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Abstract

In this paper, we use the context-dependent method for ranking decision making units with non-
discretionary data in data envelopment analysis . This methodology partitions a set DMUs into the
several levels of efficient frontier, then obtains the efficiency of each DMU against of every calculate
efficient frontier. We calculate a ranking score for each DMU by this efficiency indexes. Therefore we
can rank DMUs by this score. In the end, we use our proposed method in the numerical example.
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1 Introduction

D
ata envelopment analysis (DEA) is a method-
ology for measuring the relative efficiencies

of a set of decision-making units that use multiple
inputs to produce multiple outputs. The stan-
dard models assume that all inputs and outputs
are crisp and can be changed at the discretion of
management. While crisp input and output data
are fundamentally indispensable in the standard
evaluation process, input and output data in real-
world problems are often imprecise or ambigu-
ous. In addition, real-world problems may also
include non-discretionary factors that are beyond
the control of a DMU ,s management.
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The percentage of controllability, or the degree to
which the data are discretionary, in the modified
Russell model of not only calculates the relative
efficiency of homogeneous decision making units
, but also determines the factors contributing to
inefficiency and the measure of inefficiency in inef-
ficient DMUs. The results obtained by this model
help the management to improve inefficient units
with the aim of reaching the efficient units. How-
ever, these efficiency improvement methods must
be possible, i.e., the management must be able
to effect the expected changes, such as decreas-
ing the inputs or increasing the outputs, within
his/her area of responsibility. For instance, in
evaluating bank branches, the important factors
include branch area, number of staff, resources,
interest received, and costs. Branch area is an
almost non-discretionary input, since it cannot
be decreased at will. Also, the resources of a
bank branch are an almost non-discretionary out-
put type. In order to improve an inefficient bank
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branch, the management has to increase the re-
sources. However, it is known that the overall
resources of banks are fixed; that is, the over-
all amount of cash available in the country is al-
most constant. Therefore, a bank manager can-
not increase the resources of the branch at will
to improve the performance of his branch, since
this requires a decrease in the resources of other
branches, which is only to some degree possible.
Thus, the resources of a branch constitute an out-
put that can be changed to a certain degree, and
not infinitely. Therefore, it is necessary for a
more accurate evaluation to precisely recognize
the sphere of authority of a manager in effecting
the changes and consider it in the modeling, so
that the pattern presented to the inefficient units
will be possible to reach.
Farzipoor Saen [8] presented a methodology for
treating non-discretionary in slacks-based mea-
sure (SBM) formulation. We believe that this
method is one of the best method to calculat-
ing the relative efficiency of DMUs with non-
discretionary factors. Therefore, we will compare
the efficiency results of our model with the effi-
ciency results in [8].
Azizi et al. [2] proposed a pair of data envelop-
ment analysis model to measure of relative effi-
ciencies of decision-making units in the presence
of non-discretionary factors and imprecise data.
Compared to traditional , the proposed interval
approach measures the efficiency of each DMU
relative to the inefficiency frontier, also called
the input frontier, and is called the worst rela-
tive efficiency or pessimistic efficiency. The pair
of proposed interval DEA models takes into ac-
count the crisp, ordinal, and interval data, as well
as non-discretionary factors, simultaneously for
measurement of relative efficiencies of DMUs.
Saati et al. [15] show that considering bounded
factors in DEA models results in the desertion
of the concept of relative efficiency since the effi-
ciency of the DMUs are calculated by comparing
the DMUs with their lower and/or upper bounds.
In addition, they present a fuzzy DEA model
with discretionary and non-discretionary factors
in both the input and output-oriented CCR mod-
els.
It is often necessary in real performance assess-
ment practice to rank a group of decision mak-

ing units (DMUs) in terms of their efficiencies.
Data envelopment analysis developed by charnes
et al. [6] has been universally recognized as a
useful tool of performance assessment, but very
often more than one DMU is evaluated as DEA
efficient, which makes DEA efficient units unable
to be compared or ranked.
To rank DEA efficient units, quite a lot of re-
search has been done and many ranking method-
ologies have been suggested in the DEA litera-
ture. For example, Andersen and Petersen [1]
proposed a procedure that was later referred to
as the super-efficiency method for ranking DEA
efficient units. Super-efficiency refers to the DEA
efficiency measured by excluding the DMU under
evaluation from the constraints of DEA models
and has been deeply researched in the literature
[3, 7, 12, 13, 17]. Farzipoor Saen [9] developed an
innovative algorithm to rank technology suppliers
in the presence of non-discretionary factors from
suppliers perspective Unlike the current work,
ranking of DMUs with some non-discretionary
factors have not studied before.
The context-dependent DEA [17, 20] is intro-
duced to measure the relative attractiveness of
a particular DMU when compared to others.
Relative attractiveness depends on the evalua-
tion context constructed from alternative DMUs.
The original DEA method evaluates each DMU
against a set of efficient DMUs and cannot iden-
tify which efficient DMU is a better option with
respect to the inefficient DMU. This is because
all efficient DMUs have an efficiency score of one.
Although one can use the super-efficiency DEA
model [1, 17, 19] to rank the performance of ef-
ficient DMUs, the evaluation context changes in
each evaluation and the efficient DMUs are not
evaluated against the same reference set.
The context-dependent DEA approach starts
with clustering the DMUs and obtaining several
performance levels. For this purpose, an algo-
rithm is developed to remove the best-practice
frontier to allow the remaining (inefficient) DMUs
to form a new second-level best-practice fron-
tier. If this new second frontier is removed, a
third- level best-practice frontier is formed, and
so on, until no DMU is left [20]. Each evalu-
ation level represents an efficient frontier com-
posed by DMUs in a specific performance level.
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The next step of the context-dependent DEA ap-
proach after clustering the DMUs to several levels
is the calculation of attractiveness and progress
scores to produce a ranking at every performance
level [14, 16]. When DMUs in a specific level
are viewed as having equal performance, the at-
tractiveness measure allows us to differentiate the
”equal performance” based upon the same spe-
cific evaluation context. A combined use of at-
tractiveness and progress measures can further
characterize the performance of DMUs.
The objective of the present paper is to introduce
a model of data envelopment analysis to measure
of relative efficiencies of decision-making units
(DMUs) in the presence of non-discretionary fac-
tors and a ranking methodology for DMUs is pro-
posed. This methodology ranks DMUs by the
slack-based context-dependent model with non-
discretionary data.
The paper is organized as follows: in section
2, we present a slack-based context-dependent
model on DEA efficiency and give a descrip-
tion of non-discretionary model with slacks-based
measure. In section 3, we measure efficiency in
context-dependent DEA with non-discretionary
data. Section 4 proposes a method for ranking
DMUs. Numerical examples are provided in sec-
tion 5 to illustrate the proposed efficiency and
ranking methodology and also the efficiency re-
sults of our proposed model is compared with
model (2.5) (Farzipoor Saens model [8]). The pa-
per is concluded in section 6.

2 Background

2.1. Slack-based context-dependent DEA
Presume that there are n DMUs, each
DMUo (o ∈ J = {1, · · · , n}) producing a vec-
tor of outputs Yo = (y1o, · · · , yso) by using a vec-
tor of inputs Xo = (x1o, · · · , xmo). A slack-based
measure (SBM) of efficiency [15] is introduced
to evaluate the efficiency together with the slack
value. The following index ρ:

ρ =

1− 1
m

m∑
i=1

s−i
xio

1 + 1
s

s∑
r=1

s+r
yro

(2.1)

is defined in terms of the amount of slack, and has
the value between 0 and 1. The SBM efficiency
score is obtained from the following program:

Min ρ =

1− 1
m

m∑
i=1

s−i
xio

1+ 1
s

s∑
r=1

s+r
yro

s.t.

n∑
j=1

λjxij + s−i = xio, i = 1, . . . ,m,

n∑
j=1

λjyrj − s+r = yro, r = 1, . . . , s,

λj , s
−
i , s

+
r ≥ 0, j = 1, · · · , n, i = 1, . . . ,m,

r = 1, . . . , s.
(2.2)

The SBM efficiency score is normalized between
0 and 1. DMUo is efficient iff ρ∗ = 1, because
ρ∗ = 1 implies that all slacks are zero and the
DMU lies on the strong efficient frontier. Note
that throughout this paper, when a DMU is effi-
cient, it is dominated by no real or virtualDMUs.
We defined the set of all DMUs as J1 and the
set of efficient DMUs in J1 as E1. Then the se-
quences of J l and El are defined interactively as
J l+1 = J l − El. The set of El can be found as
the DMUs with the optimal value ρlo of 1 in the
following fractional programming problem:

Min ρlo

1− 1
m

m∑
i=1

s−i
xio

1+ 1
s

s∑
r=1

s+r
yro

s.t.
∑
j∈J l

λjxij + s−i = xio, i = 1, . . . ,m,∑
j∈J l

λjyrj − s+r = yro, r = 1, . . . , s,

λj , s
−
i , s

+
r ≥ 0, j ∈ J l, i = 1, . . . ,m,

r = 1, . . . , s.
(2.3)

Example 2.1 Suppose we have 8 DMUs with
two inputs and one single output of one (see Table
1).

We define J1 = {DMU1, · · · , DMU8} and obtain
E1 = {DMU3, DMU4} by solving (2.3). As a
result the DMUs on the first level are DMU3

and DMU4. Thereafter, we obtain J2 = J1−E1 =
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Table 1: Data and ρlo of DMUs in sample.

DMUj 1 2 3 4 5 6 7 8

Input 1 4 5 3 1 3 6 6 2

Input 2 4 2 1 3 3 3 4 4

ρ1o 0.500 0.550 1.000 1.000 0.667 0.417 0.375 0.625

ρ2o 0.750 1.000 - - 1.000 0.750 0.625 1.000

ρ3o 1.000 - - - - 1.000 0.833 -

Levels 3 2 1 1 2 3 4 2

{DMU1, DMU2, DMU5, DMU6, DMU7,
DMU8} and by solving (2.3) obtain E2 = {DMU2,
DMU5, DMU8} then, the DMUs on the second
level are DMU2, DMU5 and DMU8. Similarly we
obtain J3 = J2 − E2 = {DMU1, DMU6, DMU7},
E3 = {DMU1, DMU6} and J4 = E4 = {DMU7}.
Figure 1. plots these four levels of the efficient
frontiers of 8 DMUs.
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Figure 1. Efficient frontiers in different levels.
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According to Morita et al. [12], the attractiveness
based on the evaluation context El is measured with
respect to the DMUs in the subset J l. For example,
the attractiveness for DMUo based on the evaluation
context El is obtained from the following program-
ming problem.

Min δlo =

1
m

m∑
i=1

xi/xio

1
s

s∑
r=1

yr/yro

s.tv
∑
j∈Jl

λjxij ≤ xi, i = 1, · · · ,m,∑
j∈Jl

λjyrj ≥ yr, r = 1, . . . , s,

λj ≥ 0, j ∈ J l,
0 ≤ xi ≤ xio, yr ≥ yro, i = 1, . . . ,m,
r = 1, . . . , s.

(2.4)

2.2. Non-discretionary model with slacks-
based measure
Suppose that the input and output factors may each
be partitioned into two subsets: discretionary (D) fac-
tors, i.e., they are controllable, and non-discretionary
(ND) factors, i.e., they are not controllable. Thus,
I = {1, 2, · · · ,m} = ID ∪ IND , ID ∩ IND = ∅ and
O = {1, 2, · · · , s} = OD ∪ OND , OD ∩ OND = ∅
Banker and Morey [3] provided the first DEA model
to evaluate efficiency in the presence of input non-
discretionary factors. Farzipoor Saen [8] proposed a
model for non-discretionary SBM , which is presented
as follows:

Min γ = t− 1
m

m∑
i=1

s−i
xio

s.t. 1 = t+ 1
s

s∑
r=1

s+r
yro

,

txo = XΛ + S−,
tyo = Y Λ + S+,
s−i ≤ βixio, i = 1, · · · ,m,
s+r ≤ µryro, r = 1, · · · ,m,
Λ ≥ 0, S− ≥ 0, S+ ≥ 0, t > 0,

(2.5)

where βi, µr represent parameters. Assigning values
from 0 to 1, accords different degrees of discre-
tionariness to input i with βi = 0 characterizing
this input as non-discretionary and βi = 1 changing
the characterization to completely discretionary.
Similarly, setting µr = 0 consigns output r to a fixed
(non-discretionary) value while allowing µr −→ ∞,
or, equivalently, removing this constraint on s+r al-
lows its value to vary in a freely discretionary manner.

3 Context-dependent efficiency
with non-discretionary data

In this section, we apply the method used in the pre-
vious section as model (2.4). So, we have the following
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model:

Min ρ =

1
m

m∑
i=1

xi

xio

1
s

s∑
r=1

yr
yro

s.t.
∑
j∈Jl

λjxij ≤ xi, i = 1, . . . ,m,∑
j∈Jl

λjyrj ≥ yr, r = 1, · · · , s,

(1− βi)xio ≤ xi ≤ xio, i = 1, . . . ,m,
yro ≤ yr ≤ (1 + µr)yro, r = 1, . . . , s,
λj ≥ 0, j ∈ J l.

(3.6)

where βi, µr represent parameters whose values vary
in [0,1). If βi = 0 or µr = 0 then input i or output r
is completely non-discretionary. Similarly, if βi = 1 or
µr −→ ∞ then input i or output r is completely dis-
cretionary. If βi or µr vary from 0 to 1 (βi, µr ∈ (0, 1)
) then different degrees of discretion are assigned to
input i or output r. Note that this fractional program-
ming problem can be transformed into a linear pro-
gramming problem using the Charnes-Cooper trans-
formation [4] as

Min τ = 1/m
m∑
i=1

x̃i/xio

s.t.
s∑

r=1

ỹr/yro = s,∑
j∈Jl

Λjxij ≤ x̃i, i = 1, . . . ,m,∑
j∈Jl

Λjyrj ≥ ỹr, r = 1, . . .¸ , s,

(1− βi)txio ≤ x̃i ≤ txio, i = 1, . . . ,m,
tyro ≤ ỹr ≤ (1 + µr)tyro, r = 1, . . . , s,
t ≥ 1,Λj ≥ 0, j ∈ J l.

(3.7)
Let an optimal solution of (3.7) be (τ∗, x̃∗, ỹ∗,Λ∗, t∗).
Then we have an optimal solution of (3.6) as:

ρ∗ = τ∗, λ∗ = Λ∗/t∗, x∗ = x̃∗/t∗, y∗ = ỹ∗/t. (3.8)

When obtaining the super-efficiency of DMUo against
the PPS by model (3.7), if DMUo is out of the PPS,
the following constraints imply that the DMU moves
away from the PPS and does not reach level t, and
model (3.7) will, therefore, be infeasible (see Figure
2).
(1− βi)txio ≤ x̃i ≤ txio, (i = 1, · · · ,m),
tyro ≤ ỹr ≤ (1 + µr)tyr, (r = 1, · · · , s).

- I

6
O

level trDMUo

6
tyro ≤ ỹr ≤ µrtyro

�
(1− βi)txio ≤ x̃i ≤ txio

PPS with level t

Figure 2. DMUo against to PPS with level t.

To avoid this, these constraints are transformed to
the following constraints:
txio ≤ x̃i ≤ (1 + β

′

i)txio (i = 1, · · · ,m),

(1− µ
′

r)tyro ≤ ỹr ≤ tyro (r = 1, · · · , s),
where βi, µr represent parameters whose values
vary in [0,1). If βi = 0 or µr = 0 then input i or
output r is completely non-discretionary. Similarly,
if βi −→ ∞ or µr = 1 then input i or output r is
completely discretionary. If βi or µr vary from 0 to
1 (βi, µr ∈ (0, 1) ) then different degrees of discretion
are assigned to input i or output r.

4 Proposed method for ranking
all DMUs

For ranking DMUs, first we apply the slack-based
context-dependent DEA model (3.7) to all DMUs.
Second, the corresponding efficiency level is calculated
by using the context-dependent DEA model. We as-
sume thatDMUs are divided to L levels. The optimal
weight of each level is determined by the management,
which is represented by βl (l = 1, · · · , L). If DMUo

belongs to level k (k ∈ {1, · · · , L}), then we obtain the
efficiency of DMUo against level l (l = 1, · · · , k − 1).
Thus, the optimal soulution of the model is calculated
as follows:

θlo = Min 1/m
m∑
i=1

x̃i/xio

s.t.

s∑
r=1

ỹr/yro = s,∑
j∈El

Λjxij ≤ x̃i, i = 1, . . . ,m,∑
j∈El

Λjyrj ≥ ỹr, r = 1, . . . , s,

(1− βi)txio ≤ x̃i ≤ txio, i = 1, . . . ,m,
tyro ≤ ỹr ≤ (1 + µr)tyro, r = 1, . . . , s,
0 < t ≤ 1, 0 ≤ Λj , j ∈ El,

(4.9)
where 1 ≤ l ≤ k − 1.
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Note: It is clear that θlo (o ∈ {1, · · · , n}) cal-
culate the relative efficiency of decision making units
in the presence of non-discretionary factors. We
profess that the results of this model are better than
the other methods. We will discover the advantage
of our model by comparing its results with Farzipoor
Saens efficiency model [8] in the numerical example
section.
Then we obtain the super-efficiency of DMUo against
level l (l = k + 1, · · · , L). So the optimal soulution of
the model is calculated as follows:

ϕlo = Min 1/m
m∑
i=1

x̃i/xio

s.t.

s∑
r=1

ỹr/yro = s,∑
j∈El

Λjxij ≤ x̃i, i = 1, . . . ,m,∑
j∈El

Λjyrj ≥ ỹr, r = 1, . . . , s,

txio ≤ x̃i ≤ (1 + β
′

i)txio, i = 1, . . . ,m,

(1− µ
′

r)tyro ≤ ỹr ≤ tyro, r = 1, . . . , s,
t ≥ 1,Λj ≥ 0, j ∈ El,

(4.10)
where k + 1 ≤ l ≤ L.
Now, we show by the following simple example that
model (4.10) may be infeasible.

Example 4.1 Suppose that we have three DMUs
with two inputs and one output, where input 1 is dis-
cretionary and input 2 is non-discretionary. The data
of the three DMUs are shown in Table 2.

The Farell frontier of these three DMUs is drawn
in Figure 3, below:

-I1

6
I2

r
r r

A

B

C

r
1
r

r
2

DMU
′

o

Figure.3: Farell frontier of DMUs.

For calculating the super-efficiency of DMUo in
position 1, we should obtain the non-radial projection
of this DMU on the Farell frontier by increasing
inputs. But, because input 2 is non-discretionary, we

cannot increase input 2. Therefore, the projection of
DMUo on the frontier is DMU

′

o. So, if we run model
(4.10) for DMUo, this model is feasible and φ∗

to > 1.
Now, if DMUo is in position 2, then it cannot reach
the Farell frontier by increasing input 1. So, if we run
model (4.10) for DMUo in position 2, then this model
will become infeasible. In such cases, we say that
DMUo does not indicate super-efficiency in terms
of input saving, since DMUo cannot be moved onto
the frontier constructed from the other DMUs via
input increases. In fact DMUo does not have input
super-efficiency.
Similarly, model (4.10) may be infeasible, indicating
that DMUo does not have super-efficiency in its
output.
Therefore, the case of infeasibility of model (4.10)
results from the existence of the inputs and outputs
discretion restrictions. In other words, the following
restrictions in model (4.10) lead to infeasibility:

x̃i ≤ (1 + β
′

i)txio, i = 1, · · · ,m,

(1− µ
′

r)tyro ≤ ỹr, r = 1, · · · , s.
(4.11)

To remove infeasibility, we introduce the deviation
variable for them similar to the method proposed by
Jahanshahloo et al. [11]. So, we will have:

x̃i + ni − pi = (1 + β
′

i)txio, i = 1, · · · ,m,

ỹr + n′
r − p′r = (1− µ

′

r)tyro, r = 1, · · · , s,

where ni, pi (i = 1, · · · ,m) and n′
r, p

′
r (r = 1, · · · , s)

are the deviation weights corresponding to the weight
restrictions in (4.11), and (1+β

′

i)txio, (i = 1, · · · ,m),

(1 − µ
′

r)tyro, (r = 1, · · · , s) are goals of weight re-
strictions in (4.11). If model (4.10) becomes
infeasible, then a penalty should be imposed in order
to have minimized deviation from the considered
goals. Toward this end, if input i (or output r) is
non-discretionary (i ∈ IND (or r ∈ OND)), then
constrain i (or constrain r) will be equality in (4.11);
therefore we should minimize ni, pi (or n′

r, p
′
r) in

(4.11) simultaneously. But if input i (or output r)
is the percentage of controllability (i ∈ %IND (or
r ∈ %OND)), then constrain i (or constrain r) will
be strict inequality in (4.11); therefore we should
minimize pi (or n′

r) in (4.11). Thus, model (4.10)
must be modified in the following form:

ϕlo = Min 1/m

m∑
i=1

x̃i/xio +M(
∑

i∈IND

(ni + pi)+

∑
i∈%IND

(pi) +
∑

r∈OND

(n′
r + p′r) +

∑
r∈%OND

(n′
r))
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Table 2: Inputs and Output.

DMU input 1 input 2 Output

1 1 5 1
2 2 3 1
3 5 2 1

s.t.
s∑

r=1

ỹr/yro = s,

∑
j∈El

Λjxij ≤ x̃i, i = 1, . . . ,m,∑
j∈El

Λjyrj ≥ ỹr, r = 1, . . . , s,

txio ≤ x̃i, i = 1, . . . ,m,
ỹr ≤ tyro, r = 1, . . . , s,

x̃i + ni − pi = (1 + β
′

i)txio, i ∈ IND ∪%IND,

ỹr + n′
r − p′r = (1− µ

′

r)tyro, r ∈ OND ∪%OND,
t ≥ 1,Λj ≥ 0, j ∈ El,

(4.12)
where M is a very large positive number. Model (4.12)
is always feasible (see [11]).

Theorem 4.1 If model (4.10) is feasible, then the op-
timal solution of model (4.12) equal to the optimal so-
lution of model (4.10).

Proof. see [11].

After solving model (4.9), we observe that all
of the DMUs on level t (Et) have better ranks than
all of the DMUs in Et+1 ∪ · · · ∪ EL and have worse
ranks than all of the DMUs in E1 ∪ · · · ∪ Et−1.
For each arbitrary level t (t = 1, · · · , L), either of the
following two cases may happen:

Case 1: card(Et) = 1
It is clear that DMUs on Et have ranks of
card(E1 ∪ · · · ∪ Et−1) + 1.

Case 2: card(Et) > 1
After solving models (4.9) and (4.10), one of the
following three cases may happen:

Case a: If t = 1, then we will calculate the
following ranking index:

Ro =
L∑

r=2

βrϕro (4.13)

Case b: If t = L, then we will calculate the
following ranking index:

Ro =
1

L−1∑
i=1

βi(1− θio)

(4.14)

Case c: If 1 < t < L then we will calculate following
ranking index:

Ro =

L∑
r=k+1

βrϕro

k−1∑
i=1

βi(1− θio)

(4.15)

Definition 4.1 If DMUi and DMUj are on level t,
then the preference score of DMUi is better than that
of DMUj if Ri > Rj.

In fact, in the proposed ranking method, a DMU has
a better rank if its relation score of the weighted sum
of distances from the lower levels to the weighted
distance sum of the higher levels is greater than
that of the others DMUs. Owing to the use of the
weighted distance, the probability of DMUs having
the same rank in this raking method is very low.
Therefore, it can be observed that the ranking index
score obtained from the method proposed in this
paper is unique for each DMU .
The proposed ranking method has important advan-
tages, for instance, this method ranks all DMUs, e.i.,
it ranks extreme and non-extreme DMUs. Moreover
ranking DMUs with non-discretionary inputs and
outputs is possible by this method. For further
illustration, we provide a simple example in the next
section.

5 Numerical Example

We use the data of Farzipoor Saens numerical
example [8], then we compare our results of efficiency
model (4.9) with Farzipoor Saens efficiency model [8].
So we assume that there are 15 DMUs which require
two inputs to produce two outputs. The data are



204 M. Khanmohammadi et al., /IJIM Vol. 12, No. 2 (2020) 197-207

Table 3: Inputs and Outputs and efficiency of Farzipoor Saens mode.

DMU input 1 input 2 Output 1 Output 2 Saens efficiency

1 4 3 5 2 1
2 7 3 4 5 0.722
3 8 1 3 8 1
4 4 2 2 1 0.303
5 2 4 3 4 1
6 10 1 2 1 1
7 12 1 3 2 1
8 10 1.5 5 2 1
9 15 25 4 5 0.412
10 25 15 5 2 0.259
11 30 20 2 1 1
12 12 12 8 3 0.267
13 5 20 1 5 1
14 42 45 3 1 0.45
15 11 12 2 3 0.583

Table 4: Results of model (4.9) and 5 levels and their ranks.

DMUj θ1j θ2j θ3j θ4j θ5j level Rank

1 1.000000 - - - - 1 4
2 0.721868 1.000000 - - - 2 5
3 1.000000 - - - - 1 1
4 0.303030 0.464286 1.00000 - - 3 10
5 1.000000 - - - - 1 2
6 0.210526 0.613757 1.00000 - - 3 9
7 0.400000 1.000000 - - - 2 6
8 1.000000 - - - - 1 3
9 0.234948 0.327138 1.00000 - - 3 11
10 0.085094 0.161290 0.379965 1.000000 - 4 13
11 0.037461 0.071032 0.190217 0.300000 1.0 5 14
12 0.266871 1.000000 - - - 2 7
13 0.381944 1.000000 - - - 2 8
14 0.025553 0.044164 0.120219 0.154440 1.0 5 15
15 0.207686 0.322492 0.648148 1.000000 - 4 12

Table 5: Super-efficiency of DMUs at the first level and their rank.

DMUj at the first level ϕ2j ϕ3j ϕ4j ϕ5j Rj =
∑L

r=2 βrϕrj Rank

DMU1 1.3402 2.2222 3.5526 16.6667 R1 =43.3823 4
DMU3 1.9866 2.8872 9.4565 44.6667 R3 =91.0213 1
DMU5 2.7097 4.3636 7.7647 32.7273 R5 =87.3887 2
DMU8 1.2314 1.8713 5.0350 18.1481 R8 =45.5545 3

presented in Table 3. The suppositions are:

(a): Input 1 is not controllable.

(b): Input 2 is controllable.

(c): Output 1 is 70% controllable.

(d): Output 2 is controllable.

We run model (4.9) and obtain 5 different lev-
els. The results are shown in Table 4.
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Table 6: Super efficiency of DMUs at the second level and their rank.

DMUj at the second level ϕ3j ϕ4j ϕ5j Rj =
∑L

r=k+1 βrϕrj∑k−1
i=1 βi(1−θij)

Rank

DMU2 1.7687 5.0649 22.1053 R2 =8.8345 1
DMU7 1.5714 6.1388 32.3333 R7 =5.3017 2
DMU12 1.1429 3.2258 8.5714 R12 =1.6705 3
DMU13 1.5000 1.6923 5.2500 R13 =1.4798 4

Table 7: Super-efficiency of DMUs at the third level and their rank.

DMUj at the third level ϕ4j ϕ5j Rj =
∑L

r=k+1 βrϕrj∑k−1
i=1 βi(1−θij)

Rank

DMU4 2.2414 8.7500 R4 =0.8616 2
DMU6 3.7500 11.500 R6 =1.2085 1
DMU9 1.3333 5.8947 R9 =0.4858 3

Table 8: Super-efficiency of DMUs at the fourth level and their rank.

DMUj at the fourth level ϕ5j Rj =
∑L

r=k+1 βrϕrj∑k−1
i=1 βi(1−θij)

Rank

DMU10 2.8147 R10 =0.1179 2
DMU15 4.0909 R15 =0.2097 1

Table 9: Rank of them in the fifth level..

DMUj in fifth level Rj =
1∑L−1

i=1 βi(1−θij)
Rank

DMU11 R11 =0.0364 1
DMU14 R14 =0.0352 2

After finding the different efficiency levels, Table
4 shows the level on which a DMU lies. Let DMUo

(o ∈ {1, · · · , 15}) be on level k (k = {1, · · · , 5}). Then,
we specify which main threecases DMUo belong to.
By solving models (4.9) and (4.10), we obtain θio
(i = {1, · · · , k− 1}) and ϕro (r = {k+1, · · · , 5}). Also
we assume that the importance of each level is twise
as much as that of its next level, i.e. the importance
of the first level is twice of the importance of the
second level. In mathematical terms:

β1 = 16, β2 = 8, β3 = 4, β4 = 2, β5 = 1.

Table 4 shows that DMU1, DMU3, DMU5 and
DMU8 are on the first level, so we use ranking
index of case a for ranking them. Also DMU11 and
DMU14 is on the last level, therefore it has the lowest
rank; we use ranking index of case b. The remaining
DMUs are in the case c, so we use the ranking index
of case c. The results of these calculations are shown
in Tables 5-9.
Comparison of our efficiency model with Farzipoor
Saens efficiency model:

1: In the Farzipoor Saens efficiency model, eight out
of fifteen DMUs become efficient. In other words,
more than half of the DMUs are efficient. However,
in our proposed method, in the first stage, only four
DMUs become efficient.

2: In the Farzipoor Saens efficiency model,
DMU11 is an efficient DMU . While in our proposed
method, this DMU ranked one in the last. This
example shows that our model results are closer to
reality because if we look at the inputs and outputs
of DMU11, DMU14 that are in the last rank. We find
that have the most inputs and the lowest outputs, so,
they should have the worst rank but in the Farzipoor
Saens efficiency model, DMU11 is a member of eight
efficient DMUs.

6 Conclusion

Until now, interesting methods have been developed
for calculating efficiency with non-discretionary data.
This paper uses the slacks-based measure used in
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Farzipoor,s model [8] and obtain different efficiency
levels with a slack-based measure of efficiency in the
context-dependent model proposed by Morita et al.
[12]. After that DMUs are divided to three cases:
a: DMUs at the first level.
b: DMUs at the last level.
c: DMUs between the first and the last levels.
So, we define a special ranking index for each group.
The advantage of our proposed method over the pre-
vious methods are:
i) this method can rankDMUs with non-discretionary
data,
ii) this method ranks extreme and non-extreme
DMUs,
iii) due to the use of weighted distances in the ranking
index, the probability of DMUs with the same rank
is very low.
But the proposed model ranks DMUs with constant
returns to scale. If we want to use this ranking
method for DMUs with variable returns to scale, then
some of the super-efficiency models(ϕto) become infea-
sible. So, we cannot use this method for ranking such
DMUs. Our purpose in the coming paper is to obtain
a ranking model for DMUs with non-discretionary
data in the case of variable returns to scale.
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