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Abstract

Based on reproducing kernel theory, an effective numerical technique is proposed for solving second
order linear two-point boundary value problems with deviating argument. In this method, reproducing
kernels with Chebyshev polynomial form are used (C-RKM). The convergence and an error estimation
of the method are discussed. The efficiency and the accuracy of the method is demonstrated on some
numerical examples.
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1 Introduction

B
oundary value problems (BVPs) associated
with different kinds of differential equations

play important rolls to modelling a wide vari-
ety of nature phenomena [1, 2, 3]. Differential
equations with deviating argument have many
applications such as study of problems in auto-
matic control theory, problems of self-oscillating
systems, long-term planning theory in economics,
problems in rocket motion, a series of problems
in biological science, and many other areas of sci-
ence and technology. Many authors have been
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studied the question of existence and uniqueness
of a solution for this type of differential equations,
see e.g. [4, 5] and references cited therein. Fi-
nite differences method [4], collocation methods
[10, 15], Richardson extrapolation [6], shooting
techniques [7, 11], projection method [16], suc-
cessive and Pad approximations [5, 12] and suc-
cessive interpolations [8] are some of the existing
numerical methods for boundary value problems
of differential equations with deviating argument.
In this paper, based on reproducing kernel with
polynomial form [13, 14], we propose an effec-
tive numerical technique for solving the following
second order two-point boundary value problems
with a deviating argument:


x′′(t) + p(t)x(t) + q(t)x(ϕ(t)) = f(t),
0 ≤ t ≤ T,
x(0) = α,
x(T ) = β,

(1.1)
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Table 1: Numerical results for Example 4.1

τj x(τj) |r9(τj)| |R9(τj)|

0.07853981634 1.0815433471031854 1.30590E-14 1.50629E-11
0.15707963268 1.1687714705415926 1.64035E-14 2.15166E-11
0.23561944901 1.2612036262339692 4.20775E-14 1.85277E-11
0.31415926535 1.3583650163803942 2.08167E-14 5.11430E-12
0.39269908169 1.4597897167486004 2.50910E-14 2.05089E-11
0.47123889804 1.5650235492518021 2.48690E-14 5.52214E-12
0.54977871438 1.6736268821076297 4.59632E-14 2.00872E-11
0.62831853072 1.7851773403142603 1.92069E-14 2.45562E-11
0.70685834706 1.8992724097327580 1.67644E-14 1.82232E-11
0.78539816340 2.0155319187205900 0 2.10839E-10

where T > 0, α, β ∈ R, and ϕ : [0, T ] → R is such
that 0 ≤ ϕ(t) ≤ T, ∀t ∈ [0, T ]. We suppose that ϕ
is Lipschitzian, p, q ∈ C2(0, a) and f ∈ L2

w[0, T ]
are sufficiently regular given functions such that
Eq. (1.1) satisfies the existence and uniqueness of
the solution. Without loss of generality, we can
assume that the boundary conditions in Eq. (1.1)
are homogeneous. In this paper, based on re-
producing kernel theory, reproducing kernels with
polynomial form will be constructed and a com-
putational method is described in order to obtain
the accurate numerical solution with polynomial
form of the Eq. (1.1) in the reproducing kernel
spaces spanned by the Chebyshev basis polyno-
mials.

2 Construction of reproducing
kernels with Chebyshev poly-
nomials

For T > 0, denote by Pn[0, T ] the set of all poly-
nomials on [0, T ] with real coefficients and degree
less than or equal to n, namely,

Pn[0, T ] := span{1, t, t2, ..., tn} (2.2)

equipped with the following inner product

⟨x, y⟩Pn =
T∫
0

ω(t)x(t)y(t)dt,

∀x, y ∈ Pn[0, T ],

(2.3)

and the norm

||x||Pn=
√
⟨x, x⟩Pn , ∀x ∈ Pn[0, T ], (2.4)

where ω is a positive weight function.
For T > 0 and positive weight function ω(t) =

T
2
√
Tt−t2

, the sequence of shifted Chebyshev poly-

nomials of the first kind in t are defined on [0, T ]
and can be determined as follows:

T ∗
i (t) = 2(2T−1t− 1)T ∗

i−1(t)− T ∗
i−2(t),

i ≥ 2,
(2.5)

with T ∗
0 (t) = 1, T ∗

1 (t) = 2T−1t− 1.
The orthogonality condition is

⟨T ∗
i , T

∗
j ⟩ =

T∫
0

ω(t)T ∗
i (t)T

∗
j (t)dt

=


0, i ̸= j,
Tπ
2 , i = j = 0,
Tπ
4 , i = j ̸= 0.

(2.6)

Theorem 2.1 [13, 14] Pn[0, T ] is a reproducing
kernel space and its reproducing kernel is

Rn(t, s) =
n∑

i=0

ei(t)ei(s), (2.7)

where ei(t) =

{
2
TπT

∗
i (t), i = 0,

4
TπT

∗
i (t), i ̸= 0.

Note that the functions in space Pn[0, T ] do not
satisfy the boundary conditions of Eq. (1.1). So
we define a closed subspace of Pn[0, T ] by impos-
ing required homogeneous boundary conditions
on it.

Definition 2.1 Let

P 0
n [0, T ] = {x|x ∈ Pn[0, T ], x(0) = x(T ) = 0}.

(2.8)
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Lemma 2.1 [9] For 2 ≤ i ≤ n, the functions
defined by

φi(t) =

{
T ∗
i (t)− 1, i is even,
T ∗
i (t)− 2T−1t+ 1, i is odd,

(2.9)
have the property

φi(0) = φi(T ) = 0, (2.10)

and for the function space P 0
n [0, T ], the basis

functions defined by Eq. (2.9) are complete.

The orthonormal basis {φ̄i}ni=2 of P 0
n [0, T ] can

be deduced from Gram-Schmidt orthogonaliza-
tion process using {φi}ni=2. In [13] the following
closed form of φ̄i for i = 2, 3, . . . , n is obtained,

φ̄i(t) = κi


T ∗
i (t)− αiU

∗
i (t), i even,

T ∗
i (t)− αiV

∗
i (t), i odd,

(2.11)

where κi = 2
√

(i−1)
π(i+1)T , αi = 2

i−1 , U
∗
i (t) =

i−2
2∑

k=1

T ∗
2k(t)−

1
2 and V ∗

i (t) =

i−1
2∑

k=1

T ∗
2k−1(t).

Similar to the proof of Theorem 2.1, we
can prove that the function space P 0

n [0, T ] is a
reproducing kernel space and its reproducing
kernel is,

Kn(t, s) =

n∑
i=2

φ̄i(t)φ̄i(s). (2.12)

3 C-RKM for Eq. (1.1)

Let Eq. (1.1) can be transformed into the fol-
lowing operator form:{

Lx(t) = f(t), 0 ≤ t ≤ T,
x(0) = x(T ) = 0,

(3.13)

where

Lx(t) = x′′(t) + p(t)x(t) + q(t)x(ϕ(t)), (3.14)

is a linear operator. We shall give the approx-
imate solution of Eq. (3.13) in space P 0

n [0, T ]
based on reproducing kernel theory. Let {ti}n−2

i=0

be (n − 1)-distinct nodes in interval [0, T ]. put
ψi(t) = LsKn(t, s)|s=ti , (i = 0, 1, . . . , n − 2),

where the subscript s in the operator L indi-
cates that the operator L applies to the func-
tion s. {ψi}n−2

i=0 is a basis for P 0
n [0, T ] [13,

14]. Gram-Schmidt orthogonalization of {ψi}n−2
i=0

yields {ψ̄i}n−2
i=0 which is an orthonormal basis for

P 0
n [0, T ],

ψ̄i =
i∑

k=0

βikψk, (βii > 0, i = 0, 1, . . . , n− 2).

(3.15)
So, xn as an approximation solution of Eq. (3.13)
in space P 0

n [0, T ] can be represented the following
form:

xn(t) =

n−2∑
i=0

⟨x, ψ̄i⟩Pnψ̄i(t), (3.16)

where x is the exact solution.

Theorem 3.1 If xn is the approximation solu-
tion of Eq. (3.13) in P 0

n [0, T ] then it can be rep-
resented the following form:

xn(t) =

n−2∑
i=0

i∑
k=0

βikf(tk)ψ̄i(t). (3.17)

According to Eqs. (3.15) and (3.16), one obtains

⟨x, ψ̄i⟩Pn =
i∑

k=0

βik⟨x(.),LsKn(., s)|s=tk⟩Pn

=
i∑

k=0

βikLs⟨x(.),Kn(., s)⟩Pn |s=tk .

(3.18)
Based on reproducing kernel theory and the fact
that x is the exact solution, we have

⟨x, ψ̄i⟩Pn =

i∑
k=0

βikLsx(s)|s=tk=

i∑
k=0

βikf(tk).

(3.19)
Hence,

xn(t) =
n−2∑
i=0

⟨x, ψ̄i⟩Pnψ̄i(t)

=
n−2∑
i=0

i∑
k=0

βikf(tk)ψ̄i(t).

(3.20)

To analyze the convergence and the error esti-
mation in L0

2[0, T ] = {x | x ∈ L2
w[0, T ], u(0) =

u(T ) = 0}, we define the error and the residual
functions as

rn(t) = x(t)− xn(t), (3.21)
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Rn(t) = f(t)− Lxn(t) = Lrn(t), (3.22)

where t ∈ [0, T ], x ∈ L0
2[0, T ] be the exact so-

lution of Eq. (1.1) and xn is given by Eq. (3.17).

Theorem 3.2 Let x ∈ L0
2[0, T ] be the exact so-

lution of Eq. (1.1), xn ∈ P 0
n [0, T ] in Eq. (3.17)

be the approximation of x and for t ∈ [0, T ],
rn(t) = x(t)− xn(t) then

||rn||oL2
w
−→ 0, n −→ ∞.

From Lemma 2.1 and Eq. (2.11), it follows that

x(t) =

∞∑
i=2

⟨
x, φ̄i

⟩
oL2

w

φ̄i(t), (3.23)

and for any integer n, i = 0, 1, . . . , n− 2,⟨
φ̄i, ψi

⟩
oL2

w

= 0, j = n+ 1, n+ 2, . . . . (3.24)

Let

L0
2[0, T ] = P 0

n [0, T ]⊕ P 0⊥
n [0, T ], (3.25)

where P 0⊥
n [0, T ] = Span{φ̄i}∞i=n+1. So

rn ∈ P 0⊥
n [0, T ], (3.26)

and we have

||rn||2oL2
w
= ||

∞∑
i=n+1

⟨
rn, φ̄i

⟩
oL2

w

φ̄i||2oL2
w

=

∞∑
i=n+1

(
⟨
rn, φ̄i

⟩
oL2

w

)2.

Thus

||rn||oL2
w
−→ 0, n −→ ∞. (3.27)

Theorem 3.3 For n ≥ 2 and T > 0, Let t0 <
t1 < · · · < tn−2 be any (n − 1)-distinct nodes
in (0, T ) such that lim

n→∞
t0 = 0, lim

n→∞
tn−2 = T .

If p, q, ϕ and f ∈ Cn−1[0, T ] then there exists a
positive constant c such that

||rn||L2
w
≤ c

√
Tπ

2
ℏn−1
n , (3.28)

where ℏn = max
0≤i≤n−3

{|ti+1 − ti|}.

At the first, we prove that

Rn(tj) = 0, j = 0, 1, . . . , n− 2. (3.29)

We rewrite Eq. (3.17) as

xn(t) =

n−2∑
i=0

Aiψ̄i(t), (3.30)

where Ai =
∑i

k=0 βikf(tk). By the following re-
producing property of Kn(t, s), we have

(Lxn)(tk) =
n−2∑
i=0

AiLtψ̄i(t)|t=tk

=

n−2∑
i=0

AiLt

⟨
ψ̄i(s),Kn(t, s)

⟩
|t=tk

=
n−2∑
i=0

Ai

⟨
ψ̄i(s),LtKn(t, s)

⟩
|t=tk

=

n−2∑
i=0

Ai

⟨
ψ̄i(s),LtKn(t, s)|t=tk

⟩
=

n−2∑
i=0

Ai

⟨
ψ̄i(s), ψk(s)

⟩
(3.31)

Note here that

j∑
k=0

βjk(Lxn)(tk) =
n−2∑
i=0

Ai

⟨
ψ̄i,

j∑
k=0

βjkψk

⟩
=

n−2∑
i=0

Ai

⟨
ψ̄i, ψ̄j

⟩
= Aj .

(3.32)

In the above equation, putting j = 0. So, we
have (Lxn(t0)) = f(t0). Similarly, taking j =
1, 2, . . . , n− 2 in Eq. (3.32), we obtain

(Lxn)(tj) = f(tj), j = 1, . . . , n− 2. (3.33)

From the proof of theorem (3.6) in [13], there
exists a positive constant d such that

||Rn||∞= max
t∈[0,T ]

|Rn(t)|≤ dℏn−1
n . (3.34)

According to the Eq. (2.6), we have

||Rn||L2
w
=

√∫ T

0
ω(t)|Rn(t)|2dt ≤ d

√
Tπ

2
ℏn−1
n .

(3.35)
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Nothing that

rn = L−1Rn, (3.36)

then there exists a constant c such that

||rn||L2
w
= ||L−1Rn||L2

w
≤ ||L−1||L2

w
.||Rn||L2

w

(3.37)

≤ c

√
Tπ

2
ℏn−1
n .

4 Numerical examples

Example 4.1 [8] Consider the following bound-
ary value problem for t ∈ [0, π4 ],{

x′′(t) + 2 cos( t2).x(
t
2) = 1 + 2(1 + t2

8 ) cos(
t
2),

x(0) = 1, x(π4 ) = 1 +
√
2
2 + π2

32 .

(4.38)

Here T = π
4 , ϕ(t) = λt with λ = 1

2 . The exact

solution is x(t) = t2

2 +sin(t)+1, t ∈ [0, π4 ]. Apply

C-RKM with n = 9, ti =
π
8 (cos(

(i+1)π
n )+1), i =

0, 1, . . . , n−2. For τj =
πj
40 , j = 1, 2, . . . , 10, the

results are in Table 1, where the absolute errors
|rn(τj)| and the absolute residual values |Rn(τj)|
reveal the accuracy of the method in the third and
forth columns, respectively. The absolute error
function |rn(t)| and the absolute residual function
|Rn(t)| are shown in Figure 1.

(a)The absolute error function |r9(t)|

(b)The absolute residual function |R9(x)|

Figure 1: The absolute error and residual func-
tions of Example 4.1

Example 4.2 For the following boundary value
problem

x′′(t)− et.x(t) + x(sin(t)) = f(t),
t ∈ [0, 1],
x(0) = 0, x(1) = 0.

(4.39)

the exact solution is x(t) = et− et2 , where f(t) =
et − e2t + et+t2 + esin(t) − esin

2(t) − 2et
2
(1 + 2t2).

Here T = 1, ϕ(t) = sin(t). Apply C-RKM with

n = 2, 3, . . . , 9, ti = 1
2(cos(

(i+1)π
n ) + 1), i =

0, 1, . . . , n − 2. Figure 2 gives the order of er-
ror for Example 4.2, where the number of nodal
points covers the range from 1 to 8. This figure
goes in agreement with the results of convergence
and error analysis.

Figure 2: The order error of xn(t), n = 2, 3, . . . , 9
for the Example 4.2

5 Conclusion

The aim of this paper is to propose an effective
reproducing kernel numerical technique for two-
point boundary value problems associated to sec-
ond order differential equations with deviating ar-
gument. This method uses reproducing kernels
with polynomial form. The main advantage of
the the paper consist in Theorem (3.2) and (3.3)
that demonstrate the convergence, lower compu-
tational cost and high accuracy of the method.
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