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Abstract

Cook et al. [A data envelopment model for aggregating preference rankings, Management Science
36 (1990) 1302-1310 ] used data envelopment analysis (DEA) as their starting point to propose a
procedure for rank ordering the candidates in a preferential election. Notionally, each candidate is
permitted to choose the most favorable weights to be applied to his/her standings (first place, second
place, etc. votes) in the usual DEA manner with the additional assurance region (AR) restriction
that the weight for a j place vote should be more than that for a j+1 place vote by some amount.
However, DEA very often identifies more than one candidate in a voting system to be DEA efficient.
So, a method to discriminate between these efficient candidates is needed. In addition to proposing
a voting model for groups with members of unequal power and proficiency, in this paper we present
some models for rank ordering efficient candidates, by extending the ideas of some authors. Then,
we propose a new methodology to rank the ranking models for the performance indices of only DEA
efficient candidates based on a classical voting model. Also, an approach for combining the results
obtained from the ranking models is presented. Finally, we employ the new method to rank order five
Iranian automobile manufacturing groups in terms of ”job independence”.

Keywords : Data Envelopment Analysis; Voting; Group decision support system; Ranking.
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1 Introduction

A
n important issue in the decision-making
framework is how to obtain a social rank-

ing or a winning candidate from individuals’ pref-
erences on a set of candidates{A1, A2, , An}. In
some voting systems, each voter selects s candi-
dates and ranks them from most to least preferred
(ranked voting systems). Among these systems,
a well-known procedure to obtain a social rank-
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ing or a winning candidate is scoring rule, where
fixed scores are assigned to the different ranks.
In this way, Zj =

∑s
r=1 uryrj is the score ob-

tained by the candidateAj , where yjr is the num-
ber of rth place ranks that candidate Aj occupies
and (u1, u2, , us) is the scoring vector used. The
plurality rule,where u1 = 1 and ur = 0 for all
r = 2, , s, and the Borda rule, where s = n and
ur = n− r for all r ∈ 1, 2, , s, are the best known
examples of scoring rules. It is worth noting that
the Borda [4] rule has interesting properties in
relation to other scoring rules (Brams and Fish-
burn, [5]). Let A denote a finite set of ’alterna-
tives’ (e.g., candidates, proposals, sports teams),
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and let V denote a finite set of individuals (e.g.,
voters, experts, sports writers).

A voter’s input to Borda’s Method (i.e., a
’ranked ballot’) consists of an ordered list of a
subset B of the alternatives in A, with either a
symbol like ” > ” (is preferred to) or a symbol
like ”=” (is tied with) separating the alternatives
in the list. Also, no alternative is allowed to be
listed twice (or more) on any ranked ballot con-
sidered here.

Hence, all ranked ballots considered below are
transitive, and so any matrix ballot that corre-
sponds to a ranked ballot is also transitive. How-
ever, a matrix ballot that does not correspond
to a ranked ballot need not be transitive. On a
ranked ballot, only a subset, say B, of the alterna-
tives in A need to be ranked, and any alternative
that is not ranked (i.e., is in the set A-B) is con-
sidered inferior to all alternatives in B on that
ballot. The alternatives are scored by awarding
’points’ according to the following rules: For each
ballot, Borda [4] suggested that each alternative
ranked on that ballot be given one point for each
alternative ranked below it on that ballot.

Also, if ties are allowed and alternative a is tied
with exactly k other alternatives on a ballot, then
a is given 1/2 of a point for each of those k al-
ternatives, for a total of k/2 points for those tied
alternatives on that ballot. The score for alter-
native a is found by summing (over all ballots)
the number of points a earns, and the ranking is
determined by these scores.

Indeed Borda’s Method does enjoy (at least)
four properties that many other voting methods
do not. These four properties have been called
(see, e.g., Young [29] and Young [30]): positive
involvement, negative involvement, strong partic-
ipation, and multi-district consistency. Positive
Involvement: A ranked voting method has posi-
tive involvement if the following property holds.
Given a set of ranked ballots, suppose that the
voting method in question selects alternative a
as the winner. Suppose that the selection pro-
cess were to be re-held with additional voters,
all of whom rank a as their unique first choice.
Then a must still be selected if none of the orig-
inal voters change their ballots, no matter how
the additional voters rank the alternatives be-
low a on their ballots. Negative Involvement: A

ranked voting method satisfies negative involve-
ment if the following property holds. Given a
set of ranked ballots, suppose that the voting
method in question does not select alternative b
as a winner. Suppose that the selection process
were to be re-held with additional voters, all of
whom rank all the alternatives, and all of whom
rank b as their unique last choice. Then b must
still not be selected if none of the original vot-
ers change their ballots, no matter how the ad-
ditional voters rank the alternatives above b on
their ballots. Strong Participation: A ranked vot-
ing method has strong participation if the follow-
ing property holds. Given a set of ranked ballots,
suppose that the voting method in question se-
lects alternative a as the winner. Suppose that
the selection process were to be re-held with ad-
ditional voters, all of whom rank a ahead of alter-
native b. Then b must not be selected if none of
the original voters change their ballots, no mat-
ter how the additional voters rank the other al-
ternatives on their ballots. A voting method that
has strong participation necessarily has both pos-
itive involvement and negative involvement, but
not vice versa. Multi-district consistency: A vot-
ing method satisfies the property of multidistrict
consistency if the following holds. Suppose the
voters can be divided into two groups, or panels,
in such a manner that, considering the ballots of
each panel separately, the method would declare
some alternative, say a, to be winner for each
panel. Then, if the ballots are not changed, the
method must declare a to be the winner if the
two groups are combined into a single panel.

2 Literature Review

Cook and Kress [6] suggested evaluating each can-
didate with the most favorable scoring vector for
him/ her. With this purpose, they introduced
data envelopment analysis (DEA) in this context.
The data envelopment analysis/ assurance region
(DEA/AR) model proposed by these authors is
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as follows:

Z0 = max

s∑
r=1

uoryor

s.t.
s∑

r=1

uoryjr ≤ 1, j = 1, . . . , n,

uor − uor+1 ≤ d(r, ϵ), r = 1, . . . , s− 1,
uos ≥ d(s, ϵ).

(2.1)
where ϵ ≥ 0 and the functions d(r, ϵ), called
the discrimination intensity functions, are non-
negative and non-decreasing in ϵ and also,
d(r, 0) = 0 for all r ∈ {1, . . . , s}. They show
that in the special case where d(r, ϵ) = ϵ, their
model is equivalent to the consensus model of
Borda. After the problems are solved for all can-
didates, several (not only one) candidates often
achieve the maximum attainable score 1. We
call these candidates efficient candidates. We can
judge that the set of efficient candidates is the
top group of candidates, but cannot single out
only one winner among them or rank them. To
avoid this weakness, Cook and Kress [6], suggest
maximizing the gap between the weights so that
only one candidate is left DEA efficient. This
has been found equivalent to imposing a com-
mon set of weights on all candidates and there-
fore Green et al. [12], propose the use of the
cross-efficiency evaluation technique in DEA to
choose the winner. Noguchi et al. [19], also
use the cross-efficiency evaluation to get the best
candidate and give a strong ordering constraint
condition on weights. Hashimoto [13] also pro-
poses using the DEA exclusion model (Andersen
and Petersen [2]) with d(., ϵ) = ϵ, where ϵ is a
positive non- Archimedean infinitesimal. Wang
and Chin [28], discriminate efficient candidates
by considering their least relative total scores.
They also propose a model in which the total
scores are measured within an interval. Soltanifar
[22] introduces an interval efficiency which con-
sists of efficiencies obtained from the optimistic
and pessimistic viewpoints. A minimax regret-
based approach (MRA) is used to compare and
rank the efficiency intervals of candidates in his
method. Obata and Ishii [20], suggest exclud-
ing non-DEA efficient candidates and using nor-
malized weights to discriminate the DEA efficient

candidates. Their method is subsequently ex-
tended to rank non-DEA efficient candidates in
Foroughi and Tamiz [7] (see also Foroughi et al.
[8]).Soltanifar [23] proposes a new methodology
to rank the common weight models for the perfor-
mance indices of only DEA efficient DMUs based
on model (12). Also, Soltanifar et al. [24] propose
a new methodology to rank the ranking models
for the performance indices of only DEA efficient
candidates based on model (12). Model (12) was
used by Soltanifar and Hosseinzadeh Lotfi [25]
to propose new Voting Analytic Hierarchy Pro-
cess (VAHP) method for ranking efficient DMUs.
Llamazares and Pena [14]have analyzed the prin-
cipal methods proposed in the literature to dis-
criminate efficient candidates. The main conclu-
sion of their study is that none of the proposed
procedures is fully convincing. More application
of classical voting model can be found in Post
[21], Galanis et al. [10], Ma et al. [17] and so
on. Ebrahimnejad [9] published a paper in which
he described ranking in voting systems. But our
work follows a case study design, with in depth
analysis voting model for groups with members
of unequal power and proficiency. In this pa-
per, we present a voting model for groups with
members of unequal power and proficiency, and
further provide some models for ranking efficient
candidates by extending the ideas of some au-
thors. Then, we select the best ranking model
from among those models by a classical voting
model. The rest of this paper is organized as
follows. Section 3 provides a voting model for
groups with members of unequal power and pro-
ficiency, based on the DEA approach. Section
4 contains a review and extension of the ideas
of some authors and establishing ranking mod-
els to distinguish between efficient candidates. In
Section 5, we employ a classical voting model to
select the best ranking model from among those
mentioned in Section 4 and we combine the re-
sults obtained from the ranking models. In Sec-
tion 6, the new method is utilized to rank order
five Iranian automobile manufacturing groups in
terms job independence. The paper is concluded
in Section 7.
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3 A new voting model

In this section, we present a new voting model for
groups with members of unequal power and pro-
ficiency. Suppose we intend to select s candidates
from among n candidates{A1, A2, , An}, and rank
them in terms of their priority (n ≥ s). Assume
further that the voters have unequal power and
proficiency, that is, the members are classified in
m separate categories, such that the votes of the
members in the ith category are of higher impor-
tance than those in the i + 1 st category. More-
over, the system contains t voters. Table 1 pro-
vides a schematic presentation of this voting pro-
cess. Considering vjir as the number of rth place
votes given to the pth candidate by the ith cate-
gory members, we define:

x
′′
ij =

s∑
r=1

vir, i = 1, ...,m; j = 1, 2, ..., n

yrj =

m∑
i=1

vir, r = 1, ..., s; j = 1, 2, ..., n

If u = (u1, u2, , um) and w = (w1, w2, , ws) are the
weight vectors of the categories and voting places,
respectively, the score obtained by the pth candi-
date is calculated as follows:

Zp =

∑s
r=1wryrp∑m

i=1 ui(t− x
′′
ip)

, p = 1, ..., n

Once the weights are given or determined, candi-
dates can be ranked in terms of their total scores.
To avoid subjectivity in determining the rela-
tive importance weights, we suggest the follow-
ing fractional model which determines the most
favorable weights for each candidate:

Z∗
p = max

s∑
r=1

wryrp

m∑
i=1

ui(t− x
′′
ip)

s.t.

s∑
r=1

wryrj

m∑
i=1

ui(t− x
′′
ij)

≤ 1, j = 1, . . . , n,

wr − wr+1 ≥ d(r, ϵ), r = 1, . . . , s− 1,

ws ≥ d(s, ϵ),

ui − ui+1 ≥ f(i, ϵ), i = 1, . . . ,m− 1,

um ≥ f(m, ϵ), (3.2)

where d(., ϵ) and f(., ϵ) are referred to as
discrimination intensity functions that are non-
negative and monotonically increasing in a non-
negative ϵ that satisfies d(0, ϵ) = 0 and f(0, ϵ) =
0. It is found that the choice of the functional
form of d(., ϵ) and f(., ϵ) and the value of ϵ has
significant impacts on the winner. First ’n’ con-
straints denote that the final efficiency value must
be in [0,1]. The denominator of the objective
function show that the votes of the members in
the ith category are of higher importance than
those in the i+1st category. Moreover, the sys-
tem contains t voters. The above model can be
rewritten in a linear form as follows.

Z∗
p = max

s∑
r=1

wryrp

s.t.
m∑
i=1

ui(t− x
′′
ip) = 1

s∑
r=1

wryrj −
m∑
i=1

ui(t− x
′′
ij) ≤ 0, j = 1, . . . , n,

wr − wr+1 ≥ d(r, ϵ), r = 1, . . . , s− 1,
ws ≥ d(s, ϵ),
ui − ui+1 ≥ f(i, ϵ), i = 1, . . . ,m− 1,
um ≥ f(m, ϵ),

(3.3)
where xij = (t − x

′′
ij)i = 1, 2,m; j = 1, 2, , n.

In this paper, for simplicity, we as-
sume d(r, ϵ) = ϵdr(r = 1, 2, s) and
f(i, ϵ) = ϵfi(i = 1, 2,m), in which dr and
fi are determined by the manager and are
the preferred values for the rth and ith gaps,
respectively. Model (3.3) can be reached from
model (3.2) by process similar to that reach LP
model from fractional model in DEA. Now, we
set:

wr − wr+1 = w
′
r, r = 1, . . . , s− 1,

ws = w
′
s

ui − ui+1 = u
′
i, i = 1, . . . ,m− 1,

um = u
′
m.
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In other words, w
′
= wA and u

′
= uB, where

A and B are lower triangular matrices of order
(s ∗ s) and (m ∗m), respectively. In fact, we have
the following representation.

[w1, w2, ..., ws]


1 0 0
−1 1 0
...

. . .
...

0 . . . 1

 =


w1 − w2

w2 − w3
...
ws

 =


w

′
1

w
′
2
...

w
′
s


There is a similar representation for uB = u

′
.It

is clear that A and B are invertible matrices
whose inverse matrices are lower triangular with
entries of 1.
Considering the above, and setting Y

′t = A−1Y t

and X
′t = B−1Xt, we have:

where X and Y are defined as follows, and t
denotes the transpose.

Y =


y11 . . . y1n
y21 . . . y2n
...

. . .
...

ys1 . . . ysn



X =


x11 . . . x1n
x21 . . . x2n
...

. . .
...

xm1 . . . xmn


Thus, model (3.3) can be rewritten as:

Z∗
p = max

s∑
r=1

w
′
ryrp

s.t.
m∑
i=1

u
′
i(t− x

′′
ip) = 1

s∑
r=1

w
′
ryrj −

m∑
i=1

u
′
i(t− x

′′
ij) ≤ 0, j = 1, . . . , n,

w
′
r ≥ ϵd(r), r = 1, . . . , s,

u
′
i ≥ ϵf(i), i = 1, . . . ,m.

(3.4)

The principal disadvantage of this procedure
is that several candidates are often efficient,
i.e., they achieve the maximum attainable score
(Z∗

p = 1). To avoid this weakness, several authors
have proposed methods for ranking the best per-
formers. In the next section, we review various
ranking models for discriminating between effi-
cient candidates.

4 Preliminary concepts and
some extensions

In this section, we review and extend the ideas of
some authors to construct various ranking models
for discriminating between efficient candidates.

4.1 Common weights analysis

Common weights analysis (CWA), proposed by
Liu and Peng [16], aims to assist the manager in
determining one set of weights attached to the
performance indices, in order to have the best ef-
ficiency score for the group of efficient candidates.
Then, the set of weights is regarded as one com-
mon set of weights across each efficient candidate,
in order to compute its absolute efficiency score
for the ranking of candidates. In order to solve
the ranking problem thoroughly, the assessed tar-
get is further expanded to all candidates, includ-
ing the inefficient candidates. The CWAmodel to
determine the common set of weights for n can-
didates is formulated as follows:

∆∗ = max
∑
j∈E

∆j

s.t.
s∑

r=1

W
′
ry

′
rj −

m∑
i=1

U
′
ix

′
ij +∆j = 0, j ∈ E

s∑
r=1

W
′
r +

m∑
i=1

U
′
i = 1,

∆j ≥ 0, j ∈ E,

W
′
r ≥ ϵd(r), r = 1, . . . , s,

U
′
i ≥ ϵf(i), i = 1, . . . ,m.

(4.5)

where E is the set of efficient candidates. We
note that the above-mentioned model gives a
special non-dominated solution of the following
multi-objective linear programming (MOLP)
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Table 1: Voting process in a group with members of unequal power and proficiency.

Candidate First place . . . rth place . . . sth place

A1 vj11 . . . vj1r . . . vj1s First category
...

...

Aj vji1 . . . vjir . . . vjis ith category
...

...

An vjm1 . . . vjmr . . . vjms mth category

Table 2: Votes received by five automobile manufacturing groups in terms of job independence.

Candidate First place Second place Third place Forth place Fifth place

I 1 3 3 0 1 Top manager
2 1 1 0 3 Expert

Z 2 1 1 1 3 Top manager
2 1 2 1 1 Expert

B 1 2 1 2 2 Top manager
2 0 2 2 1 Expert

S 2 1 2 1 0 Top manager
1 2 2 2 0 Expert

P 2 0 0 5 1 Top manager
0 3 0 2 2 Expert

problem.

∆∗ = min{∆j}j∈E
s.t.
s∑

r=1

W
′
ry

′
rj −

m∑
i=1

U
′
ix

′
ij +∆j = 0, j ∈ E

s∑
r=1

W
′
r +

m∑
i=1

U
′
i = 1,

∆j ≥ 0, j ∈ E,

W
′
r ≥ ϵd(r), r = 1, . . . , s,

U
′
i ≥ ϵf(i), i = 1, . . . ,m.

(4.6)
Indeed, we can use the above MOLP problem to
search one common set of weights to create the
best efficiency score of one group composed of
efficient candidates. In the next subsection, we
give some other methods for solving the above-
mentioned MOLP based on the idea of Liang et
al. [15].

4.1.1 Liang, Wu, Cook, and Zhu’s idea

Here, we apply the idea proposed by Liang et
al. [15] to introduce three common weights ap-
proaches. In an MOLP problem, it is generally
impossible to find a solution that optimizes all
objectives simultaneously. Therefore, the task of
an MOLP solution process is not to find an opti-
mal solution but, instead, to find non-dominated
solutions and to help select a most preferred
one. Loosely speaking, a solution, represented
by a point in the decision variable space, is non-
dominated if it is not possible to move the point
within the feasible region to improve an objective
function value without deteriorating at least one
of the other objectives. In multiple criteria ter-
minology, a non-dominated solution is also called
an efficient solution. One fact we would like to
point out here is that a non-dominated solution
set for an MOLP problem will always contain, but
is not limited to, the optimal solutions obtained
by individually optimizing each of the objectives
in the MOLP problem under the setting of single
objective linear programming (LP). For more de-
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Table 3: Efficiency scores obtained by the five manufacturing groups in terms of job independence.

Candidate I Z B S P

Efficiency Score 1.000000 1.000000 0.999994 1.000000 0.999990

Table 4: Ranks obtained by efficient candidates in terms of job independence, evaluated by different ranking
models.

Ranking model→ (4.7) (4.9) (4.11) (4.12) (4.13) (4.14)
Efficient Candidate↓

I 1 1 1 0.99999 7.6999 1.0999946
Z 1 1 0.9999997 0.99998 9.3332 1.3333256
S 1 1 0.9999994 1 6.999944 1.2068917

Table 5: Votes received by five automobile manufacturing groups in terms of job independence.

Candidate First place Second place Third place

model (4.7) 3 0 0
model (4.9) 3 0 0
model (4.11) 1 1 1
model (4.12) 1 1 1
model (4.13) 1 1 1
model (4.14) 1 1 1

Table 6: The score of various ranking models.

model (4.7) model (4.9) model (4.11) model (4.12) model (4.13) model (4.14)

1.00 1.00 0.85 0.85 0.85 0.85

Table 7: Efficiency score obtained from our approach

Efficient candidate I Z S

φ∗
p 2.07039 2.364215 1.977038

Table 8: Ranking obtained from our approach

Efficient candidate I Z S

φ∗
p 2 1 3
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tails about multi-objective optimization, readers
are referred to Steuer [26] and Masud and Hwang
[18]. In order to reach a special non-dominated
extreme point, the MOLP formulation (3.4) can
be written in min-sum approach, max-ordering
approach, or minimizing the mean absolute devi-
ation. These approaches do not need any inter-
objective or other subjective preference informa-
tion from the DM once the problem constraints
and objectives have been defined. Thus, these ap-
proaches require the DM to be able to accept the
solution obtained from the method. The advan-
tage of adopting these approaches is that in the
process of obtaining the solution, the DM will not
be disturbed by the analyst, which is preferable
from the point of view of the DM. But a ma-
jor disadvantage, then, is that the analyst has to
make many assumptions about the DM’s prefer-
ence. This is difficult to do with even the best
and most knowledgeable analyst. Therefore, we
can use an interactive MOLP method, such as the
step method (or STEM) (Benayoun et al. [3]),
the G-D-F algorithm (Geoffrion et al. [11]) and
Zionts and Wallenius’s method (Zionts and Wal-
lenius ([31]), to reflect the DM’s preferences in the
process of searching the common set of weights.
Min-sum approach : The ideal point is defined
as that multiplier bundle U? for which every can-
didate is efficient, that is,

∑m
i=1

∑s
r=1 Ûirv̂

j
ir or

∆j = 0. In the absence of such an ideal point,
a reasonable objective is to treat ∆j as goal
achievement variables. To this end, we minimize∑

j∈E ∆j . The model used in the current proce-
dure was named CWA. Proposed by Liu and Peng
[16], CWA aims to assist the manager in deter-
mining one set of weights attached to the perfor-
mance indices, in order to have the best efficiency
score for the group of efficient candidates. Then,
the set of weights is regarded as one common set
of weights across each efficient candidate, in or-
der to compute its absolute efficiency score for
the ranking of candidates. In order to solve the
ranking problem thoroughly, the assessed target
is further expanded to all candidates, including
the inefficient candidates. The CWA model to
determine the common set of weights for n can-

didates is formulated as follows:

∆∗ = min
∑
j∈E

∆j

s.t.
s∑

r=1

W
′
ry

′
rj −

m∑
i=1

U
′
ix

′
ij +∆j = 0, j ∈ E

s∑
r=1

W
′
r +

m∑
i=1

U
′
i = 1,

∆j ≥ 0, j ∈ E,

W
′
r ≥ ϵd(r), r = 1, . . . , s,

U
′
i ≥ ϵf(i), i = 1, . . . ,m.

(4.7)

Note that models (4.5) and (4.7) are the same.
Indeed, Liu and Peng [16] used the min-sum
approach to solve MOLP (4.6) and reached
model (4.5).
Max-ordering approach : Troutt [27] devel-
oped a maximum efficiency ratio DEA model in
an effort to further prioritize the efficient candi-
dates using a common set of weights. In a similar
way, Liang et al. [15] proposed a model to derive
a multiplier bundle that assigns the maximum
possible score to the ”worst”-performing candi-
date. They also used this model as a secondary
goal in cross efficiency evaluation. Similar to
their idea, we use the max-ordering approach
to introduce a common weights model. The
following model gives a common set of weights
by solving MOLP (6) based on the max-ordering
approach.

∆∗ = min(maxj∈E(∆j))

s.t.

s∑
r=1

W
′
ry

′
rj −

m∑
i=1

U
′
ix

′
ij +∆j = 0, j ∈ E

s∑
r=1

W
′
r +

m∑
i=1

U
′
i = 1,

∆j ≥ 0, j ∈ E,

W
′
r ≥ ϵd(r), r = 1, . . . , s,

U
′
i ≥ ϵf(i), i = 1, . . . ,m.

(4.8)

The above formulation can then be written as
follows by introducing an auxiliary variable θ as
follows:
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∆∗ = minθ
s.t.
s∑

r=1

W
′
ry

′
rj −

m∑
i=1

U
′
ix

′
ij + θ ≥ 0, j ∈ E

s∑
r=1

W
′
ry

′
rj −

m∑
i=1

U
′
ix

′
ij ≤ 0, j ∈ E

s∑
r=1

W
′
r +

m∑
i=1

U
′
i = 1,

W
′
r ≥ ϵd(r), r = 1, . . . , s,

U
′
i ≥ ϵf(i), i = 1, . . . ,m.

(4.9)

Minimizing the mean absolute deviation: With
the aim of seeking to minimize the variation
among the efficiencies of the candidates, we
propose formalizing this concept through:

∆∗ = min1
p

∑
j∈E

|∆j − ∆̄j |

s.t.
s∑

r=1

W
′
ry

′
rj −

m∑
i=1

U
′
ix

′
ij +∆j = 0, j ∈ E

s∑
r=1

W
′
r +

m∑
i=1

U
′
i = 1,

∆j ≥ 0, j ∈ E,

W
′
r ≥ ϵd(r), r = 1, . . . , s,

U
′
i ≥ ϵf(i), i = 1, . . . ,m.

(4.10)

where ∆̄ = 1
p

∑
j∈E ∆j

and |E|= p.

The objective function in model (3.3) com-
putes the mean absolute deviation of a set
of data, namely, the average of the absolute
deviations of data points from their mean. To
show that this nonlinear model can be lin-
earized, let aj = 1/2(|∆j − ∆̄|−(∆j − ∆̄)) and
bj = 1/2(|∆j − ∆̄|+(∆j − ∆̄)). Then, model
(4.10) becomes the following linear programming
problem:

∆∗ = min1
2

∑
j∈E

(aj − bj)

s.t.
s∑

r=1

W
′
ry

′
rj −

m∑
i=1

U
′
ix

′
ij +∆j = 0, j ∈ E

aj − bj = ∆j − 1
p

∑
j∈E

∆j , j ∈ E

s∑
r=1

W
′
r +

m∑
i=1

U
′
i = 1,

∆j , aj , bj ≥ 0, j ∈ E,

W
′
r ≥ ϵd(r), r = 1, . . . , s,

U
′
i ≥ ϵf(i), i = 1, . . . ,m.

(4.11)

4.1.2 Common weights based on aggre-
gated candidate

In this subsection, we introduce a model in
which the manager can choose the most favor-
able weights for the group that comprises all can-
didates under the manager’s governance. In other
words, one set of weights that maximizes the
group’s comprehensive score is used as the com-
mon set of weights for all the units to obtain each
individual’s comprehensive score. Now, if we de-
fine aggregated candidate as a candidate to whom
the number of votes given by the ith category
in the rth place is

∑n
j=1 v

j
ir, then the following

model gives this common set of weights.

∆∗ = min

s∑
r=1

Ẃr(

n∑
j=1

ýrj)

s.t.
m∑
i=1

U
′
i (

n∑
j=1

x
′
ij) = 1,

s∑
r=1

W
′
ry

′
rj −

m∑
i=1

U
′
ix

′
ij ≤ 0, j ∈ E

s∑
r=1

W
′
r +

m∑
i=1

U
′
i = 1,

W
′
r ≥ ϵd(r), r = 1, . . . , s,

U
′
i ≥ ϵf(i), i = 1, . . . ,m.

(4.12)

Now, by the optimal weight obtained from
each of models (4.7), (4.9), (4.11) and (4.12),
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and substituting it in

Ẑj =
∑s

r=1 Ẃ
∗
r ýrj∑m

i=1

We can rank order the efficient candidates. In
other words, Ẑj will be a criterion for ranking
efficient candidates.

4.2 Ranking based on Obata and
Ishii’s idea

Obata and Ishii [20] proposed that a larger range
of place votes index values is desirable to the
decision maker. They explained that the benefit
of the weighted sum is from the indices value
itself, rather than from the individual weights.
Indeed, they think that they should use the most
favorable vector, i.e., a vector which attains the
maximum preference score, according to the
policy of DEA. We extend above discussion to
introduce a new ranking model as follows:

Ẑ∗
p = max(

s∑
r=1

ˆ́wrýrp −
m∑
i=1

ˆ́uix́ip)

s.t.

m∑
i=1

úix́ip = 1

s∑
r=1

ẃrýrp = 1

s∑
r=1

ẃrýrp −
m∑
i=1

úix́ip ≤ 0, j ∈ E

ẃr ≥ 0, r = 1, . . . , s
úi ≥ 0, i = 1, . . . ,m
ẃr ≥ ϵdr, r = 1, . . . , s
úi ≥ ϵfi, i = 1, . . . ,m
ˆ́w = αẃ, α > 0
∥ ˆ́w ∥= 1
ˆ́u = βú, β > 0
∥ ˆ́u ∥= 1 (4.13)”

where ˆ́w = ( ˆ́w1, ˆ́w2, . . . , ˆ́ws), ẃ =
(ẃ1, ẃ2, . . . , ẃs), ˆ́u = (ˆ́u1, ˆ́u2, . . . , ˆ́um),
ú = (ú1, ú2, . . . , úm), and ∥ . ∥is a certain
norm. Obata and Ishii [20], demonstrate that
the previous model is equivalent to the following
one:
1
Ẑ∗
o
= min(∥ẃ∥−∥ú∥)

s.t.
m∑
i=1

úix́ip = 1

s∑
r=1

ẃrýrp = 1

s∑
r=1

ẃrýrj −
m∑
i=1

úix́ij ≤ 0, j ∈ E

ẃr ≥ ϵdr, r = 1, . . . , s,
úi ≥ ϵfi, i = 1, . . . ,m. (4.13)′

The following model is suggested as a ranking
and Ẑ∗

p is suggested as a ranking score for the
efficient candidate, using the L1-norm.

∆∗ = min 1
Ẑ∗
p
= min

s∑
r=1

Ẃr −
m∑
i=1

úi

s.t.
m∑
i=1

úix́ip = 1,

s∑
i=r

ẃrýrp = 1,

s∑
i=r

ẃrýrj −
m∑
i=1

úix́ij ≤ 0, j ∈ E,

w
′
r ≥ ϵd(r), r = 1, . . . , s,

u
′
i ≥ ϵf(i), i = 1, . . . ,m.

(4.13)

4.3 Ranking based on Andersen and
Petersen’s idea

Andersen and Petersen [2] proposed the DEA
exclusion model as one that discriminates DEA
efficient DMUs. In this model, the DMU be-
ing evaluated is excluded from the comparison
set. Applying this to ranked voting systems as a
DEA/AR exclusion model, the formulation is as
follows:

Ẑ∗
p = max

s∑
r=1

ẃrýrp

s.t.
m∑
i=1

úix́ip = 1,

s∑
i=r

ẃrýrj −
m∑
i=1

úix́ij ≤ 0, j = 1, . . . , n; j ̸= p,

w
′
r ≥ ϵd(r), r = 1, . . . , s,

u
′
i ≥ ϵf(i), i = 1, . . . ,m.

(4.14)
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Now, Ẑ∗
p is suggested as a ranking score for the

efficient candidate.

5 A new ranking methods

In this section, we describe a new approach to
carry out a ranking of the previously mentioned
ranking models by the use of a voting model.
In real world problems, it is very likely that
applying model (3.4) to a voting system leads to
several candidates being introduced as efficient.
This accounts for the necessity of introducing
ranking models, since managers are always
interested in completely ranking the candidates
present in the voting process. To this end, many
authors have proposed different models to rank
efficient candidates by employing various ideas
and viewpoints, the results of which often differ
from each other. But, the question arising here
is which ranking model is better, and which
model should be employed in a particular voting
system. It does not seem very logical to select
a ranking model without first considering the
voting system under discussion. We believe that
the ranking model should be chosen based on
the voting system in question. In voting model
(3.4), each candidate is allowed to be evaluated
in its best condition, and this is the very policy
of DEA. We follow the same policy in selecting
a ranking model. That is, we allow the efficient
candidates present in the voting process to select
their ranking model of interest from among the
existing ranking models. It is obvious that any
efficient candidate will select the ranking model
by which it will obtain the highest possible
rank among the efficient candidates. Thus, each
candidate will be able to rank the different
ranking models. This process is a voting system,
itself, for which model (2.1) presented by Cook
and Kress [6] can be employed. The process will
be as follows.
Suppose that in another voting process, each
efficient candidate (as a voter) selects one of
the mentioned ranking models (as a candidate).
Indeed efficient candidates as voters express their
opinion about the ranking models (4.7), (4.9),
(4.11), (4.12), (4.13) and (4.14). In other words,
the efficient candidates rank these models as

first, second, , sixth rank based on the ranks they
have been assigned by the models. Note that in
this voting process, the efficient candidates play
the role of voters, and the ranking models (4.7),
(4.9), (4.11), (4.12), (4.13) and (4.14) serve as
candidates in the classical voting process. Now,

suppose that R
(7)
j , R

(9)
j , R

(11)
j , R

(12)
j , R

(13)
j , and

R
(14)
j are the ranks obtained by the jth efficient

candidate as evaluated by the ranking models
(4.7), (4.9), (4.11), (4.12), (4.13) and (4.14),
respectively. Thus, the jth candidate can rank
order each of the ranking models (4.7), (4.9),
(4.11), (4.12), (4.13) and (4.14) according to the

ranks R
(7)
j , R

(9)
j , R

(11)
j , R

(12)
j , R?

(13)
j , and R

(14)
j

obtained, from first to sixth.
Let ypj be the number of the jth place votes
of candidate (model) (p) ((p) = ((4.7), (4.9),
(4.11), (4.12), (4.13) and (4.14); j=1,2,,6). We
can use the following model to select the best
ranking model.

Z∗
p = max

6∑
r=1

uprypr

s.t.
6∑

r=1

upryjr ≤ 1, j = 1 . . . , 6,

upr − up,r+1 ≥ d”(r, ϵ), r = 1, . . . , 5,
up6 ≥ d”(6, ϵ).

(5.15)
After the above process is followed, there are two
courses of action available to the managers. One
is to accept the results obtained by running model
(k), where Z∗

k = max{Z∗
7 , Z

∗
9 , Z

∗
11, Z

∗
12, Z

∗
13, Z

∗
14},

and make decisions based on them, since (k) is
a model that is selected by the candidates and
has been considered by them as the best ranking
model for the voting system based on their
aggregate votes. The second one is to present a
new score for the final ranking of the candidates
which is the result of aggregating the scores of
different ranking models. This latter approach
can be summarized as follows:
First stage (normalization): first we
normalize the efficiency scores obtained
from model (4.5) by dividing each score by
the sum of the scores obtained. Assume
θ∗j =

Z∗
j∑

i∈{(4.7),(4.9),(4.11),(4.12),(4.13),(4.14)}
, j =

(4.7), (4.9), (4.11), (4.12), (4.13)and(4.14)
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Second stage (presenting a new score for
ranking the efficient candidates): suppose
Z∗
oj is the score assigned to the efficient candidate

o by the jth ranking model, o ∈ E and j=(4.7),
(4.9), (4.11), (4.12), (4.13) and (4.14). The score
presented below is the result of aggregating the
scores assigned by different ranking models and
can be employed as a new criterion for ranking
the efficient candidates.
φ∗
o =

∑
i∈{(4.7),(4.9),(4.11),(4.12),(4.13),(4.14)} θ

∗
j Ẑ

∗
oj

Thus, the efficient candidate with the highest
φ∗
o value will be selected.

It should be noted that the above process is an
approach for ranking efficient candidates, and is
never restricted to the models presented in this
paper. It can be further employed by scholars
with other ranking models.

6 A case study

In this section, we employ the new method to
rank order five Iranian automobile manufacturing
groups in terms of ”job independence”, drawing
upon the opinions of 15 experts, including eight
top managers and seven specialists with more
than 15 years of experience. It is evident that the
opinions of the top managers must be deemed
higher than those of other experts. The votes
received by the automobile manufacturing groups
in terms of job independence are presented in
Tables 2 below.

Concerning the results in Tables 4, the votes
received by ranking models (4.7), (4.9), (4.11),
(4.12), (4.13) and (4.14) as evaluated by the
efficient candidates in terms of job independence
are provided in Table 5.

Using model 3.4, the following efficiency scores
are obtained for the five manufacturing groups
in terms of job independence (Table 3).
As can be observed from the results in Table
3, candidates I, Z and S obtained the highest
efficiency score possible, in terms of job indepen-
dence. They are, therefore, efficient candidates
in terms of the respective index. Table 4 demon-
strate the results of ranking efficient candidates

in terms of job independence, by each of the
ranking models (4.7), (4.9), (4.11), (4.12), (4.13)
and (4.14).
Taking into account the results in Tables 5, we
can use model (2.1) to select the best ranking
model among models (4.7), (4.9), (4.11), (4.12),
(4.13), and (4.14), in terms of job independence,.
Their scores are as follows (Table 6).
Therefore, models (4.7) and (4.9) are the best
models as ranking models for this case study.
The decision maker can, therefore, accept the
results obtained by these models and make deci-
sions based on these results, since each of these
models is the one selected by the candidates
themselves and has been chosen as the best
ranking model for the voting system under dis-
cussion after aggregating the votes of candidates.
As another choice, the decision maker can use
the score obtained by aggregating the scores of
different ranking models as a basis for decision
making. To this end, we first normalize the
efficiency scores of models (4.7), (4.9), (4.11),
(4.12), (4.13), and (4.14).

θ∗(4.7) =
1.00

1.00+1.00+0.85+0.85+0.85+0.85 =
0.185185
θ∗(4.9) =

1.00
1.00+1.00+0.85+0.85+0.85+0.85 =

0.185185
θ∗(4.11) =

0.85
1.00+1.00+0.85+0.85+0.85+0.85 =

0.157407
θ∗(4.12) =

0.85
1.00+1.00+0.85+0.85+0.85+0.85 =

0.157407
θ∗(4.13) =

0.85
1.00+1.00+0.85+0.85+0.85+0.85 =

0.157407
θ∗(4.14) =

0.85
1.00+1.00+0.85+0.85+0.85+0.85 =

0.157407
Now, we present the following score (Table 7) for
the efficient candidates by the process discussed
in Section 4.
Considering the above results, we present the fol-
lowing ranking (Table 8) for the efficient candi-
dates.
Note that other ranking models can be utilized in
the above process.

7 Conclusions

In this paper, we presented a voting model for
groups with members of unequal power and pro-
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ficiency, as well as some models for ranking effi-
cient candidates, by extending the ideas of some
authors. Next, we proposed a new methodology
to rank the ranking models mentioned for the
performance indices of only DEA efficient can-
didates based on a voting model. Moreover, an
approach for combining the results of ranking
models was presented. Finally, we made use of
the new method to rank order five Iranian au-
tomobile manufacturing groups in terms of job
independence. It must be mentioned that further
ranking models can be obtained by extending the
ideas of other authors to discriminate between ef-
ficient candidates based on voting model (3.4).
Also, other ranking models can be employed in
the process introduced in Section 5 for discrimi-
nating efficient candidates.
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