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Abstract

In this paper, a new iteration scheme for computing the sign of a matrix which has no pure imaginary
eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an
algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed.
Moreover, another efficient algorithm for this purpose is derived free from the computation of principal
matrix square root. Finally, some tests are given to show their applicabilities.
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1 Introduction

F
unctions of matrices have attracted the at-
tentions of many researchers in Mathematics

due to several applications, refer to [9, pages 26-
29] or [4, 5, 6]. Here, we focus on the computation
of the geometric mean of two complex Hermitian
positive definite (HPD) matrices, [10].

For two HPD matrices, the mean GM(M,N)
can be expressed uniquely as [17]

GM(M,N) = M#N := M(M−1N)
1
2 . (1.1)

This is a special form of the more general map:

M#tB := M(M−1N)t, t ∈ R, (1.2)

which has a geometrical interpretation as the
parametrization of the geodesic joining M and
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N for a certain Riemannian geometry on Pn, i.e.,
the set of n× n HPD matrices, [15].

It can be proved that M#N verifies all the
properties required by a geometric mean [10], like

M#N = N#M, (1.3)

and if M and N commute, then M#N = (AB)
1
2 .

Thus, the definition is well established.
Notice that M#N solves the equation of Ric-

cati:
YM−1Y = N, (1.4)

and it can be proved that it is the unique posi-
tive solution [2, page 106]. Moreover, using the
properties of the principal square root one can
derive

M#N = M(M−1N)
1
2 = (NM−1)

1
2M =

N(NM−1)
1
2 = (MN−1)

1
2N. (1.5)

Here we refer to Y as the principal matrix
square root of M and write Y = M

1
2 when it
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solves the matrix equation F (Y ) ≡ Y 2 −M = 0.

The symbol M
1
2 stands for the principal square

root of M . Such a matrix exists and is unique if
M has no nonpositive real eigenvalues, in partic-
ular if M is positive then M

1
2 is positive.

Bhatia in [2, page 105] proposed another for-
mulation for computing such a mean as follows:

M#N = M
1
2 (M−1/2NM− 1

2 )
1
2M

1
2 , (1.6)

for the two complex HPD matrices, viz, M and
N .

The rest of this paper is organized as follows.
In Section 2, an iterative formula for computing
matrix sign and its acceleration through a com-
bination with Newton’s iteration (see e.g. [14]
and the references therein) are presented. We
also provide some discussions and illustrate how
the new scheme could be constructed and imple-
mented. An error analysis for computing ma-
trix sign function is brought forward in Section
3. Note that the idea of computing the geometric
mean using the sign function can also be found
in [9, page 131] and has recently been revived in
[18]. In Section 4, we show the numerical results
and highlight the benefit of the technique. Fi-
nally, several concluding comments are collected
in Section 5.

2 A stable iterative method

As pointed out by some practitioners, see e.g. [1]
and the references cited therein, one efficient way
to design new iterative methods for some ma-
trix functions is to apply the zero-finding itera-
tive methods for solving operator equations which
here is a matrix equation. Following such a strat-
egy, we here must solve the following nonlinear
matrix equation

F (Y ) := Y 2 − I = 0, (2.7)

where I is an identity matrix. This could result
an iterative method for calculating the matrix
sign function. To this end, let us take into ac-
count the following cubically convergent scheme
[13]{

yk = lk − sk,

lk+1 = lk −
(
1 + f(yk)

f(lk)− 5
3
f(yk)

)
sk,

(2.8)

with sk = f(lk)
f ′(lk)

.

By applying (2.8) for solving the scalar version
of (2.7), we uniquely obtain the following itera-
tion scheme (in the reciprocal form):

lk+1 =
lk(5 + 7l2k)

1 + 9l2k + 2l4k
, k ≥ 0. (2.9)

It is possible to still improve the results by per-
forming one Newton’s step at the end of a three-
step iteration, after (2.8), in what follows:

yk = lk − sk,

zk = lk −
(
1 + f(yk)

f(lk)− 5
3
f(yk)

)
sk,

lk+1 = zk − f ′(zk)
−1f(zk).

(2.10)

In this way, a sixth-order accelerated scheme is
attained as comes next (again in the reciprocal
form) via solving the scalar version of (2.7):

lk+1 =
2lk(5 + 7l2k)(1 + 9l2k + 2l4k)

1 + 43l2k + 155l4k + 85l6k + 4l8k
, k ≥ 0.

(2.11)

Now, it is pointed out that global convergence
behavior of the main contributed scheme (2.11)
can be investigated in a similar way to equations
(17)-(21) of [19, pages 4-5].

The attraction basins of (2.11) for finding the
solution of the polynomial equation l2 − 1 = 0 in
the square [−2, 2] × [−2, 2] of the complex plane
is offered in Figure 1, which confirm the global
convergence with the step size 0.01 in each di-
mension for discretization of the domain. The
basins of attraction have been shaded according
to the number of iterates for converging to the
roots of l2−1 = 0. In addition, whatever the area
is darker it requires more number of iterates to
converge. The two white points in the positions
±1 indicate the exact solutions. For obtaining
further background about how such fractals are
drawn, the reader may refer to [21].

In Figure 2, this attraction basins have been
provided in the Riemann sphere. The reason of
drawing the attraction basins on the Riemann
sphere is to clearly show the global convergence
for a very large domain of validity. Anyhow, we
remark that to observe the behavior precisely,
colorful printing or observing the electronic PDF
version is recommended. In consequence, it is
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Figure 1: Attraction basins for (2.11) shaded ac-
cording to the number of required iterations.

Figure 2: Attraction basins for (2.11) on the Rie-
mann sphere.

straightforward to näıvely extend (2.11) to ma-
trix environment and uniquely attain

Yk+1 = [10Yk + 104Y 3
k + 146Y 5

k + 28Y 7
k ]

× [I + 43Y 2
k + 155Y 4

k + 85Y 6
k + 4Y 8

k ]
−1, (2.12)

and further by factorizing to a more simple-to-
implement version as follows:

Yk+1 = Yk[10I + 104Y 2
k + 146Y 4

k + 28Y 6
k ]

× [I + 43Y 2
k + 155Y 4

k + 85Y 6
k + 4Y 8

k ]
−1. (2.13)

The constructed iteration (2.13) is not a mem-
ber of the Padé family of iterations introduced
in [11] for computing the matrix sign function.
Therefore, it is new with global convergence and
worth investigating. This motivates us for further

investigation of (2.13). Note that the most con-
cise definition of the matrix sign decomposition
is given by [7]:

M = SN = M(M2)−1/2(M2)1/2. (2.14)

wherein S = sign(M) is the matrix sign function.

A recent discussion about the link between ma-
trix problems and nonlinear equation solvers are
given in [12]. We state that all of such extensions
in the scalar case and studying their orders are of
symbolic computational nature [22].

It is often the case that scalar iterations in-
volving derivatives of the scalar functions are not
stable when applied to matrices in their simpli-
fied form. Due to this, we must investigate the
stability of (2.13) for finding S = sign(M) (see
e.g. [16]). It is remarked that proving that a ma-
trix iteration is stable boils down to showing that
the Fréchet derivative in a neighborhood of the
solution has bounded powers [9, Definition 4.17].
However, we here study how small perturbations
can be controlled along the iterates. This is done
as follows.

Lemma 2.1 Let the complex matrix M =
[mi,j ]n×n have no pure imaginary eigenvalue,
then the sequence {Yk}k=∞

k=0 generated by (2.13)
is stable using Y0 = M .

Proof. If Y0 is a function of M , then the iter-
ates from (2.13) are all functions of M and hence
commute with M . Let Γk be a numerical per-
turbation introduced at the kth iterate of (2.13).
Next, one has

Ỹk = Yk + Γk. (2.15)

Here, we perform a first-order error analysis, i.e.,
formally use approximations (Γk)

i ≈ 0. The es-
timate is true as long as Γk is enough small.
We also use the identity (H + L)−1 ≃ H−1 −
H−1LH−1, for any nonsingular matrix H, arbi-
trary square matrix L. Using Γk+1 = Ỹk+1 −
Yk+1 = Ỹk+1 − S, one can verify (considering
Yk ≃ sign(M) = S, and k ≫ 1):
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Ỹk+1 = (10Ỹk + 104Ỹ 3
k + 146Ỹ 5

k + 28Ỹ 7
k )

×
[
I + 43Ỹ 2

k + 155Ỹ 4
k + 85Ỹ 6

k + 4Ỹ 8
k

]−1

= (10(Yk + Γk) + 104(Yk + Γk)
3

+ 146(Yk + Γk)
5 + 28(Yk + Γk)

7)

× [I + 43(Yk + Γk)
2 + 155(Yk + Γk)

4

+ 85(Yk + Γk)
6 + 4(Yk + Γk)

8]−1

≃ (10(S + Γk) + 104(S + Γk)
3

+ 146(S + Γk)
5 + 28(S + Γk)

7)

× [I + 43(S + Γk)
2 + 155(S + Γk)

4

+ 85(S + Γk)
6 + 4(S + Γk)

8]−1

≃
(
S +

1

2
Γk − 1

2
SΓkS

)
,

(2.16)

and also by applying the equalities S2 = I and
S−1 = S to

Γk+1 ≃ 0.5Γk − 0.5SΓkS. (2.17)

So because ∥Γk+1∥≤ 0.5∥Γ0 − SΓ0S∥, we have
the stability. The proof is ended. 2

The definition of the matrix geometric mean
via (1.6) requires the computation of the matrix
square root of M and its inverse. To use (2.13)
for our aim, we remind an identity [9, page 108]
as follows:

sign

([
0 M
I 0

])
=

[
0 M

1
2

M− 1
2 0

]
, (2.18)

which indicates a consequential relationship be-
tween principal matrix square root M

1
2 and the

matrix sign function. Thus, we can compute M
1
2

and M− 1
2 at the same time using the identity

(2.18) by the new scheme (2.13). In our case, M
and N are HPD.

Another way for computing the matrix geomet-
ric mean of two HPD matrices without computing
the principal matrix square roots, is via applying
another identity [9, page 131] in what follows:

sign

([
0 M

N−1 0

])
=

[
0 C

C−1 0

]
, (2.19)

where
C = M(N−1M)−

1
2

= M(M−1N)
1
2 = M#N. (2.20)

This gives immediately the geometric mean of two
HPD matrices.

In this way, one is able to propose another it-
eration for our purpose via matrix sign function.
Although in this approach no direct computation
of matrix square roots is needed, we need to com-
pute the inverse of the HPD matrix N before
starting the iteration method with a reasonable
accuracy.

Now, we are able to propose a variant of the
new scheme for computing the matrix geomet-
ric mean without the calculation of the matrix
square root in Algorithm 1.

This algorithm must be implemented using
sparse array techniques so as to save much time.
To be more precise, in Algorithm 1 and even if
the matrices M and N and their geometric mean
are dense, but two blocks always contain zero,
which this could effectively decrease the compu-
tational effort of the implementation of the pro-
posed scheme.

It is also of requisite nature to remark that it
would be favorable to still accelerate the scheme
(2.13) for finding matrix sign and subsequently
for matrix geometric mean. After the above dis-
cussions, it could be inferred that we could con-
struct methods of efficient higher order or to do
some scaling approach in order to accelerate the
initial phase of convergence. These could be in-
vestigated for future works.

Algorithm 1. A way to calculate M#N .
1: Considering M , N and the initial

approximation Y0 =

[
0 M

N−1 0

]
2: Apply (2.13) as long as

∥Yk+1 − Yk∥< ϵ
3: Use the block C based on the

identity (2.19) using the previous step

3 Convergence study

This section is dedicated to the convergence prop-
erties of (2.13). Comprehensibly, when the new
scheme is convergent for finding the matrix sign,
then it could be used efficiently for our primary
aim which is the computation of the matrix geo-
metric mean of two complex HPD matrices.

Remark 3.1 It should be pointed out that
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sign

(
0 M + E
I 0

)
is a fixed point of the itera-

tion (2.13) for any E such that M +E is positive
definite.

Theorem 3.1 Let the complex matrix M =
[mi,j ]n×n have no pure imaginary eigenvalues. If
Y0 = M , then the iterative method (2.13) con-
verges to S = sign (M).

Proof. The convergence of rational iterations
can be analyzed in terms of the convergence of
the eigenvalues of the matrices Yk. The reason
for this is that if Y has a Jordan decomposi-
tion Y = ZJZ−1, then R(Y ) = ZR(J)Z−1. Let
M have the following Jordan canonical form [9,
page 107] Z−1MZ = Λ, and the terminology
Dk = Z−1YkZ, and (2.13), we obtain:

Dk+1 = [10Dk + 104D3
k + 146D5

k + 28D7
k]

[I + 43D2
k + 155D4

k + 85D6
k + 4D8

k]
−1. (3.21)

Notice that if D0 is a diagonal matrix then based
on an inductive proof, all successive Dk are di-
agonal too. Now the relation (3.21) can be re-
written as n uncoupled scalar iterations to solve
g(x) = x2 − 1 = 0 in what follows

uik+1 =
10uik + 104uik

3
+ 146uik

5
+ 28uik

7

1 + 43uik
2
+ 155uik

4
+ 85uik

6
+ 4uik

8 ,

(3.22)
where uik = (Dk)i,i and 1 ≤ i ≤ n. From (3.21)
and (3.22), it is enough to study the convergence
of {uik} to sign(λi), for all 1 ≤ i ≤ n. From
(3.22) and since the eigenvalues ofM are not pure
imaginary, it is clear that sign(λi) = si = ±1. As
such, we have:

uik+1 − sign(λi)

uik+1 + sign(λi)
=

−
(−sign(λi) + uik)

6(sign(λi)− 2uik)
2

(sign(λi) + uik)
6(sign(λi) + 2uik)

2
. (3.23)

As |ui0|= |λi|> 0, and∣∣∣∣ui0 − sign(λi)

ui0 + sign(λi)

∣∣∣∣ < 1. (3.24)

This yields:

lim
k→∞

∣∣∣∣∣uik+1 − sign(λi)

uik+1 + sign(λi)

∣∣∣∣∣ = 0, (3.25)

and
lim
k→∞

|uik|= 1 = | sign(λi)|. (3.26)

As long as (3.24) is broken, we can write the fol-
lowing:

λi
k+1 − sign(λi)

λi
k+1 + sign(λi)

=

−
(−sign(λi) + λi

k)
6(sign(λi)− 2λi

k)
2

(sign(λi) + λi
k)

6(sign(λi) + 2λi
k)

2
. (3.27)

It reveals that {uik} has convergence. So, we ob-
tain limk→∞Dk = sign(Λ). This reveals a sixth
rate of speed for the discussed iteration scheme
and the proof is ended.

The iteration (2.13) requires one matrix inver-
sion pre computing step and by using (2.18) ob-

tains both M
1
2 and M− 1

2 , which are of interest
in (1.6). Notice that for computing the principal

matrix square root of (M− 1
2NM− 1

2 )
1
2 , we use the

Jordan Canonical Form [9, page 3].

4 Numerical experiments

The high-order globally-convergent scheme
(2.13) denoted by PM (via computing the

(M− 1
2NM− 1

2 )
1
2 ) and Algorithm 1 which is

denoted by AL2, are tested using Mathematica
10 in machine precision [8, chapters 2-3]. The
following method (DB) [3] is also employed for
the sake of comparisons

X0 = M, L0 = I, k = 0, 1, · · · ,
Xk+1 =

1
2 [Xk + L−1

k ],

Lk+1 =
1
2 [Lk +X−1

k ].

(4.28)

This method generates the sequences {Xk} and

{Lk} which converge to M
1
2 and M− 1

2 , respec-
tively. Then, one may use (1.5) for computing
matrix geometric mean.

We also could similarly use the Newton’s
method (NB) given by

Yk+1 = 0.5
[
Yk + Y −1

k

]
, (4.29)

for matrix sign with an application of (2.18). This
scheme is implemented along with steps 1-3 of
Algorithm 1 for finding matrix geometric mean
(use (4.29) instead of (2.13)).

Since the new methods are based on the com-
putation of matrix sign function, we compare our
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results with NB and DB only. Accordingly meth-
ods based on polar decomposition [10, formula
(7)] are not considered for comparisons. They can
be considered for numerical comparisons if we ex-
tend our high-order globally-convergent method
(2.13) for polar decomposition. Furthermore, we
state that there is no breakdown in case of in-
verting matrices in (2.13) or (4.29) since the input
matrices are HPD and therefore there is no eigen-
value on the imaginary axis to make the process
breakdown.

Now, we compare the behavior of different
methods and report the numerical results using
l∞ for all norms involved with the stopping crite-
rion

∥Yk+1 − Yk∥∞≤ ϵ = 10−6. (4.30)

The computer specifications are Windows 7 Ulti-
mate, Intel(R) Core(TM) i5-4440 CPU 3.10GHz,
8.00 GB of RAM with 64-bit Operating System.

Example 4.1 [20] We consider two HPD matri-
ces as follows:

M =


2 0 1
0 2 0 1
1 0 2 0
. . .

. . .
. . .

. . .
. . .

1 0 2


n×n

,

N =


1.5 2

3

2
3

. . .
. . .

. . .
. . . 2

3
2
3 1.5


n×n

,

when n = 100. The results of comparisons for
different methods are given in Table 1. In the
meantime, we re-examine the above matrices for
higher dimensional cases. Results for these cases
are gathered up in Tables 2-4.

From the numerical results presented in Tables 1-
4, we observe that the accuracy of approximations
to the solution increases as the iteration process
(2.13) proceed, showing the stable character of
the proposed method. The acquired numerical re-
sults agree with the theoretical discussions given
in the Sections 2-3. The accuracy was measured
via (4.30) for this test. Note also that in general
the geometric mean of sparse matrices could be
dense.

Table 4 includes a comparison of computational
times. Accordingly, we can state that AL2 re-
duces the number of iterations and the compu-
tational time in finding the geometric mean fa-
vorably. The execution time of the new method
AL2 in Table 4 seems to grow faster in contrast
to NB, thus we expect the latter to be asymptoti-
cally better for very large scale matrices. But our
proposed algorithm AL2 is a good choice for the
moderate sizes. Another point is that although
the two methods PM and AL2 are basically the
same method applied to different matrices, they
achieve much different accuracies in the compu-
tation of the geometric mean. This phenomenon
occurs since the implementations (structures) of
these schemes are totally different to each other
as it was seen in Section 2.

∥Y2 − Y1∥ ∥Y3 − Y2∥ ∥Y4 − Y3∥
PM 9.20731 0.0000554761 2.7929× 10−14

AL2 8.95253 0.000105972 5.81497× 10−14

DB 0.566718 0.126108 0.0608576
NB 80.5 39.2501 17.6667

Table 1: Numerical simulations for Experiment 4.1.

∥Y3 − Y2∥ ∥Y4 − Y3∥ ∥Y5 − Y4∥
PM 0.0000554761 2.5209× 10−14

AL2 0.000105972 3.85714× 10−14

DB 0.126108 0.0608576 0.0218202
NB 39.2501 17.6667 5.84346

Table 2: Results of comparisons for Experiment 4.1
when n = 200.

∥Y3 − Y2∥ ∥Y4 − Y3∥ ∥Y5 − Y4∥
PM 0.0000554761 2.5209× 10−14

AL2 0.000105972 5.712× 10−14

DB 0.126108 0.0608576 0.0218202
NB 39.2501 17.6667 5.84346

Table 3: Computational evidences in Experiment 4.1
for n = 300.

Example 4.2 In this experiment another exam-
ple of different nature has been tested. Let us con-
sider M and N to be two Hermitian positive def-
inite matrices obtained by taking covariance ma-
trix of two random complex matrices of the size
50 × 50 in what follows (in the style of the pro-
gramming package Mathematica):
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Methods PM AL2 DB NB

n = 100 0.66 0.10 0.56 0.55

n = 150 1.50 0.25 1.20 1.33

n = 200 2.84 0.56 2.19 2.30

n = 250 4.01 1.02 3.60 3.44

n = 300 6.71 1.96 5.07 5.28

n = 350 8.57 3.15 6.70 7.14

n = 400 11.72 6.73 8.82 9.58

n = 450 15.58 9.79 13.06 12.23

n = 500 20.89 13.36 17.25 15.51

n = 550 24.63 17.54 20.25 18.33

n = 600 31.31 21.95 27.69 22.24

Table 4: The elapsed times in Experiment 4.1.
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Figure 3: Error decay in Experiment 4.2.

n = 50; SeedRandom[1];

M = Covariance@RandomComplex[1

+ I, {n, n}];

N = Covariance@RandomComplex[2

+ I, {n, n}];

Here, we compare the results of different schemes

in Figure 3 in terms of the residual
∥Yk+1−Yk∥∞

∥Yk+1∥∞
after 80 iterations without considering a tolerance
to check the stability behavior as well. The quan-

tity which is plotted in Figure 3 is
∥Yk+1−Yk∥∞

∥Yk+1∥∞ .

Results are in agreement with the above discus-
sions. The interesting point is that only AL2 can
reach accuracies higher than 10−9, which is an
advantage of the proposed algorithm in contrast
to the existing ones.

The higher accuracy of AL2 is due to its high
rate of convergence while its computational time
is reasonable since the process converges quickly
to the matrix geometric mean and this yields in
fewer computational effort in the whole of the im-
plementation.

Example 4.3 Using the same conditions and
criterions as in Experiment 4.2, here we compare

the convergence history of different methods for
the following two random complex matrices of the
size 200× 200:

n = 200; SeedRandom[123456];

M = Covariance@RandomComplex[300

- 4 I, {n, n}];

N = Covariance@RandomComplex[

20, {n, n}];

The results are furnished in Figure 4 in terms of

the residual
∥Yk+1−Yk∥∞

∥Yk+1∥∞ .

The results once again show that the presented
schemes in this work are good choices for finding
the matrix geometric mean of two HPD matrices
and they support the theoretical results exposed
previously.
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Figure 4: Error decay in Experiment 4.3.

5 Conclusion

We have extended a third-order method for solv-
ing (2.7) and obtained an iteration scheme for
finding the sign function. Combining this itera-
tion with a Newton’s step, a sixth-order method
(2.13) had been derived. Next, it was discussed
that how the new method owns global conver-
gence for finding matrix sign function. Using a
well-known identity in matrix functions theory,
we designed an algorithm for computing the geo-
metric mean of two HPD matrices. As a matter
of fact, the application of matrix sign function in
computing principal matrix square root had been
applied. A new algorithm has also been proposed.
The asymptotical stability and error analysis of
the proposed method have been studied as well.
To illustrate the new technique some numerical
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experiments were furnished. Computational re-
sults have justified the effective convergence be-
havior of AL2. At last, it is stated that the exten-
sion of the new scheme for computing geometric
mean of more than two matrices can be taken into
account for future works.
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