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Abstract

In this work, a new simple direct method to solve nonlinear Fredholm-Volterra integral equations
is presented. By using Block-pulse (BP) functions, their operational matrices and Taylor expansion
a nonlinear Fredholm- Volterra integral equation converts to a nonlinear system. Some numerical
examples illustrate accuracy and reliability of our solutions.
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1 Introduction

N many branches of mathematics and sciences
I we are Encountered Integral equation. Inte-
gral equation have been applied in mathematics,
physics, engineering, continuum mechanics, po-
tential theory, geophysics, electricity and mag-
netism, antenna synthesis problem, communi-
cation theory, mathematical economics, popula-
tion genetics and radiation, the particle transport
problems of astrophysics and reactor theory, fluid
mechanics etc. Therefore, find an acceptable so-
lution to these equations is necessary. Many re-
searchers focused on them and presented differ-
ent methods to solve them including analytical
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methods, numerical methods or mixed methods.
See [1, 2, 3, 4, 5, 6, 7]. In this paper, we consider
general form of a nonlinear Fredholm-Volterra in-
tegral equation as follows:

Mu(z) = f(x) + M [ ka(, )G (u(t))dt
A [y Ea(a, t) H (u(t))dt
u’ (a) = v;, j=0,---,n—1.

(1.1)

where A € {0,1} and A,X2 € R. Also,
G(t),H(t) are smooth functions and u(t) is un-
known function. Inaddition, all of the functions
belong to ¢2[a,b]) or £2([a,b] x [a,b] . Recently,
it has become common to employ a sequence of
polynomials or functions in order to solve inte-
gral equations. In these methods, integral equa-
tions are converted to a system whose solution
leads us to the solution of a given integral equa-
tion. Fredholm integral equation of the first kind
is an ill-posed problem and the common and effec-
tive methods to solve them numerically are based
on wavelets [8, 9]. Volterra integral equation of
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the first kind is easier to solve. Babolian and his
coworkers presented a direct method [10] and an
iterative method [11] to solve these equations in
linear case based on Block-pulse functions which
our method is a general case of them. Almost
all of the methods which use to solve nonlinear
Fredholm-Volterra integral equations are in par-
ticular case or are dependent to choose of points
[12, 13, 14, 15]. However our method is in general
case and is free of the points. In this article, a new
direct method based on BP functions and Taylor
expansion are presented. This method converts a
nonlinear integral equation to a system.

2 Preliminaries

BP functions are famous functions that many au-
thors used them to solve different equations. See
[10, 11, 12].

Definition 2.1 Suppose m be a positive integer
number, an m-set of BPFs defined over [0,T)as

[10]:

1 il t < (i+1)T
i (1) = ’ m m 2.2
¢:(?) {0, otherwise. (22)

where i = 0,1,---,m—1 and ¢; (t) is the ith BPF

and consider h = —. In this paper, for convince

m
we consider our interval [0, 1).For an arbitrary in-

terval [a,b), it is sufficient to use the change of

b—a b+a
iable t = .
variable 2 xr 4+ 5

We denote ®,,,(t) as an m-vector as follows:

O, (t) = [do(t) é1(t) Sm_1(D)]" (2.3)

where ¢t € [0,1).

It is easy to see the BPFs have many properties
that most important of them are disjointness, or-
thogonality, and completeness [10, 11]. For dis-
jointness property, 2.2 gives:

65(0).65(t) = {O’ 170 (9.4

oi(t), =7
The second property is orthonormality, it is ob-

vious that

/O 6s(8)65(£)dt = ho, (2.5)
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where ¢;; is the Kroneker delta.

for every f € £2[0,1] when m — oo , Parsevals
identity holds:

1 o0
/0 Pydr =S 12 012,
1=0

where

1
fi= fll/o S(t)pi(t)dt. (2.6)

3 BPFs expansion and opera-
tional matrices

Theorem 3.1 [16] Supposes H = ¢*|[a,b] that
is a Hilbert space with the inner product that
is defined by (f,g) = fff(t)g(t)dt and Y =
Span{y1,y2, -, ym}. Let f be an arbitrary el-
ement inH . Since Y is a finite dimensional and
closed subspace, it is a complete subset of H . So,
f has the unique best approximation out of Y .

Consider f € £2[0,1] , with respect to BPFs on
[0,1) and we can write

F6) =" figa(t) = > fiti(t) (3.7)
=0 =0
= FTo,,(t) = oL F, (3.8)

where F' = [fo f1 fm_lf and f; is de-
fined as 2.6.

Theorem 3.1 guarantees uniqueness of coeffi-
cients. Now, assume k(z,t) € £2([0,1) x [0,1))
be a two dimensional function. With respect to
BPFs we can write

k(z,t) ~ o1 K®,,, (3.9)

where

1 1
i =m? x,t)pi(x)p;(t)dx .
Ky = /0 /0 K, )6u(a)6; (D dwdt, (3.10)

i i =0,1,--,m—1.
Lemma 3.1 Let m be an integer and ®,,(t) de-
fined as 2.3. Then:
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1
/ B, ()07 (2)dz = hiy, (3.11)
0
Proof. With respect 2.5 it is obvious.
Lemma 3.2 Let V' be an m-vector then
D, ()DL ()V =V, (1) (3.12)

where V is an m x m diagonal matrix such that
Vii= Vi, for i=0,1,....,m— 1.

Proof. see[10, 11].

Lemma 3.3 For every m X m matrix B we can
write:

3L (t)B®,,(t) = BD,, (1), (3.13)

where B is an m-vector such that BZ =
B, for i=0,1,....m—1.

Proof. see [10, 11].

Lemma 3.4 Let 0 <z <1 and ®,,,(t) defined as
2.3 Then:
/ Bo(t)dt ~ POm(z)  (3.14)
0

Where P , operational matriz of integration, is
an m X mupper triangular matriz and can be

1 2 ... 9
presented as P=— 01

2 L2

0o --- 0 1

Proof. See [10, 11]

4 Main Idea

Lemma 4.1 Suppose f(z),g(z) € £2]0,1) , then
f(x)g(x) = HT®,,(x). Where

H=[fogo fin Fm-19m—1]
F=1fo h 1]
andG = [go ¢ gm—l]T

Proof. With respect to 3.7 we can write:
f(@)g(z) = FT®,,(2)®L (2)G. Now 3.14 implies
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FT®,,(2)®! ()G = FT Diag(G)®,(x)

= [fogo fin fm-19m—1] Pm(2).

Lemma 4.2 If f(z) € 2[0,1) then f*(z) =
HT®,,(x), where H = [f&... = _,]T.

Proof. with respect to lemma 4.1 it is obvious.

Now, if ¢(xz) € C*°[0,1] theny(x) has Taylor

expansion as follows:

() = 3720 a’.

Suppose u(x) € ¢2[0,1)e an arbitrary function
3.7 gives:

uw(z) ~ UT®,,(z) = & (x)U,

where U = [uo Ul um_l}. Now

00 N
Y(u(z)) = Z aiu'(r) ~ Zaluz(x) (4.15)
=0 =0

Where N is the number of Taylor terms. with
respect to 3.7, t¢(u(z)) has a unique expan-
sion as follows: (u(z)) = ¥T¢,,(z),where
U = [\Ilo Uy ‘Ilm,l}. Lemma 4.2 and Eq.
4.15 indicate:

v, = Zfio aiué,j =0,1,...,m— 1.

The results mentioned in previous sections are
used to obtain a direct efficient method to solve
nonlinear Fredholm-Volterra integral equation

5 Direct method to solve non-
linear Fredholm-Volterra in-
tegral equation

In 1.1 suppose u(x) € ¢2[0,1) is unknown,
ki(x,t), ka(z,t) € £2(]0,1) x [0,1)) are known and
G(z),H(z) € C*[0,1), moreover A € {0,1}and
A1, Ao are two real parameters. At first, consider
Fredholm term in 1.1 as follows:

/ k(.G () )t (5.16)
0
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Table 1: Results of Example 6.1.

T m = 100 €100 m = 120 €120 exact solution

0.00 0.00499731331 4.99x103 0.0041645073 4.16x10° 0.00

0.10 0.10494632640 4.94x103 0.1041153163 4.11x10° 0.10

0.20 0.2049097628 4.90x103 0.2040801536 4.08x10° 0.20

0.30 0.30489870480 4.89x103 0.3040698597 4.06x103 0.30

0.40 0.4049191294 4.91x103 0.4040901963 4.09x10° 0.40

0.50 0.5049694998 4.96x103 0.5041394396 4.13x10° 0.50

0.60 0.6050384501 5.03x103 0.6042060663 4.20x10° 0.60

0.70 0.7051025934 5.10x103 0.7042665638 4.26x10° 0.70

0.80 0.8051244822 5.12x103 0.8042833912 4.28x10° 0.80

0.90 0.9050507458 5.05%103 0.9042031178 4.20x10° 0.90
Table 2: Results of Example 6.2.

T m = 32 €392 m = 64 €64 exact solution

0.00 0.989584 1.04x102 0.994792 5.20x 103 1.000000

0.10 0.891689 1.31x102 0.905768 9.31x10% 0.904837

0.20 0.820394 1.66%103 0.824711 5.98x103 0.818731

0.30 0.739236 1.58 %103 0.735426 5.39x103 0.740818

0.40 0.680130 9.81x10° 0.669613 7.07x10% 0.670320

0.50 0.600213 6.31x103 0.603372 3.15%103 0.606531

0.60 0.540837 7.95%103 0.549376 5.64x10% 0.548812

0.70 0.497594 1.00%103 0.500213 3.62x103 0.496585

0.80 0.448370 9.59x10% 0.446058 3.27x103 0.449329

0.90 0.412520 5.95x103 0.406141 4.29x10% 0.406570
Table 3: Results of Example 6.3.

T m =50,N =40 €50,40 m =100, N = 20 €100,20 exact solution

0.00 0.006667 1.04x 102 0.003333 5.20x103 0.00

0.10 0.1134 1.31x10? 0.1033 9.31x10% 0.10

0.20 0.2066 1.66x103 0.2033 5.98x103 0.20

0.30 0.3135 1.58x103 0.3033 5.39% 103 0.30

0.40 0.4064 9.81x103 0.4032 7.07x10% 0.40

0.50 0.5138 6.31x10° 0.5031 3.15x103 0.50

0.60 0.6059 7.95%x103 0.603 5.64x10% 0.60

0.70 0.7144 1.00%x103 0.7028 3.62x103 0.70

0.80 0.8052 9.59%10* 0.8027 3.27x103 0.80

0.90 0.9155 5.95%103 0.9024 4.29x10% 0.90

Approximating functions kj(x,t) and G(u(t))
with respect to BPF's gives:

ki (. t) = @ (2) K1 @ (1) G(u(t)) = 7,(1)G
(5.17)
where the matrixK; is BPFs coefficients of
ki(x,t) and the vector G is BPFs coefficients of

G(u(t)) such that

N
Gj = Zaiué-,j =0,1,....,m—1.
=0

Substituting 5.17 into 5.16 and using 3.11 gives:

0

/ 1 oL (2) K1 ®,,()®L (1)Gdt = hdl (2) K, G.

(5.18)
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Table 4: Results of Example 6.4.

T m = 50 €50 m = 100 €100 exact solution
0.00 0.009999 1.04% 102 0.005 5.00x103 0.00
0.10 0.11 1.31x102 0.105 5.00x103 0.10
0.20 0.21 1.66x103 0.205 5.00x103 0.20
0.30 0.31 1.58x103 0.305 5.00x 103 0.30
0.40 0.4099 9.81x103 0.405 5.00x 103 0.40
0.50 0.5099 6.31x103 0.505 5.00x103 0.50
0.60 0.6099 7.95%x103 0.605 5.00x103 0.60
0.70 0.7099 1.00x103 0.705 5.00x103 0.70
0.80 0.8099 9.59%10* 0.805 5.00x 103 0.80
0.90 0.9099 5.95%103 0.905 5.00x 103 0.90

Table 5: Results of Example 6.5.

T m =50,N =10 €50,10 m =100, N = 10 €100,10 exact solution
0.00 0.99 1.00%x 102 0.995 5.00x 103 1.0
0.10 0.89 1.00x 102 0.895 5.00x103 0.9
0.20 0.7899 1.01x 102 0.795 5.00x103 0.8
0.30 0.6899 1.01x 102 0.695 5.00x103 0.7
0.40 0.5899 1.01x102 0.595 5.00x103 0.6
0.50 0.4899 1.01x102 0.495 5.00x103 0.5
0.60 0.3899 1.01x10? 0.395 5.00x103 0.4
0.70 0.2899 1.01x 102 0.295 5.00x103 0.3
0.80 0.1899 1.01x 102 0.195 5.00x103 0.2
0.90 0.08989 1.01x102 0.09497 5.03x103 0.1

Table 6: Results of Example 6.6.

T m = 50 €50 m = 100 €100 exact solution
0.0 0.009643 9.64 x102 0.005043 5.04x1073 0.000000

0.1 0.1229 1.23x102 0.1167 6.18 x1073 0.1105170918
0.2 0.2593 1.5 x1072 0.2517 7.42 x1073 0.2442805516
0.3 0.4229 1.79x102 0.4138 8.84 x1073 0.4049576424
0.4 0.6181 2.13 x1072 0.6073 6.97 x1073 0.5967298792
0.5 0.8497 2.53%102 0.8368 1.25 x10~2 0.8243606355
0.6 1.123 2.97 x1072 1.108 1.47 x1072 1.0932712800
0.7 1.445 3.53x102 1.427 1.73 x1072 1.4096268950
0.8 1.822 4.15 x1072 1.801 2.05 x1072 1.7804327420
0.9 2.262 4.83x102 2.237 2,33 x1072 2.213642800

Now, in 1.1 the Volterra term is: H(u(t))=®7 (t)H(5.20)

x
/0 ka(x, ¢) H (u(t))dt (5-19)  whereK> is the matrix of ka(x,t) and the vector
H is BPF's coefficients of H(u(t)) such that
H; = Zi]\io biuﬁ-,j =0,1,...,m — 1. Now, Substi-
tuting 5.19 into 5.18 gives:

Approximating functions ko(x,t) and H (u(t))
with respect to BPF's gives:

ko (z,t) = ®F (2) Ko ®,,(t) /0 ) O, (2) Ko @i (£) @y, (1) Hat (5.21)
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Table 7: Results of Example 6.7.

T m =50,N =10 €50,10 m =100, N =10 €100,10 exact solution
0.0 0.0076 7.60 x103 0.003894 3.89x1073 0.0
0.1 0.1119 1.19x10? 0.1041 4.1 x1073 0.1
0.2 0.2084 8.4 x1073 0.2043 4.3 x1073 0.2
0.3 0.3113 1.13x102 0.3044 4.4 x1073 0.3
0.4 0.4089 8.4 x1073 0.4045 4.5 %1073 0.4
0.5 0.5108 1.08x 102 0.5046 4.6 x1073 0.5
0.6 0.6093 9.3 x1073 0.6047 4.7 x1073 0.6
0.7 0.7106 1.06x 102 0.7047 4.7 x1073 0.7
0.8 0.8095 9.5 x1073 0.8048 4.8 x1073 0.8
0.9 0.9103 1.03%x 102 0.9048 4.8 x1073 0.9

Using Eq. 3.12 and 3.14 follows:

/ ’ L () Ky®,,(t)®L (t)Hdt (5.22)
0
= o7 (z)K,H /x D, (t)dt (5.23)
0
= oL (2)KyH, P, (5.24)

Let H, = K>HP be an m x m matrix. Volterra
term of 1.1 gives the following matrix form:

x
/ ko(x, t)H (u(t))dt = @] (x)H,.  (5.25)
0
Where where H, is an m-vector with components
equal to the diagonal entries of matrix H,. The
other terms in (1.1) approximate by BPF's as fol-
lows:

u(z) = & (2)U, f(z) = p(2)F,  (5.26)

Where U and F' are m-vectors which computed
by 2.6. replacing 5.17, 5.22 and in 1.1 gives the
final matrix form of nonlinear Fredholm-Volterra
integral equation as follows:

AU — M hK1G)\oH,, = F.

6 Numerical examples

We are going to apply our method to some nu-
merical examples. We selected examples from dif-
ferent references, so our results can be compared
with the results from other methods. Also, the
results of each example are shown in a table. We
denote e, n or e,, to show the absolute error with
respect to the values of m and N at a given point.

Example 6.1 [9] Consider

1 .
/ sin(at)u(t)dt = LT

0 x
with the exact solution u(x) = x.

This equation is a linear Fredholm integral equa-
tion of the first kind. Table 1 shows the exact
solution, our approximations and absolute error
in some special points.

Example 6.2 [10, 11] Consider following linear
Volterra integral equation of the first kind with
the exact solutionu(x) = e™7 :

xX
/ it = ze®, 0 < x < 1.
0

Table 2 shows some results about Example 6.2.
Example 6.3 u(z) = x is the exact solution of

the following nonlinear Volterra integral equation

of the first kind:
/ 2cos(xz — t)sin(u(t))dt = xsinz,0 < x < 1.
0

The results of applying the method at some points
are shown in the Table 5.

Example 6.4 u(z) = x is the exact solution of

the following nonlinear Fredholm integral equa-
tion of the second kind:

1
g:c + / wt?ud (t)dt = u(z)
0

Table 4 shows the results obtained in some points.
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Example 6.5 Consider following nonlinear
Fredholm-Volterra integral equation with the
exact solutionu(x) =1 — x:

1 . .
u(x) = —(19 — 28z — 6sinxzsinl

12
—6xcoslsinz + 6sinlcosx)

+/0 sin(x — t)cos(u(t))dt
1

+/ (1 +w?(t))(z — t)dt
0

results are presented in Table 5.

Example 6.6 The following integral equation:

T 1
ulx)=e*—x—1+ /0 u(t)dt —|—/0 zu(t)dt

18 a linear Fredholm-Volterra integral equation
with the exact solution u(x) = xe®.

Example 6.7 Supposeu(x) = z be the exact
solution of the following nonlinear Fredholm-
Volterra integral equation of the first kind.

1
g(sz’nx — 2cosz + 2€*)
1
+§ex(1 — e (cosl + sinl))
€T
= / cos(x — t)e* M qt
0

1
+ / e“tsinu(t)dt.
0

Table 7 shows results of Example 6.7.

7 conclusion

In this article introduced an efficient and general
method to solve integral equation. This method
can solve any type of integral equations. Apply-
ing vector forms of BPFs, operational matrices
and Taylor expansion provide a direct method to
solve integral equations. Examples show ability
of our method to solve all of the type of inte-
gral equations, linear and nonlinear, Fredholm,
Volterra and Fredholm-Volterra, also, first kind
and second kind. In addition, this approach can
be extended to solve nonlinear Fredholm-Volterra
integro-differential equations. Computation of
absolute errors confirms our method is conver-
gence and stable.
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