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Abstract

Regular network data envelopment analysis (NDEA) models for calculating the efficiency of decision-
making units (DMUs) with two-stage construction requires the data set to be deterministic. In
the real world, however, there are many observations that have stochastic behavior. This paper
proposes a network DEA with two-stage structures models by the attention to stochastic data. The
stochastic two-stage network DEA models are formulated based on the P-models of chance constrained
programming and leader-follower concepts. On the basis of probability distribution properties and by
the assumption of stochastic single factor components of data set, the probabilistic form of models is
transformed to the equivalent deterministic linear programming model. In addition, the relationship
between each stage as leader or follower is discussed. A real case on 16 commercial banks in China

Science and Research Branch (IAU)

has been clarified to confirm the applicability of the proposed approaches under different levels.

Keywords : Stochastic DEA; Chance constraint model; T'wo-stage system; Performance evaluation.

1 Introduction

N the non-parametric approach, applied for
I evaluating the performance of some decision-
making units (DMUs), data envelopment analy-
sis (DEA) is a method that consumes similar in-
puts to produce similar outputs, without know-
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ing any function of input/output and weights.
Many studies extended DEA from the view of
theoretical and empirical, in several fields of sci-
ence, and engineering such as healthcare, agri-
culture, banking and supply chains. For more
studies, the reader can refer to [24], [10], [21], [6],
[31], [7], [30]. In many situations, we confront
DMUs with two process structures and intermedi-
ate measures. Namely outputs of initial stage use
as inputs for next stage. At first, standard DEA
approach used by Seiford and Zhu [22] to evaluate
the efficiency of commercial banks of US without
considering the intermediate measures [28]. For
example, to perform an efficient status, the in-
puts of the second stage should be reduced, while
these inputs are outputs of the first stage. Kao
and Hwang [13] Considered each stage as an in-
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dependent system and the efficiency of the total
system as the product of the efficiencies of every
stage. Liang et al. [16, 17], introduced several
two-stage network models according to the con-
cepts of non-cooperative and cooperative games
theory. Optimal system design (OSD) network
DEA models proposed by Wei and Chang [25]
to help DMUs to find the optimal portfolios as
inputs and outputs in terms of profit maximiza-
tion.

In the mentioned network models the variabil-
ity and uncertainty of the data set of a produc-
tion process have ignored. Although, some re-
searchers have been done to consider the uncer-
tainty data in two-stage DEA models based on
fuzzy theory ( [18], [15], [1], [9], [19] and [11]),
there is a little work on two-stage network DEA
models in terms of stochastic data. Zhou et al.
[29] proposed a stochastic network DEA model in
terms of centralized control organization mecha-
nism. Their model is a chance-constrained pro-
gramming where optimize expected value where
fall in the class of E-Model [4].

In this study, we focus on the class of P-Model
where introduced by Charnes and Cooper [4] and
propose a stochastic two-stage DEA model ac-
cording to the concept of the non-cooperative
game theory (or Leader-Follower). As matter
of fact, by this methodology, we can replace de-
terministic concepts such as efficient and inefhi-
cient, with concepts of a-stochastic efficient and
a-stochastic inefficient.

The structure of the paper is arranged as follows.
In section 2, we remember the version of P-model
of stochastic DEA models and stochastic effi-
ciency based on it. Next, in section 3, the stochas-
tic two-stage network DEA models according to
the concept of the non-cooperative game theory
are proposed and transformation to deterministic
and linear model is explained. A numerical case
of 16 commercial banks in China is illustrated to
justify the new model in section 4. Finally, the
last section summarizes and concludes.

2 Stochastic CCR Efficiency

Cooper et al. [8], introduced the following version
of P-Model where evidently has built on the CCR

model of DEA.

S -
mar P Z,}\? Ur@ro 51
Zizl Wjio
s.t. (2.1)
S =
P W <1|>1- ;
Zi:l Vijij

Ur, Vi 20, Vr,i

In this model, each DMU, uses M inputs z; =
(Z15, %25, -, Zaj)T to obtains D outputs, §; =
(14, 24 - gjgj)T . Here IP means Probability and
the symbol ~ is used to represent the random in-
puts and outputs. Furthermore, by solving this
model for each DMU, non-negative virtual mul-
tipliers, U € Rﬁ and V € R% , are determined.
Also, aj € (0,1) is pre-selected and it is the min-
imum possibility required to match the related
chance constraint [25]. By choosing U, = 0, and
Vi > 0 for all r and 4, in constraints of (2.1), we
can see that the model is feasible [4].

As we know, for each continuous distribution, it
is not mindless to write

S *~
P(ZT‘_I U'I’ yT] < 1)
M - =
>im1 Vi i

S s
Dim1 Vi Tij

or

S e~
P 727;;1Urym§1 =l-a">1-aq
Zz’:lVi*jU

U, V; >0, Vr,i. (2.2)

In this paper, * refers to an optimal value, hence
a* is the probability of obtaining a value of at
least unity with this choice of weights and there-
fore 1 — a* is the probability of failing to reach
this value [8]. In addition, 1 — «, is the probabil-
ity of inefficiency of DMU,. Clearly, from 2.2 we

have o, > o*.

Definition 2.1 (/8/) DMU, is ”stochastic effi-
cient” if and only if a, = .

3 Stochastic two-stage network
DEA models

Figure 1 describes a two-stage process, where
each DMU is composed of two sub-DMU in
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xi}' zd}' j\’r;
— Stage 1 _ Stage 2 —
i=12,.. .M d=12..D r=12..5

Figure 1: Two-stage process

series, and the sub-DMU in stage 2 con-
sume the products of the sub-DMUs in stage
1 as inputs. For each DMUjci2, . n, Z; =
(%1, Toj, ...,.%Mj)T represent random input vec-
tor and Z; = (215, 225, .-, EDj)T represent random
output vector of the first stage. Since this random
output vector is used as random input by the sec-
ond stage, are introduced as intermediate prod-
ucts. The second stage §; = (915, §2j -, Usj) "
produces a random output vector.

3.1 The Non-cooperative model

In this section, we present the stochastic two-
stage network DEA model according to the con-
cept of the non-cooperative game theory (or
Leader-Follower), which was utilized to expand
models for performance evaluation by Liang et
al.[16].

3.1.1 Stage 1 is the leader, while Stage 2
is the follower

Here we assume that the first stage is the leader.
Hence, the importance of the stage 1 is more
than the second stage (follower). Moreover, the
leader’s efficiency is known and the efficiency of
the follower is computed based on it.

Model (3.3) evaluates the efficiency of the Sub-
DMU in stage 1 as a leader.

Wz,
P > 1
max (V:io > )

s.t. (3.3)

Wz,
Pl —2<1|>1-a;
(V:Z‘j_ >_ A

W,V >0,

By using the Cooper et al. [8], transformation
in stochastic programming, deterministic model

can obtain to the following model:

(0)

en” =maz (wzo — vT,)

s.t. (3-4)

W' w + V' Se e, — 208, 5,0 > 1,

(wzj —vay) — D ()& <0, j=1,...n,

Ca, (W', w + 0! 80 — 20 v — 532] <o,
j=1..n,

w,v,& >0,

The relation between optimal solution of (3.3)
and (3.4) is exhibited as follow.

Theorem 3.1
W+z
O(w*z, — v*z,) =P < >1].
(w*zp — v x,) (V*% > >
Proof: See [8].

According to the optimal solution of the first
stage, model (3.5) calculates the efficiency of the
sub-DMU in stage 2 as a follower:

e;(o) = max P(g/yf) > 1)
%o

s.t. (3.5)
Wz; .
P(V;%J]-Sl)Zl_aj’ j=1..n,
(3.5a)

U, .
P(Wéj] < 1) >1—a; j=1,..,n,

I/Véo *(0
P(mo > 1) > 9(e;;”)
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where, eﬁo) is the efficiency of stage 1 calculated

by (3.4). As it is seen, the objective function and
the constraints of the first stage are as constraints
in the model (3.5).

In what follows, for computation and implemen-
tation in applicable circumstances and by using
Cooper et al. [8] approach, we will achieve the
deterministic equivalent of the model (3.5) as fol-
low.

From constraint (3.5a) we have

P(W2 - Vi; <0) 21— a

_ P(ij — Vi‘j — (WZj — ij)
O'W,%j—\/i*j

< —(W,Zj — V$j)

oWz —Vi,

(3.6)

)ZI—OZJ'

where Zj = E[gﬂ, Tj = E[HNTJ] and Ung_ngj =
Vvar(Wz; — V).

Next, by introducing some new variables Ej, de-
fined by

~ ng - Vii‘j - (WZj - V.I])
5] = )
OWz;—Vi,
j=1..,n, (3.7
so that & ~ N(0,1) (the standard normal
probability distribution with zero mean and unit
variance) and by direct substitution in (3.6) we
obtain
P(éj < M) >1— oy
OWz,—Vi;

j=1..,n (3.8

Since Ej follows the standard normal probability
distribution, we have

®<_<sz — V)

) >1—aj, j=1,..,n
OWz—Vi;

(3.9)

According to the property of invertibility of &,
(3.9) can rewrite as

—(WZ]' — ij)

>d ' (1-a), j=1,..,n.
OWz,;—Vi,

(3.10)

Now, by introducing nonnegative ”spacer vari-
ables”, n;, as are introduced by Charnes and
Cooper [4], replace (3.10) with the following two
inequalities:

(WZj — V:L'j) — <I>_1(ocj)nj < 0, j = 1, ey 1,

(3.11)
Coy WS W + V'S,V
— WS,V =31 <0, j=1,..n,

where,

1 if a5 < 0.5,
Ca. = 0 Zf Q5 = 0.5,
~1  if a; >05.

Similarly, constraint (3.5b) in Model (3.5) could
be transformed to the next inequality,

(Uyj = Wzj) =@ )G <0, j=1,...m,
(3.12)
Co, [U'Syy U + W'S,. W

—2W'S,,U—-C]<0, j=1,...,n,

For constraint (3.5¢) in (3.5),

P(WZO > 1) > @(eil(o))

Vi,
= P(Vi, - W2 £0) = 0(c(")

_p Vie—W2z,— (Vz,— Wz,)
OVi,—W,

< M) > d(e}”),  (3.13)
OVig—Wz,

where 2z, = E[Z,], z, = E[Z,]. Now, by in-

troducing a new variable 7,, defined by 7, =

Vi Wam(VaorWae) g, that 5, ~ N(0,1), and

by direct substitution in (3.13) we get

p<% - —<V—W>> - o)

OVig—Wz,
OVig—W2,

Since ® is a strictly increasing function, then

—(Vzo —Wz) S e*(o)‘

=~
OVzg—Wz,
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Thus by using Charnes and Cooper [4] approach
and introducing a non-negative variable, ¢,, con-
straint (3.5¢) could be converted to the following
two inequalities

(WZO — Vl'o) - e;(O)go < 07
C *(0) [Vtzxowov + WtZZoZoW
!

(3.14)

€
—2W'S, .V —¢2] <0,
where
if €\ >0,
.o k(o)
Ce”l‘l(") =40 if ello =0,

-1 if e <o.

Now by replacing (3.5a), (3.5b), (3.5¢) with
(3.11), (3.12) and (3.14) respectively, we then
have

*(0 U~o
62( ) — max P(Wyg > 1)

s.t. (3.15)
(Uy; —Wzj) =@ Ha;)¢; <0, j=1,...,n,
Co,[U'Sy, U + WIS, W
—2W'S,,U—C1<0, j=1,..,n,
(Wzj = Vag) =@ Ha)n; <0, j=1,...n,
Caj [Wtzzzw + Vtzxwv
— WIS,V —nf] <0, j=1,..,n,
(Wzo—V,) — eil(o)go <0,
Ce*(o) [Vtzxo$ov + WtzzO’ZOW
11

W', .V —
W,U,V,¢,n,6 >0,

2] <o,

All constraints in (3.15) are deterministic; but
since the vectors g, and Z, as random variables
are included in the objective function; this prob-
lem is still uncertainty. Clearly, it can be seen

that (3.15) is equivalent to

s.t. (3.16)

Ugo
P >1)| >
<W§O = > =7

(Uy; —Wzj) =0 N )¢ <0, j=1,...,m,
Co,[U'Sy,U + WIS, W

—2W'S,, U -1 <0, j=1,...,n,
(Wzj — V) = Hay)n <0, j=1,..,n,
Co, WIS W + VIS,V

—2W' S,V -5 <0, j=1,..,n,
(W2o — Vi) — €, <0,
C (0 VISV +WS, W

€1

—2W'S, .V —
WU’V7<7”7’gO 2 07

2] <0,

Proceeding as in Cooper et al.[8], the determin-
istic equivalent of the first constraint in (3.16) is
obtained as follows:

Uy,
P >1)| >
(Wio— )-7

U@ozwzozl)zv

Wz, —Ugo— (Wzo — Uyo)
O-WEO_UQO
—(Wzo — Uyo)

=P

(
(W2, - Ug, <0) =~
(

)=+
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Hence, the problem (3.16) is equivalent to

*(0) _

€op = Max ~
s.t. (3.17)
Uy, — Wz, _
T 50 5 97 (y),
OWzo—Ufo
(Uy; = Wzj) = @ Hay)¢ <0,

j=1..n,
Co,[U'Sy, U + W'S.. W
—2W'S,,U—C1<0, j=1,..,n,
(Wzj = Va) — @ Hag)n; <0,
j=1..n,
Co,[W'S.W + VIS,V
—2W'S.,V =i <0, j=1,...,n,
(Wzo —V,) — eil(o)go <0,
c - Vi, o,V +WS, . W

€1
—2W's, .V
W,U,V,(,n,6 >0,

- <o,

This problem is deterministic but because of the
existence of denominator in the first constraint,
is non-convex [8]. To remove this difficulty, since
®~1(v) is strictly increasing the function of 7,
(3.17) converts to the following problem

ezgco) = Max 6

s.t. (3.18)
Uy, — Wz, >0,
UW%O_UQO
(Uy; = Wzj) — @ Hay)¢ <0,
ij=1,..,n,

Co, [U' Sy U + W'S. W

— WS, U—-(1<0, j=1,...,n,
(Wzj — Vi) — @ (ay)n; <0,

j=1..n,

Coy WS W + ViSe,V

— WIS,V =i <0, j=1,..,n,
(W2, — Va,) — €)%, <0,
Cin|[ViSe2, V+WS, . W

l

€q
—2W's, .V
W,U,V,¢,n,6 > 0,

— <0,

The models (3.17) and (3.18) have the same so-
lution structure. Therefore, we have:

(3.19)

Clearly, we can see that (3.18) is equivalent to the
next problem:

e;(o) = Mazx Yo = W
OW Zo—Ufo
s.t. (3.20)
(Uy; —Wzj) — @ ay)¢5 <0,

j=1..,n,
Co, [USy,U + WS, W
—2W'S,,U -1 <0, j=1,...,n,
(Wzj = Va;) — @7 ay)n; <0,

j=1..,n,

J

Co; WIS, .W + VIS,V
—2W' S,V =31 <0, j=1,..,n,
(Wzo — Vi, — eil(o)go <0,
Coto V' B,V + WS, W
—2W's, .V —
W,U,V,(,n,¢ > 0.

21 <o,

Uyo—Wzo
OWzo-Ufo
®~1(a,), by introducing a positive variable, w
, (3.20) is equivalent to

Since is bounded from above by
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Uyo — Wz,
w
s.t. (3.21)

UtzyoyoU + WtEZoZoW
—2W's, .U —w? >0,
(Uy; — Wzj) — @ Ha;)¢ <0,

e;(o) = Mazx

j=1..n,
Co; [U'S,, U + WS, . W
— WS, U —¢1<0, j=1,...,n,
(Wzj = Vaj) = @7 (ag)n; <0,

j=1..n,

J

Coy WS W + ViSe,V
t 2 s
—2W'8.,V =071 <0, j=1,...,n,
(Wzo =V, — eil(o)go <0,
C oo [VISas,V + WIS, W
11

—2W's, .V -2 <0,
W,U,V,(,n,c,w > 0.

The problem (3.21) involves a fractional objective
function. Hence, by using the Charnes-Cooper
transformation of linear fractional programming
(see, [3]), comsidering ¢ := L X = tW,u :=
tU,v = tV,7; = t(j,p; = t§,m = 1S, and
replacing them in (3.21), the following quadratic
programming problem is made:

ezgfo) = Max py, — Az,

s.t. (3.22)

T NNNTIEED O D W 0 Y T B

(1yj — Azj) = @ Hay)m; <0, j=1,..,m,

Co, [ Syt + A X — 22X, 0 — 77] <0,
j=1..n,

(Azj —va) =@ Hay)p; <0, j=1,..,

Co; N T A + V' Sgav — 2N S v — p7] <0,

(Azo — vy) — eil(o)Tro <0,
C o) [V S,V + A, N =202, v
!

€

— 7] <0,
Ads Py Vs Tjy Py o 2> 0.

Now for concluding of this section, Theorem (3.2)

present to show the relationship between solu-
tions of problems (3.5) and (3.22).

Theorem 3.2 Let (N, p*,v* 7% p*, 7*) and
(W*,U*,V*) be optimal solutions of (3.22) and
(3.5), respectively; then

U*io
(1Yo — AN'20) = P<W*z = 1)

Furthermore, is stochastically efficient if and only
if P(u*yo — N*20) = .

Proof: From (3.19), we have ®(u*y, — \*z,) =
~v*, where v* is the optimal solution of problem
(3.17). Because of the problem (3.14) is equiva-
lent to problem (3.5),

U*jg
=P 2 >1

and, consequently

D(pu'yo — Az0) = ]P’(g/_*; > 1) y |

3.1.2 Transformation to linear program-

ming

Now, further, we adopt the single factor symmet-
ric disturbance assumption, i.e., following Cooper
et al. [8] suppose all components of any input,
intermediate and output are determined only by
a single random factor. Earlier, Sharpe [23] and
Kahane [12] examined the applications of the sin-
gle underlying factor assumption in finance and
economics. More explicitly,

Tij = w5 + i€,
Zdgj = Z4j + bajn),

ﬂrj = Yrj + Crj€,

where x5, a5, 245, baj, Yrj, ¢rj, are non-negative
and &,m, e are independent standard normal dis-
tributed random variables. Also, x;;, z4;, and y,;
are the expected values for Z;;, Z¢j, and @,; re-
spectively, and a;;, bgj, and c¢,; are standard de-
viations for Z;;, Z4;, and ;. Meanwhile, having
finite realizations and nonnegative distributions,
are reasonable restrictions for all Z;;, Z4;, and @
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[29]. Similar to those analysis used in the previ-
ous section, the problem (3.3) transform to the
following problem,

e*{l(o) = Maz (wz, — v,)

s.t. (3.23)

lva, — wbe|> 1,

(vrj — wzj) > @711 — aj)|va; — why|,
j=1,..n,

w,v > 0.

Since there is the absolute value in the model
then, model (3.23) is a non-linear programming
problem. However, by using the goal program-
ming theory introduced by Charnes and Cooper
[2, 5], the problem (3.23) can be transformed to
a quadratic programming problem [8].

By considering

lva; — wb;| = p +p;,

vaj —wbj = p;r - D5,
pip; =0,
Py >0,

and, replace them in (3.23) we have

e’{l(o) = Mazx (wz, — vx,)

s.t. (3.24)
+ —
P +p; > 1,
(vz; —wzj) > D11 = ay)(pf +py),
j=1,..,n,

vaj — wbj :p;L -p;, J=1..,n,
pip; =0,
w,v,p*,p” > 0.

Due to the existence of constraint p;pj_ =0, the
problem (3.24) is a non-linear programming prob-
lem. Without this constraint, the problem is lin-
ear. Moreover, if linear programming problem
has an optimal solution, then has an optimal ex-
treme point and at this point at least one of values
of pj or p; is zero. Consequently, if we use the
simplex algorithm to solve this linear program-
ming, we can find this optimal extreme point and
we can avoid constraint pjpj_ =0.

*(0) _

e = Max (wz, — v,)

s.t. (3.25)

Py +p; >1,

(vzj —wzj) > @711 —ay)(p) +p;),
7=1,..n,

vaj — wb; :p;r —p;

7 ]:]‘""7n7

w,v,pT,p” > 0.

Also, for stage 2 as a follower, by employing anal-
ysis similar to those used in the previous sec-
tion, the problem (3.5) transform to the following
problem,

e;;o) = Max (uy, — wz,)

s.t. (3.26)

|wby — ucy|> 1,

(wzj — uy;) > (1 — o) lwb; — ucyl,
j=1..n,

(vj — wz;) > &7 (1 — o) |va; — whyl,
j=1..n,

(wzo — vXy) > eil(o) lva, — wb,|,

w,v,u > 0.

By considering

|wbj — uc;| = qf +q; .
wb; —uc; = q;' —4q;,
4 aq; =0,
4 q >0,
lvaj —wb;| = pi +pj
vaj —wbj =pf —pj,
pip; =0,
pf.p; >0.
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and, replace them in (3.26) we have the following
non-linear programming;:

e;(o) = Maz (uy, — wz,)

s.t. (3.27)

a +a; > 1,

(wzj —uy;) > @7 (1 — o) (a] +q5),
j=1..n,

whj —uc;=q —q;, j=1,..,m,
(vej —wzj) > <I>_1(1 — aj)(p;' +pj_),
j=1..n,
va; — wb :pj -p;, J=1..n,
(wzo — v5) = e}f” (pF + 7).
i a; =0,
pip; =0,
w,v,u,p",p7,q",¢7 > 0.

ij=1,..,n,

Similar to what was discussed before, linear form
of (3.27) is as follow

e;(o) = Mazx (uy, — wz,)

s.t. (3.28)

a5 +a, >1,

(wzj —uy;) > @~ (1 — o) (g +q;),
i1=1,..,n,

wbj—ucj:q;-r—qj_, j=1,..,n,

(var — wz;) > @711 — ay)(pf +p),
j=1..n,
va; — wb; :pj—p._ j=1..n,

J 7
(wzo — vTp) > 611(0) (pj + p;)’

w,v,u,pt,p",q", ¢ >0.

3.1.3 Stage 2 is the leader, while Stage 1
is the follower

With the similar manner, we suppose the stage 2
is the leader. Therefore, the importance of the
second stage is more than the first stage (fol-
lower). Hence, the leaders efficiency is known and
the efficiency of follower is computed based on it.
Model (3.29), present efficiency of the Sub-DMU

in stage 2, as follow:

UYo
P >1
max <W50 > >

s.t. (3.29)

Ug;
Pl =22 <1]|>1—aq;
(ng— )- A

W, U = 0.

By using the Cooper et al. [8] transformation in
stochastic programming, the deterministic model
can be obtained to the following model:

*(0)

ey = max (uy, — wz,)

s.t. (3.30)
thzozow + Utzyoyou - 2wt2zoyou > 1,
Hoy)& <0, j=1,...,m,

Caj [wtzzzw + utzyyu - 2wt22yu o 532] < o,

(uy; —wzj) — P

1=1,..,n,
w? u7 g 2 0’
The relation between optimal solutions of (3.29)
and (3.30) is exhibited as follow:
Theorem 3.3 Let (w*,u*,v*,&*) and (W*,U*)
be optimal solutions of (3.30) and (3.29), respec-
tively; then

U*y
O(u*y, — w*z,) =P 2 >1].
nmw=e(G 1)

Furthermore, is stochastically efficient if and only
if ®(uty, — w*zp) = .

In addition, by assuming single factor compo-
nents of any input, intermediate and output, the
deterministic linear programming model when
a < 0.5 could be obtained as follows

6;(0) = Max (uy, — wz,)

s.t. (3.31)
lwby — ucy|> 1,
(wzj — uy;) > (1 — a;)|wb; — ucj|,
7=1,...,n,
w,u > 0.
Since there is an absolute value in the model
(3.31) then this model is a non-linear program-

ming problem. However, by using the goal pro-
gramming theory introduced by Charnes and
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Cooper [2, 5], the problem (3.31) can become a
quadratic programming problem [8].
By considering
gt g
[wbj —ucj| = qf + a5,

¢ q; =0,

4 q >0,
and, replace them in (3.31) we have

*(0)

ey = Mazx (uy, — wz,)

s.t. (3.32)

G +q >1,

(wzj —uy;) > 11— aj)(qf +q;);
ji=1,..,n,

wbj—ucj':qf—q; j=1..,n,

4 q; =0,
w7 u7 q+7 qi 2 0'
And the linear form of (3.32) is as follow
*(0)

ey = Max (uy, —wz,)

s.t. (3.33)

a +aq; >1,

(wzj —uy;) > @11 — ay)(gf +4q5);
j=1,..n,

wb; —uc; = qj+ —q;, j=1..n,
w,u,q7,q" > 0.

According to the optimal solution of the sec-
ond stage, the following model calculates the ef-
ficiency of stage 1:

e;;o) = max P(g/;j > 1>

s.t. (3.34)

and equivalent deterministic model of (3.34) is

*
el;o) = Max wz, — vz,

s.t. (3.35)
V'Y e,V + W', w — 20w, v > 1,
Yaj)m <0, j=1,.,m,
Co; [0' Y et + W', w — 20'8w — 7']2] <0,
j=1..,n,

(wzj —vxj) — P~

1(a])pj < 07 .7 = 1,...,7’L,
Co; (WS, w + utEyyu — 2wt22yu — ,0?] <0,

(uy; —wzj) — @~

j=1,..,n,
(uyo - ’LUZO) - 6*1‘(0)7% <0,

C o) [utZyoyou +w's,, . w— 2wt220y0y

€1
— 7] <0,
w, u, v, p, T, T > 0.

where

1 if es” >0,

Cur =14 0 if e)” =0,

2 . *(0)
-1 if ey <O.

Theorem 3.4 Let (w*,u*,v*, 7% p*,7*) and
(W, U*,V*) be optimal solutions of (5.35) and
(3.34), respectively; then

W*Zz,
O(w zy — v ) = IP’( o > 1)

V*Z,
Furthermore, is stochastically efficient if and only

if ®(w*zo —v*1s) = .

Finally, by assuming the single factor of com-
ponents of input, intermediate and output, the
deterministic linear programming model when
a < 0.5 could be obtained as follows

*(0) _

e =Max (wzo — vTo)

st (3.36)

lva, — wbe|> 1,

(wzj — uy;) > (1 — ay)|wb; — ucy],
j=1..n,

(vzj —wz;) > @711 — aj)|va; — whyl,
j=1..n,

(uyo — wz,) > e;l(o)|wbo — UC,,

w,v,u > 0.
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By considering
wb; — ucj| = qf +4q;,
wbj —ucj = qj —q;,
4 q; =0,
4 q >0,
lva; — wby| = p +p;,
vaj —wbj =pf —p;,
pip; =0,
pf.p; >0.
And, replace them in (3.36) we have the following

non-linear programming;:

69{(0) = Mazx (wz, — vx,)

st (3.37)

pe+p, > 1,

(wzj —uy;) > @711 —a;)(qf +4;),
j=1..n,

gt — o L
wbj—ucj—qj —q; j=1..n,

(va; —wz) > (1 = ag)(p] + 9 ),

j=1..n,
vaj —wbj = pf —p7, J=1..n
(uyo — wzo) = €33 (a7 + ;).
p;‘pj_ =0, j=1,..,n,
qqu =0, ji=1,..,n,

w,v,u,q, 9, g, ¢ > 0.

Finally, the following model is the linear form of
(3.37):

e;(o) = Mazx (wz, — vx,)

s.t. (3.38)

py +p, >1,

(wzj —uy;) > (1 = ay) (g +4q;),
j=1..n,

wbj—ucj:q;f—qj_, 7=1,...,n,

(va; —wz) > @711 — ag)(p] +p),
j=1..n,

vaj—wbj:pj—pj_, 7=1,..n,

(uyo - wzo) > 6;1(0) (QO+ + q;);

w,v,u,q",q g, >0,

Next theorem compares the efficiency of one stage
when it is follower and leader.

Theorem 3.5 For ecvery optimal solution of
models (3.25) and (3.38), we have ei(o) < eil(o).
Proof:

Suppose (w*,v*,u*, ¢, ¢ *, ¢, q7*) is optimal
solution of model (3.38). Since this solution is
a feasible solution of (3.25), therefore, 69{;0) <
eil(o).l

Theorem 3.6 For every optimal solution of
models (3.28) and (3.33), we have e;;o) < e;l(o).
Proof: Similar to the proof of Theorem 3.5.1

Corollary 3.1 If one stage is efficient under level
« as a follower, then it is efficient under level « as
a leader. Also, if one stage is not efficient under
« level as a leader, then it is not efficient under
level o as a follower.

Theorem 3.7 For every level a < o/, e*{;o)(oz) >

61‘(0) (a/)'

Proof: Let (w*,v*,u*,q™™* ¢ * ¢"* ¢ *) is an
optimal solution of model (3.38) to evaluating
performance of DMU, in level a. Since ®~1(a),
is a strictly increasing function if o < o’ then
d~1(a) < &7 1(a/). Therefore

Hence, (w*,v*,u*, ¢, ¢ *, ¢, ¢ %) is an opti-
mal solution of model (3.38) to evaluating perfor-
mance of in level o/. According to maximization

model, 64{(0) () > ei;o)(o/).l

Theorem 3.8 For every level a < o,
e’ (@) = e (o),
&i”(a) 2 e5” (),

es(a) > ey (o).
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Corollary 3.2 If one stage either as a leader
or follower is stochastically efficient under level
/(¢ > «), then is stochastically efficient un-
der level a. In addition, if one stage either as
a leader or follower is not stochastically efficient
under level a;, then it is not stochastically efficient
under level /.

4 An illustrative application

After formulating our theoretical framework, we
apply our proposed model to a real case. In
performance evaluation studies, the commer-
cial banks efficiency has been an interesting
research.([29], [27], [20], [22]). The most of ex-
isting studies on bank benchmarking consider de-
terministic data.

We now apply stochastic data set of commer-
cial banks taken from Zhou et al.[29] to illus-
trate models proposed in the preceding sections.
In the computational studies, GAMS 23.5 and
MATLAB 2017a solve nonlinear problems.

Zhou et al. [29] used a dataset of 16 commercial
banks and assumed banking process as a kind of
network with the two-stage process. Stage 1, con-
sume Employee, Fixed assets, Expenses as inputs
to product Deposits and Interbank Deposits as
outputs. Then Stage 2, uses the productions of
stage 1 as inputs to produce Loan and Profit as fi-
nal outputs. Furthermore, all inputs and outputs
are supposed has the normal distribution. Real
data set of annual reports and internal databases
cover the period from 2000 to 2010 from the Al-
manac of Chinas Finance and Banking [29]. Table
1 listed the approximated mean values and stan-
dard derivations of 16 banks.

Table 2 shows the overall efficiency scores using
stochastic CCR DEA model where only considers
the inputs of stage 1 and outputs of stage 2 of the
process and avoid intermediate products, under
levels o = 0.1,...,0.5. It can be seen, DMUs 15
has the best performance at all levels. Since this
approach, do not have any information about the
performance of each stage, thus it is not appropri-
ate to ignore the internal structure and consider
it as a black box.

The efficiency scores using models (3.25) and
(3.28) under levels @ = 0.1,...,0.5 are listed in
Table 3. It means stage 1 is as a leader and stage

2 as a follower. As we can see, DMU 15 have
the best performance, which indicates their both
stages are stochastically DEA efficient at all lev-
els. DMUs 2, 3, 9, 11, 14 and 16 perform the
worst, which indicates their both stages are not
stochastically DEA efficient under all levels. The
first stage of some DMUs is not stochastically ef-
ficient under all levels, while stage 2 is stochasti-
cally efficient under some levels. For example, in
DMU 1, under levels o = 0.1 and o = 0.2, stage
1 is not efficient while stage 2 is efficient. On
the contrary, the first stage of some DMUs such
as DMU 12 is stochastically efficient under some
levels, while the second stage is not stochastically
efficient. By comparing efficiencies under various
levels, we can find out about the importance of
selection of the decision makers confidence level
in evaluating the performance [29)].

The efficiency scores under models (3.33) and
(3.38) are shown in Table 4. It means, stage 1
is as a follower and stage 2 is as a leader. As
mentioned, DMU 15 has the best performance,
which indicates in both stages are stochastically
DEA efficient under all levels. In addition, DMUs
2, 3,9, 11, 14 and 16 perform the worst, which
indicates their both stages are not stochastically
DEA efficient under all levels.

From Table 3 and Table 4, we can understand
that, if one stage is efficient under level « as a fol-
lower, then it is efficient under level « as a leader,
and if one stage is not efficient under level « as a
leader, then it is not efficient under level a as a
follower. For instance, the second stage in DMU
1 is stochastically efficient under level a = 0.2
as a follower. It is stochastically efficient under
level a = 0.2 as a leader. While, the first stage of
DMU 1, is not stochastically efficient under level
a = 0.2 as a leader, it is not stochastically effi-
cient under level a = 0.2 as a follower.

Finally, we can conclude that the DMU 15 has
the best performance since they are stochastically
efficient for all models under all levels. This in-
dicates that one process is efficient if and only if
both sub-processes is efficient and the best per-
formance of only one sub-process cannot assure
the efficiency of the total process.
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Table 1: Estimated mean values and standard deviations of 16 banks
Bank Employee Fixed assets Expenses Deposits glte?;?;k Loan Profit
(10%) (RMB 108) (RMB 10%)  (RMB 10%) G:B[B 109 (RMB 10°) (RMB 10°)
1 (21.395.39)  (8.65,0.92) (13.24,3.74) (935.41,310.39)  (108.61,103.81) (651.35,259.78)  (13.32,4.97)
2 (249.28,13.38) (90.05,12.14) (66.07,9.17) (4925.35,1058.49) (603.39,320.35) (3189.65,1076.21) (65.07,17.79)
3 (441.88,5.40) (104.29,23.62) (94.26,5.81) (5989.71,1139.97) (289.77,170.88) (3014.98,451.41) (51.45,29.15)
4 (49.29,057)  (9.91,0.06) (8.54,1.07)  (183.29,53.73) (119.83,56.46)  (1206.90,244.25)  (1.63,0.77)
5 (19.853.50)  (3.98,0.53) (14.80,4.15)  (785.79,238.77)  (120.24,37.66) (646.48,181.90)  (7.89,3.47)
6 (300.30,1.75)  (64.48,9.76)  (99.19,16.94) (6375.92,1462.90) (447.46,230.58) (3683.58,821.06) (92.64,26.62)
7 (16.99,2.54)  (8.18,2.66) (830,1.86)  (523.90,115.67)  (121.69,7856) (450.52,128.52)  (7.32,2.28)
8 (385.61,17.29) (80.30,12.33) (91.51,15.73) (8223.45,1558.40) (592.61,236.65) (4436.01,884.11) (111.15,35.27)
9 (36.92,7.74)  (11.682.66)  (20.34,6.08) (1250.65,367.00) (115.79,67.66) (852.75,269.32)  (20.95,5.99)
10 (19.54,5.89)  (3.39,0.30) (10.35,2.84)  (558.34,80.84) (182.91,54.44) (489.99,161.84)  (11.39,4.12)
11 (10.38,1.63)  (1.68,0.19) (5.22,1.32)  (254.97,50.46) (36.06,24.25)  (281.71,78.97) (0.61,1.95)
12 (17.60,439)  (6.26,0.70) (12.68,2.74)  (805.30,269.91)  (222.4498.13) (681.27,147.24)  (12.52,4.96)
13 (77.738.60)  (22.742.07)  (23.56,2.65) (1674.17,337.22) (483.08,178.37) (1298.78,386.33)  (28.52,8.23)
14 (11.11,1.86)  (3.64,0.20) (7.29,1.62)  (394.3572.21) (87.01,29.12)  (345.67,70.81) (3.07,1.02)
15 (6.22,1.05) (12.44,7.93)  (5.50,2.05)  (242.99,108.07)  (115.4578.89) (2840.68,734.78)  (20.76,4.79)
16 (14.19,1.04)  (3.29,0.21) (6.53,1.18)  (337.37,65.30) (51.05,9.38) (298.34,71.92) (2.78,1.81)

* For (a,b), a is the mean value, and b is the standard derivation.

Table 2: Efficiency scores of stochastic CCR model

BANK a=0.1 | a=10.2 | a=0.3 | a=0.4 | a=0..5
1 0.0120 0.0000 0.2773 0.0273 0.0018
2 0.0000 0.0051 0.0743 0.1944 0.3656
3 0.0000 0.0000 0.0000 0.0014 0.1264
4 0.0343 0.0895 0.1655 0.2645 0.3760
5 0.0209 0.1127 0.1733 0.3373 0.4589
6 0.0000 0.0000 0.0037 0.1115 0.3841
7 0.0935 0.1799 0.2690 0.3624 0.4494
8 0.0000 0.0000 0.0052 0.1147 0.3888
9 0.0000 0.0000 0.0293 0.2185 0.4446
10 0.0380 0.1815 0.3000 0.4000 0.5000
11 0.0562 0.1465 0.2241 0.3460 0.4299
12 0.1000 0.2000 0.3000 0.3679 0.4893
13 0.0887 0.1020 0.2591 0.1498 0.4584
14 0.0013 0.0328 0.1133 0.2517 0.4160
15 0.1000 0.2000 0.3000 0.4000 0.5000
16 0.0000 0.0000 0.0000 0.0042 0.2356
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Table 3: The efficiency scores of stochastic two-stage network DEA model (stage 1 as the leader, stage 2 as
the follower)

DMU Confidence level (a)
0.1 0.2 0.3 0.4 0.5

R T U A U T A T
1 0.1 0.1 0.001472 0.2 0.013532 0.2572 0.001464  0.2775 0.056033 0.2924
2 0.010079 0.01238 0.012691 0.05256 0.021416 0.08579 0 0.09823 0.083719 0.1096
3 4.84E-06 0.005834 2.09E-05 0.08168 3.84E-05 0.1031 6.97E-05 0.1205 0.000183 0.1688
4 1.29E-26 0.01626 0.001724 0.03402 0.009976 0.04464 4.27E-06 0.05446 0.05381 0.06412
5 0.000102 0.000639 8.5E-05 0.000817 3.38E-08 0.000871 8.64E-05 0.000914 8.92E-05 0.000945
5] 1.02E-12 0.006552 6.33E-16 0.08444  2.38E-09 0.2801 2.38E-09 0.4 2.38E-09 0.5
7 0.00014 0.04169 0.033537 0.07758 1.83E-42 0.09224 0.002149 0.09823 0.007521 0.1028
8 2.99E-09 0.000837 2.95E-17 0.0169 0.3 0.06509 1.33E-12 0.1286 0.5 0.2141
9 0.000525 0.005137 2.67E-05 0.1126 0.000639 0.2391 0.000525 0.3129  0.000646 0.375
10 0.020091 0.000169 0.075583 0.00039 0.024828 0.00039 0.011232 0.00039 0.023714 0.00039
11 0.000691 0.0377 0.000473 0.09244 0.000807 0.1038 0.000824 0.1129 0.000767 0.1211
12 0.1 0.01005 0.2 0.01441 0.3 0.01559 0.4 0.0165 0.5 0.01728
13 0.1 0.001946 0.2 0.004431 0.3 0.005641 0.33414 0.006071 0.5 0.006383
14 0.000105 0.000616 0.000105 0.001985 0.000196 0.002269 3.48E-05 0.002504 0.000792 0.002715
15 0.051956 0.1 0.06285 0.2 0.063944 0.3 0.029965 0.4 0.055146 0.5
16 5.92E-73 1.19e-07 1.46E-08 1.19E-07 2.57E-39 1.19E-07 1.34E-08 7.24E-08 1.80E-25 1.19E-07

Table 4: The efficiency scores of stochastic two-stage network DEA model (stage 2 as the leader, stage 1 as
the follower)

DMU Confidence level (a)
0.1 0.2 0.3 0.4 0.5
® * - * *| * ® ® *| *®
82(10) 31?) ez(tO) 915:’) ezttu) "15'“) "'25“] elf:) ez(EOJ el,Ern)

1 0.1 0.0002 0.2 0 0.25717 0.0002 0.27749 0.0002 0.29236  2.68E-05
2 0.012382 2.90E-13 0.052558 1.16E-131 0.085788 2.90E-13 0.099254 2.90E-13 0.10964 2.90E-13
3 5.83E-03 7.99E-06 0.082695 0 0.10308 6.28E-06 0.12047 6.28E-06 0.16877 1.16E-05
4 1.97E-02 7.24E-16 0.034017 0 0.044637 7.19E-16 5.45E-02 7.24E-16 0.064123 7.24E-16
5 0.000678 0.000181 0.000817 3.94E-05 8.71E-04 0.000181 0.000914 0.000181 0.000953 0.000181
6 6.55E-03 2.00E-09 8.44E-02 7.31E-22 2.80E-01 2.38E-09 4.00E-01 2.38E-09 5.00E-01 2.38E-09
F 0.041692 0.004517 0.077578 0.001876 9.22E-02 0.000929 0.098233 0.006999 0.10281 0.002317
8 8.37E-04 0.1 1.69E-02 2.04E-13 0.065183 2.99E-09 1.29E-01 0.4 0.21407 ]
9 0.022329 0.000631 0.11261 0.000525 0.23908 0.000454 0.31289 0.000642 0.37504 3.08E-11
10 0.000169 0.01964 0.00039 0.06152 0.00039  1.72e-137 0.00039 0.08341 0.00039 0.5
11 0.0377 0.000771 0.092438 0.000791 0.10377 0.000807 0.11293 0.000824 0.12106 0.005847
12 0.010052 0.1 0.01441 0.2 0.015586 0.3 0.016496 04 0.017278 0.5
13 0.001946 0.1 0.004431 0.2 0.005642 0.1125 0.006071 0.1294 0.006383 0.5
14 0.000616 0.00018 0.001985 0.000182 0.00227 0.,000531 0002504 0.000202 0.002715 0.000965
15 0.1 0.06341 0.2 0.000818 0.3 1.80E-34 0.4 0.06419 0.5 0.04033
16 1.196-07 1.35E-08 1.19E-07 5.86E-51 1.19e-07 1.18E-08 1.19E-07 1.86E-31 1.19E-07 5.39E-13
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5 Conclusion

The present paper analyses the performance eval-
uation of network structures with the two-stage
process when the data are uncertainty. The
stochastic network DEA for performance evalu-
ation of two-stage processes according to non-
cooperative game theory is proposed. We fo-
cus on a more general class of stochastic mod-
els that Charnes and Cooper [4] refer to as P-
Model. Then, the chance-constrained and objec-
tive function of models are converted to deter-
ministic by using the Cooper et al. [8] approach.
The relationship between the optimal solution of
the stochastic model and deterministic model, ef-
ficiency of one stage as leader or follower, are dis-
cussed. The efficiency of one stage when is the
follower is less than or equal to the efficiency of
it when is the leader. Furthermore, the stochas-
tically efficiency of the entire process depends on
the stochastically efficiency of both sub-process
under non-cooperative stochastic network model.
We pint out this paper uses the concept of a non-
cooperative game theory. For further research,
one can examine the behavior of a network pro-
cess with two-stage structure by using the con-
cept of the cooperative game theory.

An empirical example of 16 commercial banks in
China to demonstrate the theoretical contribu-
tions of the current paper has been used. Within
an application, the procedure of banks is divided
into two processes, namely down payment pro-
ducing process and income making process [29)].
Finally, the current model is according to con-
cepts of non-cooperative game theory and P-
model, how to modify this model by using con-
cepts of cooperative game theory and E-model is
left for future research.
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