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Abstract

In 2014, Gong et al. [Information Sciences 266 (2014) 112-133] proposed a simple method for solving
dual fuzzy matrix equations in LR form. Later, Kaur et al, [Information Sciences 418-419 (2017)
184-185] showed that there is a technical flaw in their method and it is valid only for certain types of
LR dual fuzzy matrix equations. The main aim of this paper is to eliminate this technical flaw and
also correct some numerical results obtained by Gong et al.
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1 Introduction

R
ecently, Gong et al. [6] introduced a simple
method of solving dual fuzzy matrix equa-

tion

Ax̃+ B̃ = Cx̃+ D̃, (1.1)

where A = (aij)m×n, C = (cij)m×n are arbitrary

crisp matrices and B̃ = (b̃ij)m×p, D̃ = (d̃ij)m×p

and also the unknown matrix x̃ = (x̃ij)n×p are
LR fuzzy number matrices. In their method, the
LR dual fuzzy matrix equation (1.1) is converted
into two classical matrix equations by using of the
arithmetic operations on LR fuzzy numbers (see
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Theorem 3.1 of [6]). Then, the strong (weak) min-
imal LR fuzzy solutions of Eq. (1.1) are obtained
via solving these two classical matrix equations
by means of the generalized inverses of matrices
[2, 3]. Unfortunately, Kaur and Kumar [7] showed
that there is a technical flaw in the method pro-
posed in [6], due to the following two reasons:

(i) if x̃ is an LR fuzzy number and λ is a negative
real number, then λx̃ will be an RL fuzzy
number.

(ii) In general, based on the arithmetic opera-
tions on LR fuzzy numbers [1, 6, 7], an RL
fuzzy number can not be added to an LR
fuzzy number.

In fact, Gong et al. proved the basic theorem of
their method (Theorem 3.1 of [6]) by considering
the mathematical incorrect assumption that RL
fuzzy numbers can be added to LR fuzzy num-
bers (see [7]). For this reason, Kaur and Kumar
[7] stated that the method proposed in [6] is valid
only if either A and C are non-negative real ma-
trices or L(x) = R(x) for all x ∈ [0, 1].
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In this paper, we eliminate the above technical
flaw via correcting the proof of Theorem 3.1 of
[6] by using the concept of r-cuts of fuzzy num-
bers. Moreover, we can conclude that the method
proposed by Gong et al. [6] can be valid for any
arbitrary LR dual fuzzy matrix equations. The
important point is that if either A and C are not
non-negative real matrices or L(x) ̸= R(x) for
some or all values of x, then the method of [6]
gives the approximate minimal LR fuzzy solu-
tion, which it can be strong or weak. Otherwise,
the method of [6] gives the accurate minimal LR
fuzzy solution for Eq. (1.1), similarly it can be
strong or weak.

Furthermore, in this paper, it is shown that
some numerical results obtained in [6] are incor-
rect. Here, we represent a modified version of
them.

This paper is organized as follows. In Section
2, some basic definitions and concepts are given
briefly. In Section 3, we present a correct proof of
Theorem 3.1 of [6]. In Section 4 we modify some
numerical results obtained in [6]. Section 5 ends
this paper with conclusion.

2 Preliminaries

Definition 2.1 [10, 6] A fuzzy number is a fuzzy
set like ũ : R → [0, 1] which satisfies:

(1) ũ is upper semicontinuous,

(2) ũ is fuzzy convex, i.e., ũ(λx + (1 − λ)y) ⩾
min{ũ(x), ũ(y)} for all x, y ∈ R and λ ∈
[0, 1].

(3) ũ is normal, i.e., there exists x0 ∈ R such
that ũ(x0) = 1,

(4) {x ∈ R|ũ(x) > 0} is compact, where A de-
notes the closure of A.

It is known that, for all r ∈ (0, 1], r-cuts of
fuzzy number ũ are defined as [ũ]r = {x ∈ R :
ũ(x) ⩾ r} and also for r = 0 we have [ũ]0 =
{x ∈ R : ũ(x) > 0}. Then, from (1)-(4) it follows
that [ũ]r is a bounded closed interval for each
r ∈ [0, 1] [4]. In this paper, we denote the r-cuts
of fuzzy number ũ as [ũ]r = [u(r), u(r)], for each
r ∈ [0, 1].

Remark 2.1 [8] Let

{[u(r), u(r)] : 0 ⩽ r ⩽ 1} ,

be a given family of non-empty sets in R. Then it
represents the r-cuts of a fuzzy number ũ if and
only if:

1) The functions u and u be bounded over [0, 1]
and u(r) ⩽ u(r) for each r ∈ [0, 1].

2) The functions u and u be non-decreasing and
non-increasing over [0, 1], respectively.

3) The functions u and u be left-continuous over
[0, 1].

Definition 2.2 [9] Two fuzzy numbers ũ and ṽ
are said to be equal, if and only if [ũ]r = [ṽ]r, i.e.,
u(r) = v(r) and u(r) = v(r), for each r ∈ [0, 1].

Definition 2.3 For arbitrary two fuzzy numbers
ũ and ṽ, and λ ∈ R, r-cuts of the sum ũ + ṽ
and the product λ · ũ are defined based on interval
arithmetic as

[ũ+ ṽ]r = [ũ]r + [ṽ]r

= {x+ y : x ∈ [ũ]r, y ∈ [ṽ]r}

= [u(r) + v(r), u(r) + v(r)], (2.2)

[λ · ũ]r = λ · [ũ]r
= {λx : x ∈ [ũ]r}

=

{
[λu(r), λu(r)], λ ⩾ 0,
[λu(r), λu(r)], λ < 0.

(2.3)

Now, we define a special case of fuzzy numbers,
namely “LR fuzzy number”. It should be noted
that in throughout the paper, similar to the pa-
pers [6, 7], we consider LR fuzzy numbers that
have a single mean value.

Definition 2.4 [5, 6] A fuzzy number ũ is called
an LR fuzzy number and denoted as ũ =
(u, α, β)LR if

ũ(x) =

{
L(u−x

α ), x ⩽ u, α > 0,
R(x−u

β ), u ⩽ x, β > 0,

where u is the mean value of ũ, and α and β
are left and right spreads, respectively. Also, the
functions L(·) and R(·) are called left and right
shape functions, and fulfilling the following con-
ditions:
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(1) L(x) = L(−x) and R(x) = R(−x),

(2) L(0) = R(0) = 1 and L(1) = R(1) = 0,

(3) L(·) and R(·) are non-increasing from [0,∞)
to [0, 1].

In the following, we present the formulas for addi-
tion and scalar multiplication of LR fuzzy num-
bers, which was designed by Dubois et al. [5].

Definition 2.5 For arbitrary two LR fuzzy
numbers ũ = (u, α, β) and ṽ = (v, γ, δ), and
λ ∈ R, have we

ũ+ ṽ = (u, α, β)LR + (v, γ, δ)LR

= (u+ v, α+ γ, β + δ)LR,

λ · ũ = λ · (u, α, β)LR

=

{
(λu, λα, λ β)LR, λ ⩾ 0,
(λu,−λβ,−λα)RL, λ < 0.

Remark 2.2 By the formulas presented in Def-
inition 2.5, it is clear that an LR fuzzy number
can not be added to an RL fuzzy number. In fact,
in this case we have

(u, α, β)LR + (v, γ, δ)RL =

(u+ v, α+ γ, β + δ)L′R′ ,

where the shape functions L′(·) and R′(·) satisfy
the conditions (1)-(4) of Definition 2.4. These
shape functions are obtained from the shape func-
tions L(·) and R(·). In general, it is difficult to
obtain the shape functions L′(·) and R′(·).

Remark 2.3 Let us consider arbitrary LR fuzzy
number ũ = (u, α, β)LR with the r-cuts [ũ]r =
[u(r), u(r)]. Then, we will have

u(0) = u− α, u(0) = u+ β,

u(1) = u(1) = u.

In continuation, we assume that the reader is
familiar with some basic definitions, for example:
LR fuzzy matrix, generalized inverses of matrix,
dual fuzzy matrix equation and strong (weak)
minimal LR fuzzy solution (for more details, see
[6]). In the next section, we present a correct
proof of Theorem 3.1 of [6] based on the r-cuts of
fuzzy numbers.

3 Eliminating of technical flaw

The method proposed by Gong et al. [6] was
based on Theorem 3.1 of their paper. In this
theorem, they used arithmetic operation on LR
fuzzy number and converted the dual fuzzy ma-
trix equation into two crisp matrix equations.
Unfortunately, they proved Theorem 3.1 of their
paper by considering the mathematical incorrect
assumption that LR fuzzy numbers can be added
to RL fuzzy numbers by the formulas presented
in Definition 2.5 [7]. In this section, we modify
the proof of Theorem 3.1 of [6] and conclude that
the method of [6] can be valid for any arbitrary
dual fuzzy matrix equations.

Theorem 3.1 (Theorem 3.1 of [6]) Suppose that
in Eq. (1.1) we have A = (aij)m×n, C = (cij)m×n

, B̃ = (b̃ij)m×p where b̃ij =
(
bij , b

l
ij , b

r
ij

)
LR

,

D̃ = (d̃ij)m×p where d̃ij =
(
dij , d

l
ij , d

r
ij

)
LR

, and

x̃ = (x̃ij)n×p where x̃ij =
(
xij , x

l
ij , x

r
ij

)
LR

. Then,

the LR dual fuzzy matrix equation (1.1) can be
extended into two classical matrix equations as
follows:

Gx = F, (3.4)

where

G = A− C

=


a11 − c11 · · · a1n − c1n
a21 − c21 · · · a2n − c2n

...
...

...
am1 − cm1 · · · amn − cmn

 ,

x =


x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
...

...
xn1 xn2 · · · xnp

 ,

F = D −B

=


d11 − b11 · · · d1n − b1p
d21 − b21 · · · d2n − b2p

...
...

...
dm1 − bm1 · · · dmn − bmp

 ,

and

SW = Y, (3.5)
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where S = T −Q is a 2m× 2n matrix, i.e.

S =


s11 s12 · · · s1,2n
s21 s22 · · · s2,2n
...

...
...

...
s2m,1 s2m,2 · · · s2m,2n



=


t11 − q11 · · · t1,2n − q1,2n
t21 − q21 · · · t2,2n − q2,2n

...
...

...
t2m,1 − q2m,1 · · · t2m,,2n − q2m,,2n

 ,

in which tij and qij , 1 ⩽ i ⩽ 2m , 1 ⩽ j ⩽ 2n are
determined as follows:

if akh ⩾ 0 ⇒ tkh = tm+k,n+h = akh,

if akh < 0 ⇒ tk,n+h = tm+k,h = −akh,

if ckh ⩾ 0 ⇒ qkh = qm+k,n+h = ckh,

if ckh < 0 ⇒ qk,n+h = qm+k,h = −ckh,

where 1 ⩽ k ⩽ m and 1 ⩽ h ⩽ n and also any tij
and qij which are not determined by the above
items are zero, 1 ⩽ i ⩽ 2m , 1 ⩽ j ⩽ 2n. More-
over,

W =

(
xl

xr

)
, Y =

(
Y l

Y r

)
,

where

xl =


xl11 xl12 · · · xl1p
xl21 xl22 · · · xl2p
...

...
...

...
xln1 xln2 · · · xlnp

 ,

xr =


xr11 xr12 · · · xr1p
xr21 xr22 · · · xr2p
...

...
...

...
xrn1 xrn2 · · · xrnp

 ,

Y l =


dl11 − bl11 · · · dl1n − bl1p
dl21 − bl21 · · · dl2n − bl2p

...
...

...
dlm1 − blm1 · · · dlmn − blmp

 ,

Y r =


dr11 − br11 · · · dr1n − br1p
dr21 − br21 · · · dr2n − br2p

...
...

...
drm1 − brm1 · · · drmn − brmp

 .

Proof. Unlike the paper of Gong et al. [6], we use
the concept of r-cuts of fuzzy numbers to prove
this theorem. Firstly, we represent the compo-
nent form of Eq. (1.1) for any j = 1, 2, . . . , p and
i = 1, 2, . . . ,m as follows

n∑
k=1

aik x̃kj + b̃ij =
n∑

k=1

cik x̃kj + d̃ij . (3.6)

From Definition 2.2, for any r ∈ [0, 1], we con-
clude

n∑
k=1

aik [x̃kj ]r + [b̃ij ]r =

n∑
k=1

cik [x̃kj ]r + [d̃ij ]r,

(3.7)
or

n∑
k=1

aik [xkj(r), xkj(r)] + [bij(r), bij(r)] =

n∑
k=1

aik

n∑
k=1

cik [xkj(r), xkj(r)] + [dij(r), dij(r)].

(3.8)
By using of Definition 2.3, we can obtain the fol-
lowing equations from Eq. (3.8)∑
k∈U+

i

aik xkj(r) +
∑
k∈U−

i

aik xkj(r) + bij(r) =

∑
k∈V +

i

cik xkj(r) +
∑
k∈V −

i

cik xkj(r) + dij(r), (3.9)

and∑
k∈U+

i

aik xkj(r) +
∑
k∈U−

i

aik xkj(r) + bij(r) =

∑
k∈V +

i

cik xkj(r) +
∑
k∈V −

i

cik xkj(r) + dij(r), (3.10)

where

U+
i = {k : aik ⩾ 0},

U−
i = {k : aik < 0},

V +
i = {k : cik ⩾ 0},

and

V +
i = {k : aik < 0}.
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From Eqs. (3.9) and (3.10) we have respectively ∑
k∈U+

i

aik xkj(r)−
∑
k∈V +

i

cik xkj(r)



+

 ∑
k∈U−

i

aik xkj(r)−
∑
k∈V −

i

cik xkj(r)


= dij(r)− bij(r), (3.11)

and  ∑
k∈U+

i

aik xkj(r)−
∑
k∈V +

i

cik xkj(r)



+

 ∑
k∈U−

i

aik xkj(r)−
∑
k∈V −

i

cik xkj(r)


= dij(r)− bij(r), (3.12)

for any j = 1, 2, . . . , p and i = 1, 2, . . . ,m. Now,
we define the m × n matrices A+, A−, C+ and
C− as follows

(A+)ij =

{
aij , aij ⩾ 0,
0, aij < 0,

(A−)ij =

{
0, aij ⩾ 0,
aij , aij < 0,

(3.13)

(C+)ij =

{
cij , cij ⩾ 0,
0, cij < 0,

(C−)ij =

{
0, cij ⩾ 0,
cij , cij < 0,

(3.14)

for any 1 ⩽ i ⩽ m and 1 ⩽ j ⩽ n. Then, we have

A = A+ +A−, C = C+ + C−, (3.15)

and

T =

(
A+ −A−

−A− A+

)
,

Q =

(
C+ −C−

−C− C+

)
. (3.16)

Also, we define the n× p matrices x(r), x(r) and
the m×p matrices D(r), D(r), B(r) and B(r) as
follows

x(r) =

 x11(r) · · · x1p(r)
...

... · · ·
xn1(r) · · · xnp(r)

 ,

x(r) =

 x11(r) · · · x1p(r)
...

... · · ·
xn1(r) · · · xnp(r)

 (3.17)

D(r) =

 d11(r) · · · d1p(r)
...

... · · ·
dn1(r) · · · dnp(r)

 ,

D(r) =

 d11(r) · · · d1p(r)
...

... · · ·
dn1(r) · · · dnp(r)

 (3.18)

and

B(r) =

 b11(r) · · · b1p(r)
...

... · · ·
bn1(r) · · · bnp(r)

 ,

B(r) =

 b11(r) · · · b1p(r)
...

... · · ·
bn1(r) · · · bnp(r)

 . (3.19)

By Eqs. (3.13)-(3.19), we can represent the ma-
trix form of Eqs.(3.11) and (3.12) as follows

(A+ − C+)x(r) + (A− − C−)x(r)
= D(r)−B(r),

(A− − C−)x(r) + (A+ − C+)x(r)

= D(r)−B(r),
(3.20)

for any r ∈ [0, 1]. Whenever in Eq. (3.20), we set
r = 1, then by means of Eq. (3.15) we obtain

Ax− Cx = D −B, (3.21)

because by Remark 2.3 we have

x(1) = x(1) = x,

D(1) = D(1) = D,

and

B(1) = B(1) = B.

From Eq. (3.21) we conclude

(A− C)x = D −B. (3.22)

This complete the proof of Eq. (3.4).
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On the other hand, if in Eq. (3.20) we set r = 0,
then we obtain

(A+ − C+) (x− xl) + (A− − C−) (x+ xr)
= (D −Dl)− (B −Bl),

(A− − C−) (x− xl) + (A+ − C+) (x+ xr)
= (D +Dr)− (B +Br),

(3.23)
because by Remark 2.3 we have

x(0) = x− xl, x(0) = x+ xr,

D(0) = D −Dl, D(0) = D +Dr,

and

B(0) = B −Bl, B(0) = B +Br.

From Eqs. (3.21) and (3.23) we obtain{
(A+ − C+)xl + (C− −A−)xr = Dl −Bl,
(C− −A−)xl + (A+ − C+)xr = Dr −Br.

(3.24)
According to the assumptions of theorem and Eq.
(3.16), we can rewrite Eq. (3.24) as follows[

(A+ − C+) (C− −A−)
(C− −A−) (A+ − C+)

](
xl

xr

)

=

(
Y l

Y r

)
, (3.25)

or
(T −Q)W = Y. (3.26)

Therefore, the proof is completed. □

Remark 3.1 Based on the method proposed by
Gong et al. [6], we first solve the matrix equation
(3.4) by the generalized inverses of matrices [2, 3]
and obtain the minimal solution x = (xij)n×p.
In the next step, we solve the matrix equation
(3.5) via the generalized inverses of matrices and
obtain the minimal solution xl = (xlij)n×p and
xr = (xrij)n×p.

If xl ⩾ 0 and xr ⩾ 0, we call x̃ = (x, xl, xr)LR is
a strong minimal LR fuzzy solution of Eq. (1.1).
Otherwise, the x̃ = (x, xl, xr)LR is said to a weak
minimal LR fuzzy solution of Eq. (1.1) given by

• if xlij < 0 and xrij > 0, then:

x̃ij =
(
xij , 0,max{−xlij , x

r
ij}

)
LR

,

• if xlij > 0 and xrij < 0, then:

x̃ij =
(
xij ,max{xlij ,−xrij}, 0

)
LR

,

• if xlij < 0 and xrij < 0, then:

x̃ij =
(
xij ,−xrij ,−xlij}

)
LR

,

Remark 3.2 In general, it can be easily investi-
gated that the strong solutions obtained by Gong
et al. [6] may not satisfy the LR dual fuzzy ma-
trix equation (1.1), unless either A and C be non-
negative real matrices or L(x) = R(x) for all
x ∈ [0, 1].

For this reason, if either A and C are not non-
negative real matrices or L(x) ̸= R(x) for some
or all values of x ∈ [0, 1], then we can consider
the obtained solution by Gong et al. as an ap-
proximate solution for the LR dual fuzzy matrix
equation (1.1).

In the next section, we will show that some
numerical results obtained in [6] are incorrect.
For these cases, we will obtain the correct strong
(weak) minimal LR solutions by the method of
Gong et al. [6].

4 Correction to some examples

Example 4.1 (Example 4.1 of [6] , Section 4,
pp. 124) Consider the following fuzzy linear sys-
tem (LR dual fuzzy matrix equation)(

1 −1
1 3

)(
x̃1
x̃2

)
+

(
(2, 1, 1)LR
(4, 1, 2)LR

)

=

(
−1 0
3 1

)(
x̃1
x̃2

)
+

(
(5, 2, 1)LR
(3, 2, 3)LR

)
.

(4.27)
According to Theorem 3.1, we have

G =

(
2 −1
−2 2

)
, F =

(
3
1

)
,

S =


1 0 −1 1
−2 2 0 3
−1 1 1 0
0 3 −2 2

 , Y =


1
1
0
1

 .
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Since that G is nonsingular and S is singular, we
obtain

x = G−1F

=

(
2 −1
−2 2

)(
3
−1

)
=

(
2.5
2

)
,

and

X = S†Y =


0.8750
0.2500
0.6250
0.7500

 ,

where

S† =


1.375 −0.375 1.125 −0.125
0.250 −0.250 0.750 0.250
1.125 −0.125 1.375 −0.375
0.750 0.250 0.250 −0.250

 .

Since X =

(
X l

Xr

)
⩾ 0, then the obtained solu-

tion is a strong minimal LR fuzzy solution given
by

X̃ =

(
(2.5, 0.8750, 0.625)LR
(2, 0.2500, 0.7500)LR

)
.

Of course, it is clear that since the matrices
A and C are not non-negative, then the above
strong solution does not satisfy Eq. (4.27), un-
less L(x) = R(x) for any x ∈ [0, 1]. Therefore, if
L(x) ̸= R(x) for some or all value of x ∈ [0, 1],
we can consider the above obtained solution as
an approximate solution.

But, Gong et al. in [6], asserted that Eq. (4.27)
has a weak minimal LR fuzzy solution as

X̃ =

(
(−0.5, 0.5000, 0.0000)LR
(−2, 0.9000, 0.2500)LR

)
.

Example 4.2 (Example 4.2 of [6] , Section 4,
pp. 125) Consider the following fuzzy linear sys-
tem (LR dual fuzzy matrix equation) 2 1

1 −1
0 1

(
x̃1
x̃2

)
=

 1 0
1 1
1 0

(
x̃1
x̃2

)

+

 (2, 2, 1)LR
(3, 1, 1)LR
(1, 1, 1)LR

 . (4.28)

By Theorem 3.1, we have

G =

 1 1
0 −2
−1 1

 , F =

 2
3
1

 ,

S =



1 1 0 0
0 −1 0 1
−1 1 0 0
0 0 1 1
0 1 0 −1
0 0 −1 1

 , Y =



2
1
1
1
1
1

 .

By the concept of the generalized inverses of
matrices, we obtain

x = G†F

=

(
0.5000 0 −0.5000
0.1667 −0.3333 0.1667

) 2
3
1


=

(
0.5
−0.5

)
,

and

X = S†Y =


0.5000
1.3333

0
1.1667

 .

Therefore, in this case we obtain the following
strong minimal LR fuzzy solution

X̃ =

(
(0.5, 0.5, 0)LR

(−0.5, 1.3333, 1.1667)LR

)
.

But, Gong et al. in [6] obtained the following
solution as a strong minimal LR fuzzy solution.

X̃ =

(
(0.5, 0.5, 0)LR

(0.1667, 1.3333, 1.0000)LR

)
.

Example 4.3 (Example 4.3 of [6] , Section 4,
pp. 127) Consider the following fuzzy linear sys-
tem (LR dual fuzzy matrix equation)(

x̃1
x̃2

)
=

(
1 1
1 0

)(
x̃1
x̃2

)
+

(
(2, 2, 1)LR
(3, 1, 1)LR

)
. (4.29)

For the above equation, we have

G =

(
0 −1
−1 1

)
, F =

(
2
3

)
,
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S =


0 −1 0 0
−1 1 0 0
0 0 0 −1
0 0 −1 1

 , Y =


2
1
1
1

 .

By the concept of the generalized inverses of ma-
trices, we obtain

x = G†F

=

(
−1.0000 −1.0000
−1.0000 −0.0000

)(
2
3

)
=

(
−5.0000
−2.0000

)
,

and

X = S†Y =


−3.0000
−2.0000
−2.0000
−1.0000

 .

Since the left and right spreads are negative, then
by Remark 3.1, we obtain a weak minimal LR
fuzzy solution as following

X̃ =

(
(−5.0000, 2.0000, 3.0000)LR
(−2.0000, 1.0000, 2.0000)LR

)
.

Unfortunately, Gong et al. [6] obtained the fol-
lowing solution as a weak minimal LR fuzzy so-
lution for Eq. (4.29).

X̃ =

(
(−5.0000, 1.0000, 1.0000)LR
(−2.0000, 0.0000, 1.0000)LR

)
.

Example 4.4 (Example 5.2 of [6] , Section 5,
pp. 129) Consider the following LR dual fuzzy
matrix equation 2 1

1 −1
0 1

(
x̃11 x̃12
x̃21 x̃22

)

=

 1 0
1 1
1 0

(
x̃11 x̃12
x̃21 x̃22

)

+

 (2, 2, 1)LR (3, 3, 1)LR
(3, 1, 1)LR (2, 1, 2)LR
(1, 1, 1)LR (3, 2, 1)LR

 . (4.30)

For the above equation, we have

G =

 1 1
0 −2
−1 1

 , F =

 2 3
3 2
1 3

 ,

S =



1 1 0 0
0 −1 0 1
−1 1 0 0
0 0 1 1
0 1 0 −1
0 0 −1 1

 ,

Y =



2 3
1 1
1 2
1 1
1 2
1 1

 .

By the concept of the generalized inverses of ma-
trices, we obtain

x = G†F =

(
0.5000 0
−0.5000 0.3333

)
,

where

G† =

(
0.5000 0 −0.5000
0.1667 −0.3333 0.1667

)
,

and

X = S†Y =


0.5000 0.5000
1.3333 2.1667

0 0
1.1667 1.3333

 .

Since the left and right spreads are non-negative,
then we obtain a strong minimal LR fuzzy solu-
tion as following

X̃ =(
(0.50, 0.50, 0.00)LR (0.00, 0.50, 0.00)LR
(−0.50, 1.33, 1.17)LR (0.33, 2.17, 1.33)LR

)
.

In this example, since the matrix A is not non-
negative, then the above strong solution can be
considered as an approximate solution, unless
L(x) = R(x) for any x ∈ [0, 1].

Unfortunately, in [6] Gong et al. obtained the
following solution as a strong minimal LR fuzzy
solution for Eq. (4.30).

X̃ =(
(0.50, 0.50, 0.00)LR (0.00, 0.50, 0.00)LR
(0.17, 1.33, 1.00)LR (0.67, 2.17, 1.33)LR

)
.
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5 Conclusion

In this paper, by modifying the proof of Theorem
3.1 of [6], we showed that the method proposed
by Gong et al. [6] can be approximately valid
for all dual fuzzy matrix equations. This means
that if either A and B be non-negative or L(x) =
R(x) for all x ∈ [0, 1], then the solution obtained
by Gong et al.’s method is an accurate solution.
Otherwise it can be considered as an approximate
solution. Also, we brought corrections to some
examples presented in [6].
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