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Abstract

As a technique based on mathematical programming, Data Envelopment Analysis (DEA) is used
for evaluating the efficiency of homogeneous Decision Making Units (DMUs). DEA models need
accurate input and output data. In many situations, on the one hand, accurate measurement of
inputs and outputs is difficult due to their volatility and complexity. This conflict results in uncer-
tain DEA models. Its main problem is transformation of deterministic equivalent of stochastic model
into quadratic programming, time-consuming and complexity and it requires presuppositions. By
means of Bi-objective multiple criteria DEA (Bio-MCDEA) model that considers stochastic data, our
proposed model reduces some of these problems and facilitates problem solving through presenting
primary presupposition and final linear model. The efficiency score of DMUs is determined by ap-
plying stochastic Bio- MCDEA model. Eventually, we used the data of seventeen Iranian electricity
distribution companies to illustrate the methods developed in the present paper.

Keywords : Data envelopment analysis (DEA); Multiple criteria DEA (MCDEA); Stochastic Data;
Ranking; Probability.

—————————————————————————————————–

1 Introduction

A
s an objective method, data envelopment
analysis (DEA) is used for comparing the

relative efficiency of decision- making units
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(DMUs) with similar multiple inputs and out-
puts. The originators of this method were
Charnes, Cooper and Rhodes (CCR). Banker,
Charnels and Cooper (BCC) presented a vari-
able return to scale version of the CCR model,
called the BCC model. As a result of CCR and
BCC models, other DEA models were presented
in the DEA literature. Conventional DEA has
been criticized for not allowing stochastic infor-
mation to be incorporated in input and output
data, which in true, lead to the DEA efficiency
measure to be sensitive to such information. Ud-
hayakumar [20]. To evaluate DMU with different
kinds of data such as deterministic, fuzzy and
interval data, many DEA models have been in-
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troduced in various fields Khodabakhshi & As-
gharian, [13]. Moreover, managers handle the
units with imprecise data as random variable in
many practical problems Liu & Wang, [1] .To
incorporate possible uncertainty in inputs and
outputs, stochastic formulation of original DEA
models was introduced Cooper, Seiford, &Tone
[11]; Sueyoshi [19] ; Khodabakhshi & Asgharian,
[15]; Jingliang [16]. Morita, Hiroshi, and Seiford
examined carefully the robustness of efficiency
results when input and output data depend on
stochastic measurement error, while Jess, Jongen,
Neralic, and Stein presented a semi-infinite pro-
gramming model in DEA to examine a chemical
engineering problem.Recently, researchers such
as Tavana and Kiani Mavi, Jingling and Zhou,
Khodabakhshi and Asgharian [12, 13, 14, 15] have
studied stochastic input and output variations in
DEA. For discussions on linear programming pro-
grams, refer to Kall (1976). In this paper, we ex-
tend bi-objective MCDEA model to sto-chastic
one. Then, we apply a deterministic equivalent
to our stochastic model. Following a multiple
objective decision- making framework, the multi-
ple criteria (or Multi-objective) DEA model Li &
Reeves [10] was proposed as a means to overcome
the problems of discriminating power and weight
dispersion. Although the original formulation of
Li and Reeves does not promise complete rank-
ing, it presupposes the decision maker to use its
models of three objectives interactively. There-
fore, the three objectives are analyzed separately
in the MCDEA model and no preference order is
set for those objectives. To simultaneously solve
all three objectives of the MCDEA model Bal,
Orkcu, & Celebioglu [5] have recently proposed
the goal programming approach. Their GPDEA
models, namely, constant returns to scale and
variable returns to scale were claimed to im-
prove the dispersion of weights and discriminat-
ing power in a MCDEA framework. This study
introduces new stochastic bi-objective multiple
criteria DEA (Bio-MCDEA) model, which can
solve the disadvantages. We organize the rest of
the paper as follows: in section 2, the proposed
stochastic ranking method is described. stochas-
tic version of bi-objective weighted model is de-
veloped in section 3 and its deterministic equiv-
alent is obtained. In section 4, the model, as an

empirical example, is applied to data of Iranian
electricity distribution companies. Section 5 con-
cludes the paper.

2 Preliminaries

It is claimed that the basic DEA model does not
always provide good discriminatory characteris-
tics among alternatives; particularly in situations
where some alternatives may have scores equal
to one (i.e., are efficient). To well discriminate
among alternative scores, a number of techniques
have been proposed .We can use MCDEA to im-
prove the discriminating power of classical DEA
method. Its solution is to find non-dominated so-
lutions and to help select the most preferred one.
The form of MCDEA model depends on the ef-
ficiency criteria used. In the present study, we
use the model suggested by Li and Reeves [10] as
follows:

min d0

minM

min

n∑
j=1

dj

s.t
m∑
i=1

vixi0 = 1

s∑
r=1

uryrj −
m∑
i=1

vixij + dj = 0 j = 1, 2, ..., n

M − dj ≥ 0 j = 1, 2, ..., n

ur ≥ 1sε r = 1, 2, ..., s

vi ≥ 1mε r = 1, 2, ...,m

dj ≥ 0 j = 1, 2, ..., n (2.1)

The following is the detailed information about
the model (2.1):
This model has three criteria, namely, minimiz-
ing d0, minimizing the maximum deviation M,
and minimizing the sum of the deviations. ur, vi
and d0 are the weight and deviation variable for
DMU0 respectively, and the variable M in the sec-
ond objective represents the maximum quantity
among all deviation variables ( dj j = 1, ..., n).
The third objective function is a straightforward
representation of the deviation sum. In the above
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three definitions, irrespective of DMU0 efficiency,
its DEA efficiency score is 1−d0 ,however, the val-
ues of d0 may vary under different criteria. Re-
membering Li and Reeves (1999) approach, the
MCDEA models objective function include three
parts: Min d0 , Min M, and

∑n
j=1 dj , as defined in

model 2.1. We can rewrite a MCDEAs three ob-
jective function in a weighted method as follows:
wid0+w2M +w3

∑n
j=1 dj for the single weighted

objective equivalent. To obtain different efficient
solutions wi(i = 1, 2, 3) can vary. Thus, given
that the first objective w1 is the equivalent to
a conventional CCR model, it can be eliminated
from the MCDEA in the weighted objective sense.
Moreover, Li and Reeves had suggested that the
first objective yields lower discrimination power
in compared to the other two objectives. Thus,
we solved the bi-objective weighted problem for
Bio-MCDEA model [3], using both the second
and third objectives. The value of w1 is set equal
to zero because whenever

∑n
j=1 dj is minimized,

d0 will be minimized as well. Thus, we have the
following model. Bio-objective MCDEA model
under CCR

minw2M + w3

n∑
j=1

dj

s.t
m∑
i=1

vixi0 = 1

s∑
r=1

uryrj −
m∑
i=1

vixij + dj = 0 j = 1, 2, ..., n

M − dj ≥ 0 j = 1, 2, ..., n

ur ≥ 1sε r = 1, 2, ..., s

vi ≥ 1mε r = 1, 2, ...,m

dj ≥ 0 j = 1, 2, ..., n (2.2)

Stochastic Bio-MCDEA Model

A large number of parameters are required for
Stochastic DEA. We can greatly facilitate the
practical application of the technique by some
assumptions simplifying the computational task
in such estimation of parameters and while re-
ducing the almost 100% confidence chance con-
straint programming problem 2.2 to an ordinal
linear programming problem. In the rest of this

paper, it is assumed that components of the in-
puts and outputs are related only through com-
mon relationships with some basic factor. The
component of any input and output is solely de-
termined by this single factor. Based on the
analysis of randomness in the introduction, this
study assumes that the stochastic variable (x̃ij)
of each input is expressed by x̃ij = xij + aijϵ (
i = 1, 2, . . . ,m and j = 1, 2, . . . , n), where (xij) is
an expected value ofx̃ij and aij is standard devi-
ation. The stochastic variable of output is repre-
sented as ỹrj = yrj+brjϵ where yrj is an expected

value of ỹrj and b−j is its standard deviation.It is
naturally supposed that the random variable (ϵ)
follows normal distribution (N(0, σ2)) . After the
preparation of the above assumptions, it is bet-
ter to acquire the equivalent deterministic form
in order to facilitate the mode1†s solution.

Methodology

In order to describe the following models, clearly,
this study assumes that there are n DMUj j =
1, 2, ..., n . naturally considering the environmen-
tal effect. At the same time, inputs and out-
puts depend upon external fac-tors such as so-
cial changes, economic conditions, and other so-
cioeconomic factors affecting the magnitude of in-
puts and outputs. Thus, this study also consid-
ers the existence of data’s randomness. Based on
the above for DMUj , let x̃j = (x̃1j , x̃2j , ..., x̃mj)

T

and ỹj = (ỹ1j , ỹ2j , ..., ỹrj)
T represent stochas-

tic variables for the input and output vectors.
It is assumed that all DMUs have input and
output vectors with positive components . As-
sume that x̃j = (x̃1j , x̃2j , ..., x̃mj)

T and ỹj =
(ỹ1j , ỹ2j , ..., ỹrj)

T are the stochastic input and
output vectors. By applying the chance con-
strained programming (CCP) on the model, the
objective function is subject to uncertainty, the
objective function is expressed as min δ and the
constraint
w2M +w3(

∑m
i=1 vix̃i −

∑s
r=1 urỹr)) ≤ δ is added

to the constraints.
The probabilistic constraint form of (Bio-
MCDEA) model with stochastic data is as fol-
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lows:

min δ (2.3)

s.t

E(

m∑
i=1

vix̃i0) = 1 (a)

Pr((w2M + w3(
m∑
i=1

vix̃i −
s∑

r=1

urỹr)) ≤ δ)

≥ 1− α (b)

Pr(

s∑
r=1

urỹr −
m∑
i=1

vix̃i ≤ 0))1− α

j = 1, 2, ..., n (c)

Pr(
m∑
i=1

vix̃i −
s∑

r=1

urỹr ≤ M) ≥ 1− α

j = 1, 2, ..., n (d)

ur ≥ 1sε r = 1, 2, ..., s

vi ≥ 1mε i = 1, 2, ...,m

M ≥ 0

δ ≥ 0

Here in the above models, P means probability
and α is a level of error between 0 and 1, which
is a predetermined number. The above model
can be converted into the deterministic model
through the following procedures.

3 Deterministic equivalent for
the Bio-MCDEA model

In order to have a better understanding of the
performance of the proposed method, in this sec-
tion an illustrative process is presented in this
section.
The constraints of Eq. (2.3-a), including the
stochastic process, can be rewritten respectively
as follows:

E(
m∑
i=1

vix̃i0) =
m∑
i=1

vix̄i0 = 1 (3.4)

The input constraints can be transformed into
equality form by adding η > 0

Pr(δ − w2M − w3(
m∑
i=1

viX̃i −
s∑

i=1

urỸr) ≥ 0)

= 1− α+ η η > 0 (3.5)

Remark 3.1 Let T be a random variable and a, b
and c constant numbers, if P (T < a) = c andb <
a, then there exists d < c such that P (T < b) = d.
[7]

By employing the above remark, there exist ∆ ≥
0 such that:

Pr(δ − w2M − w3(

m∑
i=1

viX̄i −
s∑

i=1

urỸr) ≥ ∆)

= 1− α η > 0 (3.6)

Since the random variable
∑m

i=1 viX̄i−
∑s

i=1 urỸr
has normal distribution, the above expression can
be converted into the following deterministic ex-
pression through using the standard normal dis-
tribution:

E

(
w2M + w3(

m∑
i=1

vix̄i −
s∑

i=1

urỹr)

)

= E

(
w2M + w3

n∑
j=1

(

s∑
i=1

urỹrj −
m∑
i=1

vix̄ij)

)

= w2M + w3

( s∑
r=1

ur

n∑
j=1

E(ȳrj)

−
m∑
i=1

vi

n∑
j=1

E(x̄ij)

)

= w2M + w3

( s∑
r=1

ur

n∑
j=1

ȳrj︸ ︷︷ ︸
Yr

−
m∑
i=1

vi

m∑
i=1

X̄ij︸ ︷︷ ︸
Xi

)

(3.7)

Pr(δ − w2M − w3(

m∑
i=1

viX̃i −
s∑

i=1

urỸr) ≥ ∆)

= 1− α (3.8)
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where

X̄i =
m∑
i=1

x̄ij and E(X̄i) = E(
m∑
i=1

x̄ij)

=

m∑
i=1

x̄ij (3.9)

Ȳr =

s∑
r=1

ȳrj and E(Ȳr) = E(

s∑
r=1

x̄rj) =

s∑
r=1

ȳrj (3.10)

The normality assumption is used to introduce a
deterministic equivalent to the model

Pr(

Z︷ ︸︸ ︷
x︷ ︸︸ ︷

m∑
i=1

viX̄i −
s∑

r=1

urỸr −

µ︷ ︸︸ ︷
(

m∑
i=1

viX̄i −
s∑

r=1

urỸr)

σ(

m∑
i=1

vi(aij)−
r∑

r=1

ur(bij))︸ ︷︷ ︸
σ

≤

1
w3

(δ − w2M)−∆− (

µ︷ ︸︸ ︷
(

m∑
i=1

viX̄i −
s∑

r=1

urỸr))

σ(

m∑
i=1

vi(aij)−
r∑

r=1

ur(bij))︸ ︷︷ ︸
σ

(3.11)

Where Z is normal standard variable, and we can
have

φ(

1
w3

(δ − w2M)−∆− (

µ︷ ︸︸ ︷
(

m∑
i=1

viX̄i −
s∑

r=1

urỸr))

σ(

m∑
i=1

vi(aij)−
r∑

r=1

ur(bij))︸ ︷︷ ︸
σ

)

= (1− α) (3.12)

1
w3

(δ − w2M)−∆− (

µ︷ ︸︸ ︷
(

m∑
i=1

viX̄i −
s∑

r=1

urỸr))

σ(

m∑
i=1

vi(aij)−
r∑

r=1

ur(bij))︸ ︷︷ ︸
σ

= φ−1(1− α) (3.13)

or

m∑
i=1

vix̄i −
s∑

r=1

urȳr =
1

w3
(δ − w2M)

− φ−1(1− α)(

m∑
i=1

viaij −
s∑

r=1

urbrj)δ −∆

(3.14)

It should be noted that φ is the cumulative nor-
mal distribution function. Like what has been
done to the constraints, the deterministic form
for and constraints can be achieved as follows.
Where (E) andb(Var) separately indicate the
mean and variance of each random variable (∑m

i=1 vix̃ij −
∑s

r=1 urỹrj j = 1, 2, ..., n) we will
have

Figure 1: Comparison of ranks SE and Bio-
MCDEA models

E(

m∑
i=1

vix̃ij −
s∑

r=1

urỹrj)

=

m∑
i=1

viE(x̃ij)−
s∑

r=1

urE(ỹrj) =

m∑
i=1

vix̄ij −
s∑

r=1

urȳrj (3.15)
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Table 1: Data for electricity distribution units

DMU Company Inputs Outputs

Net. len. (km) Tr. Cap (MVA) Empl. Un. del (MW h) S.area

1 East Azarbaijan 15,151 990 867 1825 40,968

2 West Azarbaijan 19,610 1306 1047 5297 37,463

3 Isfahan 25,566 2713 1072 5835 97,923

4 Hamadan 12,340 1101 595 2369 19574

5 Khuzestan 19,380 3932 1471 8048 53,442

6 Zanjan 10,347 788 351 1526 21.841

7 Kurdistan 11.697 725 426 1174 28.817

8 Fars 24.624 1617 872 4015 83.575

9 Ardabil 10.129 507 441 936 17.881

10 Markazi 14.505 1489 600 3063 29.406

11 Lorestan 12.078 1006 594 1784 28.392

12 Qazvin 8766 946 302 2414 15.491

13 Semnan 8063 730 374 1418 96.816

14 Kermanshah 12.795 1147 538 18.6 24.641

15 Gilan 21,187 1534 938 2848 13.952

16 Hormozgan 16.185 1786 938 3411 71.193

17 Yazd 11,990 963 576 2400 73.467

Mean 14966.06 1369.412 706 2951.118 44402.47
Standard Deviation (5188.39) (815.3) (309.2) (1841.3) (28239.3)

and

var(
m∑
i=1

vix̃ij −
s∑

r=1

urỹrj)

var(

m∑
i=1

vi(x̄ij + εaij)

−
s∑

r=1

ur(ȳrj + εbij)

= var(

m∑
i=1

vi(x̄ij)−
s∑

r=1

ur(ȳrj)

+ εN(0,σ2)

m∑
i=1

vi(aij)−
s∑

r=1

ur(brj)

= (

m∑
i=1

vi(aij)−
s∑

r=1

ur(brj))
2σ2 (3.16)

In a similar fashion, the following deterministic
equivalent to the constraint 2.3-d can be obtained

as follows:

Pr(M − (

m∑
i=1

vix̄ij −
s∑

r=1

urȳrj) ≥ ∆j)

= (1− α) (3.17)

therefore,

Pr(

Z︷ ︸︸ ︷
x︷ ︸︸ ︷

m∑
i=1

vix̄ij −
s∑

r=1

urỹrj −

µ︷ ︸︸ ︷
(

m∑
i=1

vix̄ij −
s∑

r=1

urȳrj)

σ(

m∑
i=1

vi(aij)−
r∑

r=1

ur(bij))︸ ︷︷ ︸
σ

(3.18)
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Table 2: Stochastic bio-MCDEA model and supper efficiency model (from Khodabakshi 2010) results of the
17 units with (α = 0.4)

DMU Company Stocha.score (SE) Rank Stocha.score(Bio-MCDEA) Rank

1 East Azarbaijan 1.341 15 0.8525 13

2 West Azarbaijan 1.246 11 0.8736 12

3 Isfahan 0.802 4 1.159 5

4 Hamadan 1.159 10 1.021 7

5 Khuzestan 0.567 3 1.315 3

6 Zanjan 1.284 12 0.9313 10

7 Kurdistan 0.567 14 0.7414 17

8 Fars 0.912 7 1.116 6

9 Ardabil 0.850 5 0.979 9

10 Markazi 1.142 9 1.005 8

11 Lorestan 1.402 16 0.8204 15

12 Qazvin 0.529 2 1.443 2

13 Semnan 0.146 1 1.879 1

14 Kermanshah 1.564 17 0.7716 16

15 Gilan 1.316 13 0.8287 14

16 Hormozgan 1.141 8 0.9107 11

17 Yazd 0.911 9 1.203 4

≤
M −∆j −

µ︷ ︸︸ ︷
(

m∑
i=1

vix̄ij −
s∑

r=1

urȳrj)

σ(

m∑
i=1

vi(aij)−
r∑

r=1

ur(bij))︸ ︷︷ ︸
σ

Where Z is normal standard variable, and we can
have

φ

M −∆j − (

µ︷ ︸︸ ︷
(

m∑
i=1

vix̄ij −
s∑

r=1

urȳrj))

σ(

m∑
i=1

vi(aij)−
r∑

r=1

ur(bij))︸ ︷︷ ︸
σ

= (1− α) (3.19)

In other word,

M −∆j − (

µ︷ ︸︸ ︷
(

m∑
i=1

vix̄ij −
s∑

r=1

urȳrj))

σ(

m∑
i=1

vi(aij)−
r∑

r=1

ur(bij))︸ ︷︷ ︸
σ

= φ−1(1− α) (3.20)

or

m∑
i=1

vix̄ij −
s∑

r=1

urȳrj = M − δj

− φ−1(1− α)(

m∑
i=1

viaij −
s∑

r=1

urbrj)) (3.21)

Therefore, the deterministic form of the (BIO-
MCDEA) model with stochastic data which has
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been derived from model 2.3 is as follows:

min δ

s.t
m∑
i=1

vix̄i0 = 1

m∑
i=1

vix̄i −
s∑

r=1

urȳr =
1

w3
(δ − w2M)− φ−1(1− α)

(

m∑
i=1

viāij −
s∑

r=1

ur b̄rj)δ −∆

s∑
r=1

urȳrj −
m∑
i=1

vix̄ij = −φ−1(1− α)

(
m∑
i=1

viāij −
s∑

r=1

ur b̄rj)δ − γj j = 1, 2, ..., n

m∑
i=1

vix̄ij −
s∑

r=1

urȳrj

= M −∆j − φ−1(1− α)

(
m∑
i=1

viāij −
s∑

r=1

ur b̄rj)δ − γj j = 1, 2, ..., n

ur ≥ 1sε r = 1, 2, ..., s

vi ≥ 1mε i = 1, 2, ...,m

M ≥ 0

γj ≥ 0 j = 1, 2, ..., n

∆j ≥ 0 j = 1, 2, ..., n

δ ≥ 0

Based on this assumption ∀i (δvi =
Pi), ∀r (δur = Qr) model 3.5 is transformed into
the following linear programming problem.
Finally, following deterministic equivalent, our

stochastic bio-MCDEA model is obtained

min δ

s.t
m∑
i=1

vix̄i0 = 1

m∑
i=1

vix̄i −
s∑

r=1

urȳr =
1

w3
(δ − w2M)− φ−1(1− α)

(

m∑
i=1

Piāij −
s∑

r=1

Qr b̄rj)δ −∆

s∑
r=1

urȳrj −
m∑
i=1

vix̄ij = −φ−1(1− α)

(
m∑
i=1

Piāij −
s∑

r=1

Qr b̄rj)− γj j = 1, 2, ..., n

m∑
i=1

vix̄ij −
s∑

r=1

urȳrj

= M −∆j − φ−1(1− α)

(

m∑
i=1

Piāij −
s∑

r=1

Qr b̄rj) j = 1, 2, ..., n

M ≥ 0 i = 1, 2, ...,m

∆ ≥ 0

γj ≥ 0 j = 1, 2, ..., n

∆j ≥ 0 j = 1, 2, ..., n

Pj ≥ 0 i = 1, 2, ...,m

Qr ≥ 0 r = 1, 2, ..., s

δ ≥ 0 (3.22)

Suppose (U∗, V ∗) to be the optimal solution of
the model, the efficiency score of DMUj is θ∗j =∑s

r=1 u
∗
r ȳrj∑

v∗i x̄ij
and ȳrj , x̄ij are the mean vectors

of the stochastic output and input, respectively.
Hence, the more the efficiency score, the better
DMUj will be.

4 Application

As an empirical example, the proposed method
is applied to Iranian electricity distribution units
using some actual data of year 2000. Estab-
lished in 1992, the Iranian electricity distribution
units are public ones and they act under super-
vision of TAVANIR Co. (Iran’s Power, Genera-
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tion, Transmission and Distribution Management
Company).Based on extensive review in Jamas-
band Pollitt (2001) [15], operating costs, number
of employees, transformer capacity and the length
of network are the most frequently used inputs.
Furhermore, units of delivered energy, number of
customers and the size of the service area are the
most widely used outputs. The cost data is not
available. We use network length, transformer
capacity, and employee variables as inputs and
units’ delivery, and service area variables as out-
puts in this study.
The size of service area is considered as an envi-
ronmental variable in our study. Considering that
the electricity distribution units are public and
act in provinces of Iran, the service area is out of
control of the units. The computational results
of the equivalent deterministic problem are pre-
sented in columns 3 and 4 of Table 1. To compute
result for stochastic data, has been considered to
be equal to 0.4 , Although all DMUs are assumed
to have similar variance, they can have different
means. Therefore the variances for outputs and
Inputs can be estimated by:

var(ȳr) =
1

17

17∑
j=1

(yrj − ȳr)
2 (4.23)

var(x̄i) =
1

17

17∑
j=1

(xij − x̄i)
2 (4.24)

Where

ȳr =
1

17

17∑
j=1

yrj (4.25)

x̄i =
1

17

17∑
j=1

xij (4.26)

Also, xij and yrj are the expected values of in-
puts and outputs for DMUj used as an esti-
mate for the expected value of the stochastic in-
puts and outputs. It is also assumed that out-
puts and inputs for different DMUs are inde-
pendent. The stochastic bio-MCDEA scores ob-
tained from software LINDO are presented in Ta-
ble 2. Again, the best company is DMU 13, With
the stochastic score 1.879. Semnan corresponds
to =0.4.The worst company is DMU 17 with score
0.7414. Both models have set Semnan unit as su-
perior rank and Qazvin unit in the second rank,

the model presented by Yazd has been ranked
fourth with score1.203while its SE model (Khod-
abakhshi 2010) is ranked sixth. In the comparison
of computational complexity, computation rate of
the presented model is more cost effective than
the previous model and it has been influenced
mostly by outputs and is computable with opera-
tion research ordinary software. Software LINDO
has been used for computation.
Comparing numerical result presented in columns
3-4 and 5-6 of Table 2, DMU 14, Kermanshah
and DMU 15, Gilan, DMU 10, Markazi, DMU
16, Hormozgan, DMU 4
, Hamedan, DMU 6, Zanjan, DMU 2, West
Azarbaijan, DMU 1, East Azarbaijan, DMU 7,
Kurdistan and DMU 11, Lorestan are inefficient
with both Stochastic models. Therefore the com-
putational results are quit identical.

5 Conclusion

In this paper, we presented Stochastic MCDEA
model for ranking all Stochastic version of the
proposed Bi-objective MCDEA model has been
developed and a deterministic equivalent was ob-
tained for the stochastic version using this model.
The new model may provide practitioners with a
quite robust measure to get more accurate pic-
ture of efficiency allowing for random fluctuation
in the data used to compare DMUs. It should be
noted that our method in this study is interested
in controlling the quantity of inputs as our deci-
sion variable, whilst being unable to control out-
puts, since these quantities depend upon exter-
nal factors such as economic condition, a demo-
graphic change, and other socio-economic factors
that influenceing the magnitude of outputs. The
Stochastic MCDEA model shows that DMU 13,
Semnan is the best company in terms of techni-
cal efficiency. Finally, it is hoped that this study
make a small contribution towards DEA-based
management planning.
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