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Abstract

A numerical method for solving linear Volterra and Fredholm integral equations of the second kind
is formulated. Based on a special representation of vector forms of triangular functions (TFs) and
the related operational matrix of integration, the integral equation reduces to a linear system of
algebraic equations. The generation of this system needs no integration, so all calculations can easily
be implemented. Numerical results for some examples show that the method has a good accuracy.
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1 Introduction

N
umerical methods are widely used for solving
integral and integro-differential equations,

because a great number of problems in physi-
cal science and engineering are modeled by such
equations [6, 5, 2, 15, 11, 13, 16, 17, 9, 3, 10, 4, 18].

This paper uses the TFs as a set of orthogonal
basis functions for formulation of a direct method
for solving both Volterra and Fredholm integral
equations of the second kind. For this purpose,
we review the TFs and a special representation
of their vector forms as well as the related op-
erational matrix of integration. Then, the direct
method is formulated for numerical solution of
the second kind integral equations. Finally, some
examples are solved by the method. The obtained
results are compared with those of other methods
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to illustrate the efficiency and accuracy of the di-
rect method for solving the mentioned integral
equations.

2 Review of triangular func-
tions

2.1 Definition

Two m-sets of TFs are defined over the interval
[0, T ) as [7, 6]

T1i(t) =

{
1− t−ih

h , ih ≤ t < (i+ 1)h,

0, otherwise,

T2i(t) =

{
t−ih
h , ih ≤ t < (i+ 1)h,

0, otherwise,

(2.1)

where i = 0, 1, . . . ,m− 1, with a positive integer
value for m. Also, consider h = T/m, and T1i as
the ith left-handed TF and T2i as the ith right-
handed TF.
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In this paper, it is assumed that T = 1, so TFs
are defined over [0, 1), and h = 1/m.

From the definition of TFs, it is clear that they
are disjoint, orthogonal, and complete [7]. There-
fore, we can write∫ 1

0
T1i(t)T1j(t)dt =

∫ 1

0
T2i(t)T2j(t)dt

=

{
h
3 , i = j,

0, i ̸= j.

(2.2)

Also,

φi(t) = T1i(t) + T2i(t), i = 0, 1, . . . ,m− 1,
(2.3)

where φi(t) is the ith BPF defined as

φi(t) =

{
1, ih ⩽ t < (i+ 1)h,

0, otherwise,
(2.4)

where i = 0, 1, ...,m− 1.

2.2 Vector forms

Consider the firstm terms of left-handed TFs and
the first m terms of right-handed TFs and write
them concisely as m-vectors:

T1(t) = [T10(t), T11(t), ..., T1m−1(t)]
T ,

T2(t) = [T20(t), T21(t), ..., T2m−1(t)]
T ,

(2.5)

where T1(t) and T2(t) are called left-handed
triangular functions (LHTF) vector and right-
handed triangular functions (RHTF) vector, re-
spectively.

The following properties of the product of two
TFs vectors may be obtained [6]:

T1(t)T1T (t)

≃


T10(t) 0 . . . 0

0 T11(t) . . . 0
...

...
. . .

...
0 0 . . . T1m−1(t)

 ,

T2(t)T2T (t)

≃


T20(t) 0 . . . 0

0 T21(t) . . . 0
...

...
. . .

...
0 0 . . . T2m−1(t)

 ,

(2.6)

and

T1(t)T2T (t) ≃ 0,

T2(t)T1T (t) ≃ 0,

(2.7)

where 0 is the zero m×m matrix. Also,

∫ 1

0
T1(t)T1T (t)dt =

∫ 1

0
T2(t)T2T (t)dt

≃ h

3
I,

∫ 1

0
T1(t)T2T (t)dt =

∫ 1

0
T2(t)T1T (t)dt

≃ h

6
I,

(2.8)

in which I is m×m identity matrix.

2.3 TFs expansion

The expansion of a function f(t) over [0, 1) with
respect to TFs, may be compactly written as

f(t) ≃
m−1∑
i=0

ciT1i(t) +
m−1∑
i=0

diT2i(t)

= cTT1(t) + dTT2(t),

(2.9)

where we may put ci = f(ih) and di = f((i+1)h)
for i = 0, 1, . . . ,m−1. So, approximating a known
function by TFs needs no integration to evaluate
the coefficients.

2.4 Operational matrix of integration

Expressing
∫ s
0 T1(τ)dτ and

∫ s
0 T2(τ)dτ in terms

of TFs follows [7]:

∫ s

0
T1(τ)dτ ≃ P1T1(s) + P2T2(s),

∫ s

0
T2(τ)dτ ≃ P1T1(s) + P2T2(s),

(2.10)

where P1m×m and P2m×m are called operational
matrices of integration in TFs domain and repre-
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sented as follows:

P1 =
h

2


0 1 1 . . . 1
0 0 1 . . . 1
0 0 0 . . . 1
...

...
...

. . .
...

0 0 0 . . . 0

 ,

P2 =
h

2


1 1 1 . . . 1
0 1 1 . . . 1
0 0 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . 1

 .

(2.11)

So, the integral of any function f(t) can be ap-
proximated as∫ s

0
f(τ)dτ ≃

∫ s

0

[
cTT1(τ) + dTT2(τ)

]
dτ

≃ (c+ d)TP1T1(s) + (c+ d)TP2T2(s).

(2.12)

3 A special representation of
TFs vector forms and other
properties

In this section, we review a special representa-
tion of TFs vector forms that has originally been
introduced in [6].

3.1 Definition and expansion

Let T(t) be a 2m-vector defined as [6]

T(t) =

T1(t)

T2(t)

 , 0 ⩽ t < 1 (3.13)

whereT1(t) andT2(t) have been defined in (2.5).
Now, the expansion of f(t) with respect to TFs
can be written as

f(t) ≃ F1TT1(t) + F2TT2(t)

= F TT(t)

= TT (t)F,

(3.14)

where F1 and F2 are TFs coefficients with F1i =
f(ih) and F2i = f((i+1)h), for i = 0, 1, . . . ,m−
1. Also, 2m-vector F is defined as

F =

F1

F2

 . (3.15)

Now, assume that k(s, t) is a function of two
variables. It can be expanded with respect to
TFs as follows:

k(s, t) ≃ TT (s) K T(t), (3.16)

where T(s) and T(t) are 2m1- and 2m2-
dimensional TFs respectively, and K is a 2m1 ×
2m2 TFs coefficient matrix. For convenience, we
put m1 = m2 = m. So, matrix K can be written
as

K =

(K11)m×m (K12)m×m

(K21)m×m (K22)m×m

 , (3.17)

where K11, K12, K21, and K22 can be com-
puted by sampling of function k(s, t) at points si
and ti such that si = ti = ih, for i = 0, 1, . . . ,m.
Therefore,

(K11)i,j = k(si, tj), i = 0, 1, . . . ,m− 1,

j = 0, 1, . . . ,m− 1,

(K12)i,j = k(si, tj), i = 0, 1, . . . ,m− 1,

j = 1, 2, . . . ,m,

(K21)i,j = k(si, tj), i = 1, 2, . . . ,m,

j = 0, 1, . . . ,m− 1,

(K22)i,j = k(si, tj), i = 1, 2, . . . ,m,

j = 1, 2, . . . ,m.

(3.18)

3.2 Product properties

Let X be a 2m-vector which can be written as
XT = (X1T X2T ) such that X1 and X2 are
m-vectors. Now, it can be concluded from Eqs.
(2.6) and (2.7) that [6]:

T(t)TT (t)X

=

(
T1(t)
T2(t)

)(
T1T (t) T2T (t)

)(X1
X2

)

≃

diag(T1(t)) 0m×m

0m×m diag(T2(t))

X1

X2


= diag(T(t)) X

= diag(X) T(t).

(3.19)

Therefore,

T(t)TT (t)X ≃ X̃T(t), (3.20)

where X̃ = diag(X) is a 2m×2m diagonal matrix.



82 S. Hatamzadeh-Varmazyar et al. /IJIM Vol. 11, No. 2 (2019) 79-87

Now, let B be a 2m× 2m matrix as:

B =

(B11)m×m (B12)m×m

(B21)m×m (B22)m×m

 . (3.21)

So, it can be similarly concluded from Eqs. (2.6)
and (2.7) that:

TT (t)BT(t)

=
(
T1T (t) T2T (t)

)(B11 B12
B21 B22

)(
T1(t)
T2(t)

)
≃ T1T (t)B11 T1(t) +T2T (t)B22 T2(t)

≃ B̂11
T
T1(t) + B̂22

T
T2(t),

(3.22)

where B̂11 and B̂22 are m-vectors with elements
equal to the diagonal entries of matrices B11 and
B22, respectively. Therefore,

TT (t)BT(t) ≃ B̂TT(t), (3.23)

in which B̂ is a 2m-vector with elements equal
to the diagonal entries of matrix B. Also, it is
immediately concluded from Eqs. (2.8):∫ 1

0
T(t)TT (t) dt

=

∫ 1

0

(
T1(t)
T2(t)

)(
T1T (t) T2T (t)

)
dt

=

∫ 1

0

T1(t)T1T (t) T1(t)T2T (t)

T2(t)T1T (t) T2(t)T2T (t)

 dt

≃

h
3 Im×m

h
6 Im×m

h
6 Im×m

h
3 Im×m

 .

(3.24)

Therefore, ∫ 1

0
T(t)TT (t) dt ≃ D, (3.25)

where D is the following 2m× 2m matrix:

D =
h

3



1 0 . . . 0 1/2 0 . . . 0
0 1 . . . 0 0 1/2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 1/2

1/2 0 . . . 0 1 0 . . . 0
0 1/2 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1/2 0 0 . . . 1


.

(3.26)

3.3 Operational matrix

Expressing
∫ s
0 T(τ)dτ in terms of T(s), and from

Eqs. (2.10), we can write [6]∫ s

0
T(τ)dτ =

∫ s

0

(
T1(τ)
T2(τ)

)
dτ

≃

P1T1(s) + P2T2(s)

P1T1(s) + P2T2(s)


=

P1 P2

P1 P2

T1(s)

T2(s)

 ,

(3.27)

so, ∫ s

0
T(τ)dτ ≃ PT(s), (3.28)

where P2m×2m, operational matrix of T(s), is:

P =

P1 P2

P1 P2

 , (3.29)

where P1 and P2 are given by (2.11).

Now, the integral of any function f(t) can be
approximated as∫ s

0
f(τ)dτ ≃

∫ s

0
F TT(τ)dτ

≃ F TPT(s).

(3.30)

4 Direct method for solving lin-
ear second kind integral equa-
tions

Here, by using the results obtained in the pre-
vious sections as to the TFs, a numerical direct
method for solving second kind integral equations
is formulated. The formulation is given for both
Volterra and Fredholm integral equations.

4.1 Volterra integral equation

Let us consider the following linear Volterra inte-
gral equation of the second kind:

x(s) + λ

∫ s

0
k(s, t)x(t)t = y(s), 0 ⩽ s < 1,

(4.31)
where the parameter λ and the functions y(s)
and k(s, t) are known but x(s) is not. Moreover,
k(s, t) ∈ L2([0, 1)× [0, 1)) and y(s) ∈ L2([0, 1)).
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Approximating the functions x(s), y(s), and
k(s, t) with respect to TFs, using (3.14) and
(3.16), gives

x(s) ≃ XTT(s) = TT (s)X,

y(s) ≃ Y TT(s) = TT (s)Y,

k(s, t) ≃ TT (s)KT(t),

(4.32)

where 2m-vectors X and Y , and 2m×2m matrix
K are TFs coefficients of x(s), y(s), and k(s, t),
respectively. Note that in (4.32), X is the un-
known vector and should be computed.

Substituting (4.32) into (4.31) gives

Y TT(s) ≃ XTT(s)

+ λ

∫ s

0
TT (s)KT(t)TT (t)Xt.

(4.33)

Using Eq. (3.20) follows

Y TT(s) ≃ XTT(s) + λTT (s)K

∫ s

0
X̃T(t)t

≃ XTT(s) + λTT (s)KX̃

∫ s

0
T(t)t.

(4.34)

Using operational matrix P , in Eq. (3.28), results
in

Y TT(s) ≃ XTT(s) + λTT (s)KX̃PT(s), (4.35)

in which λKX̃P is a 2m × 2m matrix. Using
Eq. (3.23) follows

TT (s)λKX̃PT(s) ≃ X̂TT(s), (4.36)

where X̂ is a 2m-vector with components equal
to the diagonal entries of matrix λKX̃P .

Now, combining (4.35) and (4.36) and replac-
ing ≃ with =, we obtain

X + X̂ = Y. (4.37)

Equation (4.37) is a linear system of 2m
algebraic equations for the 2m unknowns
X10, X11, . . . , X1m−1, X20, X21, . . . , X2m−1,
components of XT = (X1T X2T ). Hence,
an approximate solution x(s) ≃ XTT(s), or
x(s) ≃ X1TT1(s) +X2TT2(s) can be computed
for integral equation (4.31) without using any
projection method.

4.2 Fredholm integral equation

Let us consider the following linear Fredholm in-
tegral equation of the second kind:

x(s) + λ

∫ 1

0
k(s, t)x(t)t = y(s), 0 ⩽ s < 1,

(4.38)
where the parameter λ and the functions y(s)
and k(s, t) are known and x(s) is the unknown
function to be determined. Moreover, k(s, t) ∈
L2([0, 1) × [0, 1)) and y(s) ∈ L2([0, 1)). Without
loss of generality, it is supposed that the interval
of integration in Eq. (4.38) is [0, 1), since any fi-
nite interval [a, b) can be transformed to interval
[0, 1) by linear maps [8].

Similar to the direct method for Volterra inte-
gral equation, substituting (4.32) into (4.38) fol-
lows

Y TT(s) ≃ XTT(s)

+ λTT (s)K

∫ 1

0
T(t)TT (t)Xt.

(4.39)

Using Eq. (3.25) gives

Y TT(s) ≃ XTT(s) + (λKDX)TT(s). (4.40)

Now, replacing ≃ with = results in

(I + λKD)X = Y. (4.41)

Equation (4.41) is a linear system of algebraic
equations. So, an approximate solution x(s) ≃
XTT(s) = X1TT1(s) + X2TT2(s), is obtained
for Eq. (4.38). Note that, this approach does not
use any projection method such as collocation,
Galerkin, etc.

5 Test examples

Here, the given direct method is applied to solve
some examples. The numerical results obtained
by the method are compared with both the exact
solution and those obtained by some other meth-
ods such as block-pulse functions (BPFs) method,
rationalized Haar wavelet method [19], Legen-
dre wavelet method [21], Adomian decomposition
method [1], and expansion-iterative method [14].

5.1 Numerical results

Example 5.1 Consider the following Fredholm
integral equation [19, 8]:

x(s)−
∫ 1

0
estx(t)t = es − es+1 − 1

s+ 1
, (5.42)
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Table 1: Numerical results for Example 5.1

Exact Solution Direct Direct BPFs Rationalized Haar
s method method method wavelet method [19]

(m = 16) (m = 32) (m = 32) (k = 32)

0 1 0.997376 0.999344 1.016236 1.01642

0.1 1.105171 1.102930 1.104568 1.116091 1.11627

0.2 1.221403 1.218903 1.220824 1.225752 1.22593

0.3 1.349859 1.347264 1.349264 1.346191 1.34637

0.4 1.491825 1.489399 1.491158 1.478465 1.47864

0.5 1.648721 1.645485 1.647912 1.675268 1.62391

0.6 1.822119 1.819638 1.821429 1.839883 1.84004

0.7 2.013753 2.010978 2.013136 2.020674 2.02082

0.8 2.225541 2.222754 2.224933 2.219234 2.21936

0.9 2.459603 2.457250 2.458916 2.437307 2.43742

Table 2: Numerical results for Example 5.2

.

Exact Solution Direct Direct BPFs Legendre
s method method method wavelet

(m = 16) (m = 32) (m = 32) method [21]

0 1 0.999374 0.999844 1.031832 1.012990

0.1 1.221403 1.222909 1.221598 1.244627 —

0.2 1.491825 1.492803 1.492294 1.501307 1.487708

0.3 1.822119 1.823200 1.822684 1.810922 —

0.4 2.225541 2.228355 2.225880 2.184388 2.230965

0.5 2.718282 2.716581 2.717857 2.804810 —

0.6 3.320117 3.324211 3.320648 3.383247 3.307555

0.7 4.055200 4.057859 4.056475 4.080975 —

0.8 4.953032 4.955970 4.954570 4.922595 4.962956

0.9 6.049647 6.057297 6.050568 5.937783 —

Table 3: Numerical results for Example 5.3

.

Exact Solution Direct Direct BPFs Adomian
s method method method decomposition

(m = 8) (m = 16) (m = 16) method [1]

0 0 0 0 0.031250 0

0.1 0.099833 0.100000 0.099854 0.093628 0.09983333

0.2 0.198669 0.198828 0.198732 0.217044 0.19866958

0.3 0.295520 0.295715 0.295623 0.277601 0.29552231

0.4 0.389418 0.389905 0.389484 0.395228 0.38942488

0.5 0.479426 0.480651 0.479731 0.506686 0.47944013

0.6 0.564642 0.565390 0.564736 0.559553 0.56466968

0.7 0.644218 0.644629 0.644415 0.658532 0.64426292

0.8 0.717356 0.717765 0.717576 0.704258 0.71742550

0.9 0.783327 0.784225 0.783432 0.787288 0.78342727

with exact solution x(s) = es. The numerical re-
sults are shown in Table 1.

Example 5.2 For the following Fredholm inte-

gral equation of the second kind [21, 20]:

x(s) +

∫ 1

0

1

3
e2s−

5
3
tx(t)t = e2s+

1
3 , (5.43)

with exact solution x(s) = e2s, Table 2 shows the
numerical results.
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Table 4: Numerical results for Example 5.4

.

Exact Direct Direct Expansion-iterative
s solution method method method [14]

(m = 16) (m = 32) (m = 32)

0 0 0 0 0.015625

0.1 0.100000 0.099998 0.100000 0.109375

0.2 0.200000 0.199986 0.199997 0.203125

0.3 0.300000 0.299955 0.299989 0.296875

0.4 0.400000 0.399895 0.399974 0.390625

0.5 0.500000 0.499801 0.499950 0.515625

0.6 0.600000 0.599663 0.599916 0.609375

0.7 0.700000 0.699488 0.699872 0.703125

0.8 0.800000 0.799282 0.799820 0.796875

0.9 0.900000 0.899065 0.899766 0.890625

Table 5: Mean-absolute errors, for Examples 5.1-5.4, in terms of m.

.

m Example 5.1 Example 5.2 Example 5.3 Example 5.4

2 1.6e −1 1.5e −1 7.8e −3 1.9e −2

4 4.1e −2 4.1e −2 1.9e −3 4.6e −3

8 1.0e −2 1.0e −2 4.7e −4 1.1e −3

16 2.6e −3 2.6e −3 1.2e −4 2.9e −4

32 6.5e −4 6.4e −4 2.9e −5 7.2e −5

64 1.6e −4 1.6e −4 7.3e −6 1.8e −5

128 4.1e −5 4.0e −5 1.8e −6 4.5e −6

256 1.0e −5 1.0e −5 4.6e −7 1.1e −6

512 2.5e −6 2.5e −6 1.1e −7 2.8e −7

1024 6.4e −7 6.4e −7 2.9e −8 7.0e −8

Example 5.3 For the following second kind
Volterra integral equation [1]:

x(s) +

∫ s

0
(s− t)x(t)t = s, (5.44)

with exact solution x(s) = sin(s), Table 3 shows
the numerical results.

Example 5.4 Consider the following second
kind Volterra integral equation [14]:

x(s) +

∫ s

0
(st2 + s2t)x(t)t = s+

7

12
s5, (5.45)

with exact solution x(s) = s. Table 4 gives the
results.

5.2 Convergence rate

We give here the mean-absolute errors associated
with the direct method. The errors are calculated
for all the mentioned examples. Table 5 shows the
results for some different values ofm. We see that
the direct method has a reasonable convergence
rate.

6 Conclusion

A direct method was formulated based on a spe-
cial representation of TFs vector forms. This ap-
proach, without applying any projection method,
transforms a Volterra or Fredholm integral equa-
tion of the second kind to a set of algebraic equa-
tions. Its efficiency was checked on some exam-
ples. The results confirmed the applicability of
the method for solving second kind integral equa-
tions.
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