
Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 12, No. 4, 2020 Article ID IJIM-1344, 8 pages

DOR: http://dorl.net/dor/20.1001.1.20085621.2020.12.4.7.9

Research Article

On Inclusion Relations Between Generalized Wiener Classes

N. Haddadzadeh ∗†

Received Date: 2019-07-05 Revised Date: 2019-11-11 Accepted Date: 2020-03-25

————————————————————————————————–

Abstract

In this paper we aim to study inclusion relations between the generalized Wiener classes ΛBV(pn↑p).
In particular, we give a sufficient condition for the inclusion ΛBV(pn↑p) ⊆ ΓBV(qn↑q) which leads us
to new results for other classes of functions previously considered. We also obtain a necessary and
sufficient condition for equality of two distinct classes of this type. Furthermore, we extend and unify
a number of results in the literature including an important theorem of Avdispahić about Waterman
spaces.
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1 Introduction

W
e commence this paper by recalling a
generalization of the classical concept of

bounded variation which is central to our work
here. A nondecreasing sequence Λ = {λj} of pos-
itive reals is said to be a Λ-sequence if

∑∞
j=1

1
λj

=
∞.

Definition 1.1 Let Λ be a Λ-sequence and {pn}
be a sequence of positive reals such that 1 ≤ pn ↑
p ≤ ∞. A real function f on an interval [a, b] ⊆ R
is said to be of pn-Λ-bounded variation if :

VΛ(f ; pn ↑ p) := sup
n≥1

sup
{Ij}

( s∑
j=1

|f(Ij)|pn
λj

) 1
pn < ∞

∗Corresponding author. nhaddad25@gmail.com,
Tel:+98(918)8491131.

†Department of Mathematics, Abadan Branch, Islamic
Azad University, Abadan, Iran.

where the {Ij}sj=1 are collections of nonoverlap-

ping subintervals of [a, b] such that infj |Ij |≥ b−a
2n .

The symbol ΛBV(pn↑p) stands for the linear space
of functions of pn-Λ-bounded variation. This
class was introduced by Vyas in [11] where,
among other things, it is shown that ΛBV(pn↑p)

with pointwise operations and a suitable norm
turns into a Banach algebra.

When λj = 1 for all j, we obtain the
class BV(pn↑p)—introduced by Kita and Yoneda
[6]—which is a generalization of the well-known
Wiener class BVp. On the other hand, taking
pn = p for all n, we obtain the class ΛBV(p) [10].
If further we take p = 1, the Waterman class
ΛBV is obtained. In the sequel, we suppose that
[a, b] = [0, 1].

The main purpose of this paper is extending
and unifying a number of inclusion theorems in
the literature. More specifically, in Section 3
we give a necessary and sufficient condition for

379

http://ijim.srbiau.ac.ir/


380 N. Haddadzadeh, /IJIM Vol. 12, No. 4 (2020) 379-386

equality of two distinct ΛBV(pn↑p) classes, which
extends the main result of [6]. We shall also
present a sufficient condition for the inclusion
ΛBV(pn↑p) ⊆ ΓBV(qn↑q) for arbitrary Λ, Γ, pn and
qn; this condition is new even for the special case
of pn = qn = 1. In Section 4, a unifying condition
is introduced that yields three inclusion results al-
ready known. We note that a main ingredient in
our proofs is an inequality which is discussed in
the next section.

2 Preliminaries

In [4], the authors established an inequality for
positive monotonic sequences which can be used
to relate norms of certain function spaces:

( n∑
j=1

xqjzj

) 1
q

≤
n∑

j=1

xjyj max
1≤k≤n

( k∑
j=1

zj

) 1
q
( k∑

j=1

yj

)−1
(2.1)

where 1 ≤ q < ∞, and {xj}, {yj} and {zj} are
positive nonincreasing sequences.

The following lemma supplements this inequal-
ity and will be used in our proofs.

Lemma 2.1 If 0 < q < 1, then (2.1) holds when-
ever the sequence

{ k∑
i=1

zi

/ k∑
i=1

yi

}
k

is nondecreasing.

Proof. First, we apply (2.1) with q = 1 to obtain

n∑
j=1

xjzj ≤
n∑

j=1

xjyj max
1≤k≤n

( k∑
i=1

zi

)( k∑
i=1

yi

)−1

(2.2)
Then an application of the Hölder inequality

yields

n∑
j=1

xqjzj =

n∑
j=1

(xjzj)
qz1−q

j

≤
( n∑

j=1

xjzj

)q( n∑
j=1

zj

)1−q

≤
( n∑

j=1

xjyj

)q( n∑
j=1

zj

)1−q
max
1≤k≤n

( k∑
i=1

zi

)q

( k∑
i=1

yi

)−q

≤
( n∑

j=1

xjyj

)q
max
1≤k≤n

( k∑
i=1

zi

)( k∑
i=1

yi

)−q

where the last two inequalities are due, respec-
tively, to (2.2) and the fact that{ k∑

i=1

zi

/ k∑
i=1

yi

}
k

is nondecreasing.
We will also need the following inequality which

is sometimes called the equimonotonic sequences
inequality [5, Theorem 368]:

n∑
j=1

x̄j ȳn+1−j ≤
n∑

j=1

xjyj ≤
n∑

j=1

x̄j ȳj (2.3)

where {xj}, {yj} are sequences of real numbers,
and {x̄j}, {ȳj} are their descending rearrange-
ments, respectively.

3 Relationships between the
generalized Wiener classes
ΛBV(pn↑p)

Now we turn our attention to the mutual relations
between generalized Wiener classes ΛBV(pn↑p).
The following result is a nontrivial extension of
[6, Theorem 3.1]. For the necessity part of the
proof we use a refinement of the method in [6].

Let 1 ≤ p ≤ q ≤ ∞, 1 ≤ pn ↑ p and 1 ≤ qn ↑ q.
Then ΛBV (pn↑p) = ΛBV (qn↑q) if and only if

lim sup
n→∞

( 2n∑
j=1

1

λj

)| 1
pn

− 1
qn
|
< ∞ (3.4)
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Proof. Sufficiency. Assume that f ∈
ΛBV(pn↑p). For an arbitrary but fixed n, let
{Ij}sj=1 be a nonoverlapping collection of subin-

tervals of [0, 1] with inf|Ij |≥ 1
2n , and put q =

qn/pn, xj = |f(Ij)|pn , yj = zj = 1/λj . Note
that with inequality (2.3) in mind, we may as-
sume that the xj are in descending order.

If pn ≤ qn, applying inequality (2.1) we obtain:

s∑
j=1

(|f(Ij)|pn)
qn
pn

λj

≤
( s∑

j=1

|f(Ij)|pn
λj

) qn
pn max

1≤k≤s

( k∑
j=1

1

λj

)1− qn
pn

hence:

( s∑
j=1

|f(Ij)|qn
λj

) 1
qn

≤
( s∑

j=1

|f(Ij)|pn
λj

) 1
pn max

1≤k≤s

( k∑
j=1

1

λj

) 1
qn

− 1
pn

≤
( s∑

j=1

|f(Ij)|pn
λj

) 1
pn max

1≤k≤2n

( k∑
j=1

1

λj

)| 1
qn

− 1
pn
|

≤
( s∑

j=1

|f(Ij)|pn
λj

) 1
pn
( 2n∑

j=1

1

λj

)| 1
qn

− 1
pn
|

If qn < pn, using Lemma 2.1 we obtain:

s∑
j=1

|f(Ij)|qn
λj

≤
( s∑

j=1

|f(Ij)|pn
λj

) qn
pn
( 2n∑

j=1

1

λj

)1− qn
pn

Thus in any event, we have shown that:

( s∑
j=1

|f(Ij)|qn
λj

) 1
qn

≤
( s∑

j=1

|f(Ij)|pn
λj

) 1
pn
( 2n∑

j=1

1

λj

)| 1
qn

− 1
pn
|

Taking suprema over all collections {Ij}sj=1 as
above, and over all n yields:

VΛ(f ; qn ↑ q)

≤ VΛ(f ; pn ↑ p). sup
n

( 2n∑
j=1

1

λj

)| 1
qn

− 1
pn
|
< ∞

which means that f ∈ ΛBV(qn↑q). Repeating a
similar argument, we obtain the reverse inclusion
as well.

Necessity. To proceed by contraposition, sup-
pose that (3.4) does not hold. We may, without
loss of generality, assume that:

lim sup
n→∞

( 2n∑
j=1

1

λj

) 1
qn

− 1
pn = ∞

and

dn :=
( 2n∑

j=1

1

λj

)−1
pn ↓ 0

Then we define a sequence of functions {fn}∞n=1

on the interval [0, 1] inductively. Let f0 be the
identically zero function on [0, 1]. When fn−1

is defined, fn will be defined to be the function
whose graph on the interval[j − 1

2n−1
,

j

2n−1

]
; j = 1, ..., 2n−1

consists of the two consecutive line segments con-
necting the points:(j − 1

2n−1
, fn−1

(j − 1

2n−1

))
,
(2j − 1

2n
, fn

(2j − 1

2n

))
and ( j

2n−1
, fn−1

( j

2n−1

))
where :

fn

(2j − 1

2n

)
:=

min
{
fn−1

(
j−1
2n−1

)
, fn−1

(
j

2n−1

)}
+ dn ,

(n is odd)

max
{
fn−1

(
j−1
2n−1

)
, fn−1

(
j

2n−1

)}
− dn ,

(n is even)
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Since {pn} is increasing,

(∑2n

j=1
1
λj

)
1p˙n

≤
(∑2n+1

j=1
1
λj

)
1p˙n(∑2n

j=1
1
λj

)
1p˙n≤ 2

1
pn ≤ 2

1p˙n+1
dn
dn+1

=
( 2n+1∑

j=1

1

λj

)
(∑2n

j=1
1
λj

)
1p˙n

≤
(∑2n+1

j=1
1
λj

)
1p˙n(∑2n

j=1
1
λj

)
1p˙n≤ 2

1
pn ≤ 2

that is,
dn ≤ 2dn+1 for all n

This, along with the fact that dn ↓ 0, implies:

|fn(x)− fn+m(x)|≤ dn,

for all n,m ≥ 1, x ∈ [0, 1].
Therefore {fn}∞n=1 is a Cauchy sequence, hence

there exists a function f such that fn(x) → f(x)
as n → ∞ and

|fn(x)− f(x)|≤ dn, for all n ≥ 1, x ∈ [0, 1].
(3.5)

We claim that f ∈ ΛBV (pn↑p) but f /∈ ΛBV (qn↑q).
To see this, let {Ij}sj=1 be a collection of nonover-

lapping subintervals of [0, 1] such that inf|Ij |≥ 1
2n

and set

σk = 1 ≤ j ≤ s :
( 2k+1∑

i=1

1

λi

)−1

≤ |Ij |<
( 2k∑

i=1

1

λi

)−1
, k = 1, 2, ... .

Note that for j ∈ σk, if aj = inf Ij and bj =
sup Ij , using (3.5) we get

|f(Ij)|≤ |f(aj)− fk(aj)|
+ |fk(aj)− fk(bj)|+|fk(bj)− f(bj)|

≤ dk + |fk(aj)− fk(bj)|+dk ≤ 4dk.

Therefore, if we define tn to be the smallest pos-

itive integer with 2n ≤
∑2tn

j=1
1
λj
, it follows that

s∑
j=1

|f(Ij)|pn
λj

=

tn−1∑
k=0

∑
j∈σk

|f(Ij)|pn
λj

≤
tn−1∑
k=0

(4dk)
pn

∑
j∈σk

1

λj

= 4pn
tn−1∑
k=0

( 2k∑
j=1

1

λj

)− pn
pk

∑
j∈σk

1

λj

≤ 4pn
tn−1∑
k=0

( 2k∑
j=1

1

λj

)−1 ∑
j∈σk

1

λj

≤ 2.4pn
tn−1∑
k=0

( 2k+1∑
j=1

1

λj

)−1 ∑
j∈σk

1

λj

≤ 2.4pn
tn−1∑
k=0

∑
j∈σk

|Ij |≤ 8pn

where in the third inequality we have used the
fact that :

( 2k∑
j=1

1

λj

)−1
≤ 2

( 2k+1∑
j=1

1

λj

)−1

Consequently we have( s∑
j=1

|f(Ij)|pn
λj

) 1
pn ≤ 8 for all n ≥ 1

which means that f ∈ ΛBV (pn↑p).
Finally we show that f /∈ ΛBV (qn↑q). Too see

this, note that from the definition of f we have

|f(j/2n)− f((j − 1)/2n)|= dn for n ≥ 1

Hence it follows that :( 2n∑
j=1

|f(Ij)|qn
λj

) 1
qn =

(
dqnn

2n∑
j=1

1

λj

) 1
qn

= dn

( 2n∑
j=1

1

λj

) 1
qn =

( 2n∑
j=1

1

λj

) 1
qn

− 1
pn

where Ij := [(j − 1)/2n, j/2n].
Note that we have earlier assumed that

lim supn

(∑2n

j=1
1
λj

) 1
qn

− 1
pn = ∞. As a result, we

see that f /∈ ΛBV (qn↑q), as desired.
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The mutual relationship between the general-
ized Wiener classes ΛBV (pn↑p) is rather chaotic
even in the special case where pn = qn = 1 for
all n. It is worth mentioning that in order to
determine when ΛBV (p) ⊆ ΓBV (qn↑q) ([4, The-
orem 1.4]), it has been assumed that p ≤ q, or
in Theorem 3 we have assumed that Λ = Γ. So,
it would be highly desirable to find a condition
that implies the general inclusion ΛBV (pn↑p) ⊆
ΓBV (qn↑q) without any additional restrictions on
the pn, qn, Λ and Γ. The following theorem pro-
vides such a condition which is new even for spe-
cial cases; see the corollaries to this result. (Note,
of course, that we deal with the case of interest
where Γ is unbounded.)

The inclusion ΛBV (pn↑p) ⊆ ΓBV (qn↑q) holds
whenever:

sup
1≤n<∞

∞∑
k=1

∆
( 1

γk

)
max

1≤m≤k
m
( m∑

j=1

1

λj

)− qn
pn

< ∞

Proof. Assume that f ∈ ΛBV(pn↑p). For an
arbitrary but fixed n, let {Ij}sj=1 be a nonover-
lapping collection of subintervals of [0, 1] with
inf|Ij |≥ 1

2n , and put q = qn/pn, xj = |f(Ij)|pn ,
yj = 1/λj , zj = 1/γj . Using inequality 2.3, we
may also assume that the xj are arranged in de-
scending order. Now, by Abel’s transformation
and applying (2.1) together with Lemma 2.1 we
obtain:

s∑
k=1

|f(Ik)|qn
γk

=
s−1∑
k=1

∆
( 1

γk

) k∑
j=1

|f(Ij)|qn+
1

γs

s∑
j=1

|f(Ij)|qn

≤
s−1∑
k=1

∆
( 1

γk

)( k∑
j=1

|f(Ij)|pn
λj

) qn
pn

max
1≤m≤k

m
( m∑

j=1

1

λj

)− qn
pn

+
1

γs

( s∑
j=1

|f(Ij)|pn
λj

) qn
pn max

1≤m≤s
m
( m∑

j=1

1

λj

)− qn
pn

≤
s−1∑
k=1

∆
( 1

γk

)
VΛ(f ; pn ↑ p)qn

max
1≤m≤k

m
( m∑

j=1

1

λj

)− qn
pn

+
1

γs
VΛ(f ; pn ↑ p)qn max

1≤m≤s
m
( m∑

j=1

1

λj

)− qn
pn

≤
s−1∑
k=1

∆
( 1

γk

)
VΛ(f ; pn ↑ p)qn max

1≤m≤k
m
( m∑

j=1

1

λj

)− qn
pn

+
∞∑
k=s

∆
( 1

γk

)
VΛ(f ; pn ↑ p)qn max

1≤m≤k
m
( m∑

j=1

1

λj

)− qn
pn

= VΛ(f ; pn ↑ p)qn
∞∑
k=1

∆
( 1

γk

)
max

1≤m≤k
m
( m∑

j=1

1

λj

)− qn
pn

< ∞

where we have used the fact that:

1

γs
max

1≤m≤s
m
( m∑

j=1

1

λj

)− qn
pn

≤
∞∑
k=s

∆
( 1

γk

)
max

1≤m≤k
m
( m∑

j=1

1

λj

)− qn
pn

Taking suprema over all collections {Ij}sj=1 as
above, and over all n yields VΓ(f ; qn ↑ q) < ∞.
That is, f ∈ ΓBV (qn↑q).

The inclusion ΛBV (p) ⊆ ΓBV (q) holds when-
ever:

∞∑
n=1

∆
( 1

γn

)
max
1≤k≤n

k
( k∑

j=1

1

λj

)− q
p
< ∞

The inclusion ΛBV ⊆ ΓBV holds whenever:

∞∑
n=1

∆
( 1

γn

)
n
( n∑

j=1

1

λj

)−1
< ∞
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4 Relationships between the
classes ΛV [h](p)

A sequence h of positive reals is said to be a mod-
ulus of variation if it is nondecreasing and con-
cave, i.e., h(tn+ (1− t)m) ≥ th(n) + (1− t)h(m)
whenever h is defined at n, m and tn+ (1− t)m.
Let 1 ≤ p < ∞ and Λ be a Λ-sequence.

Definition 4.1 For a bounded real function f on
[a, b], the sequence

νp,Λ(f ;n) := sup
n∑

j=1

|f(Ij)|p

λj

is the modulus of variation associated to f , where
the supremum is taken over all collections {Ij}nj=1

of nonoverlapping subintervals of [a, b]. The class
of all functions f for which νp,Λ(f ;n) = O(h(n))
as n → ∞, is denoted by ΛV [h](p).

This class was first introduced in a more genral
context and was studied in connection with the
Riemann–Stieltjes integration theory [7]. Note
that many of the classes previously considered
may be obtained by making special choices of Λ,
p and h. This provides us with a general setting
to unify a number of inclusion theorems (see The-
orem 4 and its corollaries). For instance if p = 1,
then taking Λ = {1} we get the Chanturiya class
V [ν], and taking h = {1} we obtain the Water-
man class ΛBV .

Let 1 ≤ p ≤ q < ∞. Suppose that either the
sequence {( n∑

j=1

1

γj

) 1
q
/( n∑

j=1

1

λj

) 1
p
}
n

or {
h2(n)

1
q /h1(n)

1
p

}
n

is nondecreasing. Then the inclusion
ΛV [h1]

(p) ⊆ ΓV [h2]
(q) holds whenever:

sup
1≤n<∞

 n∑
j=1

1

γj

/
h2(n)

 1
q
h1(n)

/ n∑
j=1

1

λj

 1
p

< ∞

(4.6)

Proof. Let f ∈ ΛV [h1]
(p) and consider a

fixed n. Let {Ij}nj=1 be a nonoverlapping collec-
tion of subintervals of [0, 1]. Set xj := |f(Ij)|p,

yj := 1/λj and zj := 1/γj . In view of the equi-
monotonic sequences inequality (2.3) we can, and
do, assume that the xj are arranged in descend-
ing order. Now, applying (2.1) with q/p ≥ 1 in
place of q we obtain:( n∑

j=1

|f(Ij)|q

γj

) p
q

≤
n∑

j=1

|f(Ij)|p

λj
max
1≤k≤n

( k∑
j=1

1

γj

) p
q
( k∑

j=1

1

λj

)−1

Therefore, we get( n∑
j=1

|f(Ij)|q

γj

) 1
q

≤
( n∑

j=1

|f(Ij)|p

λj

) 1
p
max
1≤k≤n

( k∑
j=1

1

γj

) 1
q
( k∑

j=1

1

λj

)− 1
p

≤
(
νp,Λ(f ;n)

) 1
p
max
1≤k≤n

( k∑
j=1

1

γj

) 1
q
( k∑

j=1

1

λj

)− 1
p

≤ C.h1(n)
1
p .
h2(n)

1
q

h1(n)
1
p

= C.h2(n)
1
q

for some positive constant C, depending only on
f . As a result, taking supremum over all collec-
tions {Ij}nj=1 as above, it follows that

νq,Γ(f ;n) ≤ Cq.h2(n),

which means that f ∈ ΓV [h2]
(q).

Making suitable choices of Λ, Γ, p, q, h1 and
h2 to invoke the preceding theorem, we obtain the
following corollaries.

([1]) The following inclusion holds:

ΛBV ⊆ V
[
n
/ n∑

j=1

1/λj

]

([4]) Let 1 ≤ p ≤ q < ∞. Then the inclusion
ΛBV (p) ⊆ ΓBV (q) holds whenever

sup
1≤n<∞

( n∑
j=1

1

γj

) 1
q
( n∑

j=1

1

λj

)− 1
p
< ∞

([2]) The inclusion V [h1] ⊆ V [h2] holds when-
ever

sup
1≤n<∞

h1(n)

h2(n)
< ∞
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We end this paper with a characterization of
when ΛV [h](p) coincides with B[0, 1], the space
of all bounded functions on [0, 1].

The equality ΛV [h](p) = B[0, 1] holds if and
only if

sup
1≤n<∞

h(n)−1
n∑

j=1

1

λj
< ∞ (4.7)

Proof. Assume (4.7) and let f ∈ B[0, 1]. Then
there exists some positive constant C such that∑n

j=1
1
λj

≤ Ch(n) for all n. So if {Ij}nj=1 is a

collection of nonoverlapping subintervals of [0, 1],
we have:

n∑
j=1

|f(Ij)|p

λj
≤ 2p∥f∥p∞

n∑
j=1

1

λj
≤ 2pC∥f∥p∞h(n)

where ∥f∥∞= sup {|f(x)|: x ∈ [0, 1]}. Thus, f ∈
ΛV [h](p).

Conversely, let ΛV [h](p) = B[0, 1]. To show
that (4.7) holds, we construct an f ∈ B[0, 1] as
follows:

f(x) :=

1 if x ∈ ( 1
2k+1 + 1

2k
, 1
2k−1 ); k = 1, 2, ...

0 otherwise.

Now consider the collection

Ik = [
1

2k
,
1

2k
+

2

3
.
1

2k
] ; k = 1, 2, ..., n

Then we have:

n∑
k=1

1

λk
=

n∑
k=1

|f(Ik)|p

λk

≤ νp,Λ(f ;n) ≤ h(n) sup
1≤r<∞

νp,Λ(f ; r)

h(r)

where the last inequality is a result of our assump-
tion that f ∈ ΛV [h](p). The proof is complete.
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[1] M. Avdispahić, On the classes ΛBV and
V [ν],Proc. Amer. Math. Soc. 95 (1985)
230-234.

[2] Z. A. Chanturiya, The modulus of varia-
tion of a function and its application in
the theory of Fourier series, Soviet. Math.
Dokl. 15 (1974) 67-71.

[3] U. Goginava, Relations between ΛBV and
BV(p(n) ↑ ∞) classes of functions, Acta
Math. Hungar. 101 (2003) 263-272.

[4] M. M. Goodarzi, M. Hormozi, N. Memić,
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