
Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 12, No. 1, 2020 Article ID IJIM-1235, 8 pages

Research Article

Local Annihilation Method and Some Stiff Problems

A. Abdollahi ∗†, E. Babolian ‡

Received Date: 2018-10-03 Revised Date: 2019-02-16 Accepted Date: 2019-04-11

————————————————————————————————–

Abstract

In this article, a new scheme inspired from collocation method is presented for numerical solution of
stiff initial-value problems and Fredholm integral equations of the first kind based on the derivatives
of residual function. Then, the error analysis of this method is investigated by presenting an error
bound. The efficiency of the new method is compared with the efficiency of the collocation method by
presenting some stiff and ill-posed test problems. Numerical comparisons indicate that the presented
method yields accurate approximations in many cases in which the collocation method is failed.
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1 Introduction

T
he Galerkin, collocation and least squares
methods are efficient techniques for numeri-

cal solutions of most functional equations [7, 18,
19, 20]. However, obtaining an accurate solu-
tion by these methods fails for ill-posed prob-
lems [4, 13, 27]. In many recent numerical ap-
proaches, some accurate approximations are ob-
tained by modifying the previous methods [3, 4,
15, 21, 22, 1]. L-stable [26], composite Runge-
Kutta [2, 12], finite volume approximation [14]
and the approximations based on wavelet bases
[5, 8, 17] are among the most successful methods
for the numerical solutions of such stiff problems
in recent years. In this article, the attempt is
to show that some simple techniques can some-
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times be efficient. therefore, it is tried to get
an approximate solution by local annihilating the
residual function and its derivatives. The pre-
sented method has a simple structure, suitable
error bound and significant numerical results. To
describe this method, we consider the functional
equation

Ax = f, (1.1)

where A is a linear operator and f is a known
function. Let {pj}∞j=0 be a basis for solution space
of the Eq. (1.1). Then we may approximate the
unknown solution x by

xn(t) =
n∑

j=0

ajpj(t). (1.2)

By substituting (1.2) into (1.1), we find that

n∑
j=0

ajqj(s) = f(s) + rn(s), a ≤ s ≤ b, (1.3)

where

qj(s) = (Apj)(s), j = 0, · · · , n,
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and rn is the residual function. For determining
the unknown coefficients {aj}nj=0 by collocation
method(CM), we should solve the following linear
system of equations [9, 19]

rn(si) = 0 =⇒
n∑

j=0

ajqj(si) = f(si),

i = 0, · · · , n,

where the collocation points {si}ni=0 are chosen
arbitrarily from [a, b].

In ill-posed functional equations (for example,
Fredholm integral equations of the first kind), the
condition number of the coefficient matrix of the
above system is greatly enlarged by increasing
n. Therefore, any approximate solution of Eq.
(1.1) is determined by very large error [7, 10]. In
the new method, the derivatives of the residual
function rn have a main role in reducing the ill-
posedness of the problem and the approximate
solutions are determined in the form of multi-
rule functions. The presented error analysis and
numerical examples show that this method is ef-
ficient and applicable for numerical solution of
many ill-posed and stiff functional equations.

2 Description of the method

2.1 The main idea

Suppose that the exact solution of the functional
equation (1.1) is approximated by (1.2). Accord-
ing to the Eq. (1.3), the residual function can be
written as

rn(s) =
n∑

j=0

ajqj(s)− f(s), a ≤ s ≤ b. (2.4)

Let {si}mi=0 be arbitrary selected points from
[a, b]. Suppose that the residual function rn is
infinitely differentiable on the set {si}mi=0 ( it is
assumed that the left and right derivatives exist
at the boundary points). To determine the ap-
proximate solution of (1.1) in a neighborhood of
si, i = 0, · · · ,m, we set

r(k)n (si) = 0, k = 0, · · · , n, (2.5)

where r
(k)
n denotes kth derivative of rn. It follows

then from (2.4) that (for fixed i)

n∑
j=0

aijq
(k)
j (si) = f (k)(si), (2.6)

k = 0, · · · , n i = 0, · · · ,m.

The index i in the coefficients {aij}nj=0 denotes
that the approximate solution xn(t) is determined
in a neighborhood of si. We denote this solution
by xn,i(t). The matrix form of the linear system
of equations (2.6) is as follows.

Q(i)a(i) = F (i), i = 0, · · · ,m (2.7)

or, in the equivalent block matrix form
Q(0) 0 · · · 0

0 Q(1) · · · 0
...

...
. . .

...

0 0 · · · Q(m)




a(0)

a(1)

...

a(m)

 =


F (0)

F (1)

...

F (m)

 ,

where

Q(i) =


q0(si) q1(si) · · · qn(si)
q′0(si) q′1(si) · · · q′n(si)

...
...

. . .
...

q
(n)
0 (si) q

(n)
1 (si) · · · q

(n)
n (si)

 ,

a(i) =
(
ai0 ai1 · · · ain

)T
,

,

F (i) =
(
f(si) f ′(si) · · · f (n)(si)

)T
,

for i = 0, · · · ,m and 0 ∈ R(m+1)×(m+1) is the zero
matrix.

By solving the above linear system, the approx-
imate solution of the functional equation (1.1)
around the point si is determined by

xn,i(t) =

n∑
j=0

aijpj(t), i = 0, · · · ,m. (2.8)

By setting

t0 = s0, ti =
si−1 + si

2
, i = 1, · · · ,m,

tm+1 = sm,
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Table 1: Maximum absolute error, ∥e∥∞, for the Example 3.1.

ε = 10−3 ε = 10−5

n CM LAM CM LAM

1 7.7178e− 03 8.8784e− 02 7.7254e− 05 8.9575e− 04
2 9.9593e+ 00 1.5909e− 03 9.9996e+ 00 1.6195e− 07
3 9.8806e+ 00 4.2570e− 05 9.9988e+ 00 4.3728e− 11
4 9.7824e+ 00 1.5185e− 06 9.9978e+ 00 1.5741e− 14
5 9.6722e+ 00 6.7700e− 08 9.9967e+ 00 7.0827e− 18
6 9.5536e+ 00 3.6217e− 09 9.9954e+ 00 3.8243e− 21
7 9.4290e+ 00 2.2602e− 10 9.9941e+ 00 2.4091e− 24
8 9.2997e+ 00 1.6119e− 11 9.9927e+ 00 1.7344e− 27
9 9.1671e+ 00 1.2931e− 12 9.9913e+ 00 1.4047e− 30
10 9.0317e+ 00 1.1525e− 13 9.9898e+ 00 1.2641e− 33
11 8.8945e+ 00 1.1298e− 14 9.9883e+ 00 1.2514e− 36
12 8.7558e+ 00 1.2082e− 15 9.9868e+ 00 1.3514e− 39
13 8.6161e+ 00 1.3995e− 16 9.9851e+ 00 1.5810e− 42
14 8.4758e+ 00 1.7456e− 17 9.9841e+ 00 1.9918e− 45
15 8.3352e+ 00 2.3326e− 18 9.9838e+ 00 2.6888e− 48

Table 2: Maximum absolute error, ∥e∥∞, for the Example 3.2.

ε = 10−3 ε = 10−5

n CM LAM CM LAM

1 1.9960e− 03 8.5698e− 03 2.0000e− 05 9.9990e− 05
2 5.9010e− 02 1.3350e− 04 6.2843e− 03 1.9996e− 08
3 5.4490e− 02 2.7068e− 06 6.2437e− 03 5.9979e− 12
4 4.8966e− 02 6.3505e− 08 6.1929e− 03 4.4409e− 15
5 4.2878e− 02 1.6287e− 09 6.1354e− 03 1.7764e− 15
6 3.6515e− 02 4.4275e− 11 6.0728e− 03 3.5527e− 15
7 3.0151e− 02 1.2550e− 12 6.0062e− 03 1.4211e− 14
8 2.4070e− 02 3.8192e− 14 5.9362e− 03 3.0531e− 14
9 1.8531e− 02 4.2633e− 14 5.8634e− 03 2.8422e− 14
10 1.3733e− 02 2.8422e− 14 5.7881e− 03 5.4512e− 14
11 9.7829e− 03 1.9185e− 13 5.7105e− 03 1.1369e− 13
12 6.6928e− 03 2.8422e− 13 5.6309e− 03 2.5580e− 13
13 4.3950e− 03 4.5475e− 13 5.5496e− 03 6.8212e− 13
14 2.7699e− 03 2.2737e− 12 5.4666e− 03 1.1369e− 12
15 1.6758e− 03 3.1832e− 12 5.3830e− 03 4.5475e− 12

, the approximate solution of Eq.(1.1) takes the
piecewise function form

xn(t) =


∑n

j=0 a0jpj(t) t0 ≤ t < t1∑n
j=0 a1jpj(t) t1 ≤ t < t2

...
...∑n

j=0 amjpj(t) tm ≤ t ≤ tm+1.

(2.9)
We call this approach the local annihilation
method(LAM).

2.2 Error analysis

In this section, the convergence of the local anni-
hilation method is proved by presenting an error
bound. Let {si}mi=0 be a set of partition points
in [a, b] and xn(t) given by (2.9) be the related
approximate solution. We define

|∆|= max
1≤i≤m

|si − si−1|. (2.10)

and prove that the convergence order of the pre-
sented method is O( 1

n!n).

Lemma 2.1 Let

max
0≤i≤m

|r(k)n (si)|≤ M, k = 0, 1, 2, · · · ,
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Table 3: Maximum absolute error, ∥e∥∞, for the Example 3.3A.

ε = 10−12 ε = 10−14

n CM LAM CM LAM

1 1.4234e− 01 1.4183e− 01 1.4234e− 01 1.4183e− 01
2 1.4622e− 02 1.4586e− 02 1.4622e− 02 1.4586e− 02
3 1.0596e− 03 1.0557e− 03 1.0598e− 03 1.0577e− 03
4 9.2471e− 05 1.5272e− 04 2.0686e− 04 5.3245e− 05
5 2.3014e− 04 1.3046e− 04 6.5265e− 05 1.1055e− 01
6 8.8760e− 04 6.6836e− 06 1.2366e− 02 9.7149e− 06
7 8.1003e− 04 5.7086e− 06 3.9647e+ 00 2.0703e− 06
8 2.0861e− 02 4.8482e− 06 1.3408e− 02 7.6022e− 07
9 3.7981e− 03 4.9232e− 06 6.9882e− 02 7.2029e− 07
10 1.8363e− 02 4.9175e− 06 4.9028e− 02 7.2342e− 07
11 2.8237e− 03 4.9179e− 06 5.4459e− 02 7.2375e− 07
12 9.5276e− 04 4.9178e− 06 3.5002e+ 00 7.2312e− 07
13 2.1355e− 03 4.9178e− 06 4.7860e− 02 7.2375e− 07
14 4.3927e− 04 4.9178e− 06 9.6935e− 02 7.2342e− 07
15 2.0407e− 04 4.9178e− 06 1.0005e− 02 7.2345e− 07

Table 4: Maximum absolute error, ∥e∥∞, for the Example 3.3 B.

ε = 10−12 ε = 10−14

n CM LAM CM LAM

1 2.2327e− 02 2.2327e− 02 2.2327e− 02 2.2327e− 02
2 3.4053e− 04 1.7924e− 03 1.7414e− 03 1.7916e− 03
3 9.9720e− 05 6.3374e− 04 5.8595e− 03 6.3851e− 04
4 4.2923e− 05 2.6353e− 05 4.7434e− 03 2.7155e− 05
5 4.7167e− 05 5.4294e− 06 8.7616e− 03 6.4914e− 06
6 6.4304e− 05 9.3344e− 07 3.7614e− 03 6.4517e− 06
7 8.9088e− 05 7.5238e− 07 1.2446e− 02 6.4519e− 06
8 3.7391e− 04 7.7152e− 07 1.6332e− 02 6.4520e− 06
9 1.5598e− 04 7.7213e− 07 1.8612e− 02 6.4520e− 06
10 3.3079e− 04 7.7207e− 07 7.6010e− 02 6.4520e− 06
11 1.0750e− 04 7.7207e− 07 1.8536e− 02 6.4520e− 06
12 6.5696e− 05 7.7207e− 07 2.0952e− 02 6.4520e− 06
13 1.4975e− 04 7.7207e− 07 3.3348e− 03 6.4520e− 06
14 1.3171e− 04 7.7207e− 07 6.0423e− 03 6.4520e− 06
15 5.1317e− 05 7.7207e− 07 1.0364e− 02 6.4520e− 06

and |∆|< 1. Then we have

|rn(s)|≤ M(
1

(n+ 1)!
+

1

(n+ 2)!
+ · · ·).

for all s ∈ [a, b]

Let s ∈ [a, b] be arbitrary. Then there exists a
positive integer 0 ≤ l ≤ m such that

|s− sl|= min
0≤i≤m

|s− si|.

By using Taylor expansion of rn(s) around sl, we
have

rn(s) = rn(sl) +
(s− sl)

1

1!
r′n(sl) + · · ·+

(s− sl)
n

n!
r(n)n (sl) +

(s− sl)
n+1

(n+ 1)!
r(n+1)
n (sl) + · · · .

By the requirements (2.5) one gets

rn(s) =
(s− sl)

n+1

(n+ 1)!
r(n+1)
n (sl)+

(s− sl)
n+2

(n+ 2)!
r(n+2)
n (sl) + · · · .

Therefore, the assumptions

|r(k)n (sl)|≤ M, k = n+ 1, n+ 2, · · · ,

and

|s− sl|k≤ |∆|k< 1, k = n+ 1, n+ 2, · · · ,
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Table 5: Confirming the presented error bound and CPU time for the Example 3.4.

n Maximum absolute errors of LAM Presented error bound≃ 1
n!n

CPU time(in seconds)

1 1.6389e− 01 1.0000e+ 00 0.44
2 3.6323e− 02 2.5000e− 01 0.57
3 7.7801e− 03 5.5556e− 02 0.67
4 1.3005e− 03 1.0417e− 02 0.79
5 1.8838e− 04 1.6667e− 03 0.92
6 2.3754e− 05 2.3148e− 04 1.06
7 2.6591e− 06 2.8345e− 05 1.21
8 2.6754e− 07 3.1002e− 06 1.38
9 2.4447e− 08 3.0619e− 07 1.60
10 2.0462e− 09 2.7557e− 08 1.73
11 1.5800e− 10 2.2775e− 09 1.92
12 1.1323e− 11 1.7397e− 10 2.12
13 7.5684e− 13 1.2353e− 11 2.46
14 4.7296e− 14 8.1934e− 13 2.63
15 1.7986e− 14 5.0981e− 14 2.81

complete the proof.

Lemma 2.2 [25] For any positive integer n we
have

e−
n∑

k=0

1

k!
<

1

n!n
.

Corollary 2.1 By the assumptions of Lemma
2.1, for each positive integer n, we have

|rn(s)|≤
M

n!n
, s ∈ [a, b].

Since

1

(n+ 1)!
+

1

(n+ 2)!
+ · · · = e−

n∑
k=0

1

k!
,

then by Lemmas 2.1 and 2.2, we have

|rn(s)|≤
M

n!n
,

that is,

|rn(s)|= O(
1

n!n
). (2.11)

It should be mentioned that, the error bound in
Corollary 2.1 may be violated by ill-posed prob-
lems, since in this case the linear systems (2.7)
usually have large condition numbers.

3 Test problems

In this section, we consider some stiff and ill-
posed functional equations of the form (1.1) in
order to compare accuracy of collocation method
with our new local annihilation method.

Case 1:

In this case, we deal with the stiff initial-value
problem [11].

(Ax)(s) = εx′(s) + a(s)x(s),

x(0) = x0, s ∈ [0, T ].

These equations are characterized by the pres-
ence of a small parameter as coefficient of the
first-order derivative. These problems are stiff
and ill-posed when ε → 0 and have been treated
numerically by using various approaches [13, 24].

Case 2:

Let

(Ax)(s) =

∫ b

a
k(s, t)x(t)dt.

In this case, we deal with a Fredholm integral
equation of the first kind which is considered as
an ill-posed problem. The solution of this prob-
lem may not exist, and if it exists it may not
be unique [7, 10]. Many problems in engineer-
ing can be modelled by this kind of equations.
For example, one and two-dimensional scatter-
ing from conducting bodies can be modelled by
them [6]. In most numerical approaches for solv-
ing these equations, the attempt is to get accurate
approximations by reducing their ill-posedness
[3, 4, 5, 10]. One of the reliable treatments for
these equations is the regularization method that
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is presented by Tikhonov and Phillips [27, 23] in-
dependently. This method transforms the Fred-
holm integral equation of the first kind∫ b

a
k(s, t)x(t)dt = f(s), s ∈ [a, b],

to the following Fredholm integral equation of the
second kind(regularized equation)

εxε(s) +

∫ b

a
k∗k(s, t)xε(t)dt = (3.12)

(k∗f)(s), s ∈ [a, b],

where [10]

k∗k(s, t) =

∫ b

a
k(u, s)k(u, t)du,

(k∗f)(s) =

∫ b

a
k(u, s)f(u)du, s, t ∈ [a, b],

and ε is a small positive parameter called the
regularization parameter. Also, Tikhonov and
Phillips [16, 23] showed that

lim
ε→0

xε(s) = x(s)

By the above assumptions, we solve equation
(3.12) by collocation and the new method. The
presented numerical examples show that the new
method is more accurate and stable than the col-
location method.

Note

For computing the related integrals, we use a
Gaussian quadrature rule of order 10 with 16
significant digits(by MATLAB R2013b) and max-
imum precision is used in solving stiff problems.
In the following tables the collocation method
and the local annihilation method are denoted
by CM and LAM respectively. The maximum
absolute error ∥e∥∞ for the following examples
is computed by ∥e∥∞= max|x(s) − xn(si)| in
collocation points. The basis functions are
chosen as pj(t) = tj , j = 0, · · · , n.

Example 3.1 Consider the initial value problem

εx′(s) + x(s) = g(s) + εg′(s),

x(0) = 10, s ∈ [0, T ],

where g(s) = 10− (10 + s)exp(−s) and the exact
solution is xε(s) = g(s) + 10exp(− s

ε). The prob-
lem explains an initial layer of thickness O(ε) at
x = 0 (see [13, 24] for more details). We solve
this perturbed problem for ε = 10−3 and 10−5 with
T = 1. For these values of ε, the errors of dynam-
ical systems method(DSM), proposed in [24], are
about 2.9 × 10−3 while our method shows more
accurate results (see Table 1).

Example 3.2 Consider

εx′(s) +
1

1 + s
x(s) = e

− s√
ε (

1

1 + s
−

√
ε),

x(0) = 1, s ∈ [0, 1],

with the exact solution xε(s) = e
− s√

ε . The nu-
merical results are given in Table 2 for ε = 10−3

and 10−5.

Example 3.3 A:∫ 1

0
estx(t)dt =

es+1 − 1

s+ 1
, s ∈ [0, 1].

B: ∫ π
6

0
cos(s− t)x(t)dt =

3sin(s) + (2π + 3
√
3)cos(s)

24
, s ∈ [0,

π

6
].

The exact solutions are respectively es and
cos(s). We solve the perturbed regularized forms
of A and B for ε = 10−12 and 10−14 with the
collocation and the new method. The error of ap-
proximate solution for the equation A is of order
O(10−5) by augmented Galerkin method [4], while
our new method is more accurate than the aug-
mented Galerkin method (see Table 3 and Table
4).

Finally, to confirm the presented error bound
(2.11), we solve the following well-posed problem
[18] by new method. The maximum absolute er-
rors (Table 5) are compatible with the given error
bound (2.11).
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Example 3.4

x(s)− 1

2

∫ 1

0
(1 + s)e−stx(t)dt =

e−s +
1

2
(e−(1+s) − 1), s ∈ [0, 1].

The exact solution is e−s. The numerical
results and CPU time for local annihilation
method(LAM) are shown in Table 5.

4 Conclusion

The numerical results show that the local anni-
hilation method is often more accurate and more
stable than the collocation method for the numer-
ical solution of the presented stiff and ill-posed
problems. Moreover, this new method can be
considered as a new approach in solving many
stiff engineering problems. It is also shown by
examples 1-3 that this method can be used as an
efficient method for solving problems where the
collocation method fails. Finally, the numerical
results of example 4 confirm the presented error
bound of the well-posed problems.
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