, s) ln(1 + d(x, y)3)ds

= (b− a)

(∫ b

a

p(t, s)ds

)
ln(1 + d(x, y)3)

< ln(1 + d(x, y)3)

= d(x, y)2 −
(
d(x, y)2 − ln(1 + d(x, y)3)

)
≤M(x, y)2 −

(
d(x, y)2 − ln(1 + d(x, y)3)

)
.

Therefore(
sup
a≤t≤b

|fx(t)− fy(t)|

)2

≤M(x, y)2

−
(
d(x, y)2 − ln

(
1 + d(x, y)3

))
.

Set ψ(t) = t2 and φ(t) = t2 − ln
(
1 + t3

)
. Then

ψ(d(fx, fy)) ≤ ψ (M(x, y))− φ (d(x, y))

for all x, y ∈ X such that ∥x∥∞, ∥y∥∞≤ 1.

Defne the function α : X ×X → [0,+∞) by

α(x, y) =


1 ∥x∥∞, ∥y∥∞≤ 1

0 otherwise.

For all x, y ∈ X we have

α(x, y)ψ(d(fx, fy)) ≤ ψ (M(x, y))

−φ (d(x, y)) .

Then, f is an α-(ψ,φ)-contractive mapping

Clearly, (2.3) is satisfied with α. From condi-
tion (ii), for all x ∈ X, we get ∥fx∥∞≤ 1. There-
fore

α(fx, f(fx)) = 1, ∀ x ∈ X.

Moreover, if {xn} is a sequence in X such that
α(xn, xn+1) ≥ 1 for all n ∈ N0 and xn → x as
n → ∞, then ∥xn∥∞≤ 1 for all n ∈ N0, and
hence ∥x∥∞≤ 1. This implies that α(xn, x) = 1
for all n ∈ N0.

All of the hypotheses of Corollary 2.1 are satis-
fied. On the other hand, since ∥fx∥∞, ∥fy∥∞≤ 1
for all x, y ∈ X, we have α(fx, fy) = 1. There-
fore, condition (2.27) of Theorem 2.4 is also satis-
fied with u = x. Thus f has a unique fixed point
w ∈ X; that is, w is the unique solution of the
integral equation (4.39). ■
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