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Abstract

The present study deals with the inverse DEA using the non-radial Enhanced Russell (ER)-measure
in the presence of fuzzy data. This paper proposes a technique to treat the fuzzy data in the problem
of simultaneous estimation of input-output levels. Necessary and sufficient conditions are provided
for ER-measure maintaining in the presence of fuzzy data. A numerical example with real data is
presented to show the accuracy of the proposed method.
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1 Introduction

D
ata Envelopment Analysis is a useful non-
parametric technique to estimate relative

efficiencies of a set of decision making units
(DMUs) in a multiple-input multiple-output pro-
duction technology. In traditional DEA, it is as-
sumed that all input and output data are exactly
known. DEA technique was initially suggested
by Charnes et al. [3] (CCR model) and was ex-
tended by many scholars, see e.g. [5, 6, 18] for
some reviews.

The idea of the inverse DEA was first intro-
duced by Zhang and Cui [37]. They measured
the input increase of a particular DMU under its
given output increase and preserving the CCR
efficiency. After introducing inverse DEA, some
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scholars investigated the problem more and es-
tablished various results in different frameworks,
see, e.g. [1, 4, 7, 10, 27, 35]. The problem
of output-estimation under preserving the effi-
ciency is studied by Wei et al. [34] (The first
Question in inverse DEA). The problem of input-
estimation is discussed by Hadi-Vencheh et al.
[16, 17], provided that the DMU maintains its
current efficiency level (The second Question in
inverse DEA). Both problems, input-estimation
and output-estimation, provided that the DMU
maintains or improves its current efficiency level,
are studied by Jahanshahloo et al. [20, 21]. Both
problems are investigated under inter-temporal
dependence by Jahanshahloo et al. [24]. They
used MOLP models and established necessary
and sufficient conditions for input/output esti-
mation. In addition, the problem of simultane-
ous estimation of input-output levels is studied by
Jahanshahloo et al. [22] (The third Question in
inverse DEA). They used multiple-objective lin-

165

http://ijim.srbiau.ac.ir/


166 S. Ghobadi /IJIM Vol. 10, No. 2 (2018) 165-180

ear programming tools for input-output estimat-
ing under preserving the efficiency score. This
Question was studied by Ghobadi under improv-
ing the efficiency score [11]. The aim of the paper
is possible extensions and applications of the ex-
isting approaches in a different framework.
Although traditional DEA models evaluate the
DMUs with the exactly known data, in recent
efforts, some researchers have dealt with assess-
ing the DMUs in the presence of fuzzy data, us-
ing an analytical framework of DEA: fuzzy DEA.
Fuzzy DEA is one of the most noticeable subjects
for performance analysis under imprecise data
both practically and theoretically. Emrouznejad
and Tavana [9] reviewed the literature on the
fuzzy DEA methods and provided a classifica-
tion scheme with six categories: (i) The toler-
ance approach; (ii) The q-level-based approach;
(iii) The fuzzy ranking approach; (iv) The pos-
sibility approach; (v) The fuzzy arithmetic; and
(vi) The fuzzy random/type-2 fuzzy set. The use
of fuzzy set theory, fuzzy decision making, and
fuzzy hybrid solutions in various models for eval-
uating and selecting suppliers in a 50-year pe-
riod have been investigated by Dragan Simic et
al. [31]. Kao and Liu[25, 26] applied the notion
of fuzziness and converted a fuzzy DEA model
to a family of traditional DEA models by ap-
plying the α-cut approach and Zadeh’s exten-
sion principle [36]. Some scholars have suggested
fuzzy DEA models, using the concept of compar-
ing fuzzy numbers, including [14, 32]. Hougaard
[19] proposed the application of efficiency aggre-
gated, using the value judgments or manager’s
opinions. Guo and Tanaka [15] extended the
CCR efficiency score in traditional DEA to fuzzy
DEA and studied the relationship between DEA
and regression analysis. Soleimani-damaneh [32]
studied the additive model as a free coordinate,
orientation-less, and slack-based model in tradi-
tional DEA and extended this model to be a fuzzy
DEA model, utilizing a fuzzy signed distance and
fuzzy upper bound concept. The production pos-
sibility set is extended by Allahviranloo et al. to
the fuzzy production possibility set, using exten-
sion principle[2]. They proposed the CCR fuzzy
model which satisfies the initial concepts with
crisp data. The problem of input-estimation in
traditional DEA was extended to fuzzy DEA by

Ghobadi and Jahangiri [12]; they provided a suf-
ficient condition for efficiency maintaining in the
presence of fuzzy data. Both problems, input-
estimation and output-estimation, were extended
under inter-temporal dependence in the presence
of fuzzy data by Ghobadi et al. [13]. In this pa-
per, we extend the third Question in inverse DEA,
which has been provided by Jahanshahloo et al.
[22], to a fuzzy framework. For this purpose, the
non-radial ER-measure model [30] is extended to
the fuzzy framework. The technique proposed to
treat the fuzzy data in the problem of simulta-
neous estimation of input-output levels is using
fuzzy ER-measure model. To answer the third
Question in inverse DEA with fuzzy data, neces-
sary and sufficient conditions are proposed, uti-
lizing Pareto and weak Pareto solutions of fuzzy
MOLP problems. A numerical example with real
data is provided to confirm the credibility and
applicability of our method. The given results
are important theoretically, because these provide
some theoretical extensions of inverse DEA the-
ory in the presence of fuzzy data, which can ex-
pand the application area of inverse DEA. They
might be practically significant as well because
they can be used to make better decisions in or-
der to extend DMUs with fuzzy data.
The structure of the paper is as follows: Some
preliminaries from fuzzy decision-making theory
and inverse DEA are presented in Section 2. Sec-
tion 3 is devoted to the main results of the paper.
This section provides some theoretical extensions
of inverse DEA theory in the presence of fuzzy
data, which can expand the application area of
inverse DEA. Necessary and sufficient conditions
for simultaneous estimation of input-output levels
are proposed in the presence of fuzzy data. More-
over, a numerical example with real data is pre-
sented to illustrate the purpose of this research.
Finally, concluding remarks and directions for fu-
ture research are given in Section 4.

2 Preliminaries

2.1 Fuzzy Numbers in Fuzzy Decision
Making

The concept of the fuzzy sets first introduced by
Zadeh [36]. He suggested fuzzy sets as sets with
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boundaries that were not precise. In this subsec-
tion, we review some of the basic concept of the
fuzzy numbers needed through the paper.

Let X be a nonempty topological space. The
set of all fuzzy subsets Ã of X, we denote by
F (X), where every fuzzy subsets Ã of X is
uniquely determined by the membership function
µÃ : X −→ [0, 1], and [0, 1] ⊂ R is a unit interval,
R is the Euclidean space of real number. For each
α ∈ [0, 1], the α-cut set of Ã is defined as follows:

[Ã]α =


{x ∈ X | µÃ(x) ≥ α} if α ∈ (0, 1],

cl{x ∈ X | µÃ(x) > α} if α = 0,
(2.1)

where clB means a topological closure of B, B ⊂
X. [Ã]Lα and [Ã]Uα are represented the lower and
upper endpoint of any α-cut set of Ã, respectively.
Also, [Ã]0 is called support of Ã and denoted by
suppÃ. Furthermore, if [Ã]α for every α ∈ [0, 1],
are closed, bounded, compact or convex, then
fuzzy subset Ã of X is closed, bounded, compact
or convex, respectively. Moreover, if [Ã]α ̸= ∅
then Ã is called normal. A fuzzy number is de-
fined as follows:

Definition 2.1 fuzzy set Ã of R is called a fuzzy
number, satisfying three conditions:

(a) µÃ be an upper semi-continuous function
on R,

(b) suppÃ be a compact interval,
(c) if suppÃ = [a, b] then there exist c, d, in

which, a ≤ c ≤ d ≤ b and µÃ is non-decreasing
on the interval [a, c], equal to 1 on the interval
[c, d], and non-increasing on the interval [d, b].

If [Ã]L0 > 0, then fuzzy number Ã is called a
positive fuzzy number. Let L,R : [0, 1] −→ [0, 1],
with L(0) = R(0) = 1 and L(1) = R(1) = 0, are
non-increasing, continuous shape functions. Also,
let F (R) be the family of fuzzy numbers on R. An
L-R fuzzy number Ã is denoted as (a, β, γ)L−R

and defined with the following membership func-
tion:

µÃ(x) =



L(a−x
β ) if a− β ≤ x ≤ a,

1 if x = a

R(x−a
γ ) if a ≤ x ≤ a+ γ,

0 otherwise,

where β, γ > 0 are positive scalers and “a” is the
center of Ã. The set all L-R fuzzy numbers denote
by FNLR(R). For each α ∈ [0, 1], it is easy see
that

[Ã]α = [a− L−1(α)β, a+R−1(α)γ]. (2.2)

Let Ã = (a, β, γ)L−R and B̃ = (b, η, µ)L−R be
two L-R fuzzy numbers and λ a non-negative real
number. Then:


Ã⊕ B̃ = (a+ b, β + η, γ + µ)L−R,

λ · Ã = (λa, λβ, λγ)L−R.

(2.3)

The most used operator in the context of fuzzy
decision making, is the min T-norm operator.
Considering this operator to evaluate a linear
combination of fuzzy quantities λ1 · Ã1 ⊕ λ2 ·
Ã2 ⊕ . . . ⊕ λn · Ãn, where Ãj = (aj , βj , γj)L−R;
j = 1, . . . , n are L-R fuzzy numbers with common
shape functions (L and R) and λj ; j = 1, . . . , n
are positive scalars, we have

λ1 · Ã1 ⊕ λ2 · Ã2 ⊕ . . .⊕ λn · Ãn

=
n∑

j=1

λj · Ãj

= (

n∑
j=1

λjaj ,

n∑
j=1

λjβj ,

n∑
j=1

λjγj)L−R. (2.4)

Therefore, for each α ∈ [0, 1], we get

[
n∑

j=1

λjÃj ]α = [
n∑

j=1

λj(aj − L−1(α)βj),

n∑
j=1

λj(aj +R−1(α)γj)]. (2.5)

For ranking fuzzy numbers different methods
have been proposed by many researchers, includ-
ing [14, 15, 32]. Soleimani-damaneh [32] defined
the weighted signed distance of Ã and B̃ as fol-
lows:

d(Ã, B̃) =

∫ 1

0
([Ã]Lα + [Ã]Uα − [B̃]Lα − [B̃]Uα )dα.

(2.6)
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A decision maker can rank a pair of fuzzy num-
bers, Ã and B̃, using d(Ã, B̃) based on the fol-
lowing rules:

a) Ã ≺ B̃ iff d(Ã, B̃) < 0,

b) Ã ≻ B̃ iff d(Ã, B̃) > 0, (2.7)

c) Ã ≈ B̃ iff d(Ã, B̃) = 0.

If Ã = (a, β, γ)L−R and B̃ = (b, η, µ)L−R are L-
R fuzzy numbers with the same shape functions,
then we obtained:

d(Ã, B̃) = (2a− 2b)

+(η − β)

∫ 1

0
L−1(α)dα

+(γ − µ)

∫ 1

0
R−1(α)dα. (2.8)

Let Ã = (a, β, γ)L−R be a L − R fuzzy num-
ber. If L(x) = R(x) = 1 − x, then Ã is called a
triangular fuzzy number. In addition, if L(x) =
R(x) = 1− x and β = γ, then Ã is called a sym-
metric triangular fuzzy number and denoted as
Ã = (a, β).

2.2 Inverse DEA

In this subsection, we review the problem pro-
vided by Jahanshahloo et al. [22] in the inverse
DEA field. Let us to consider a set of n DMUs,
{DMUj : j = 1, . . . , n}, in which DMUj produce
multiple positive outputs yrj( r = 1, . . . , s),
by utilizing multiple positive inputs xij( i =
1, . . . ,m). Suppose that the input and output for
DMUj be denoted by Xj = (x1j , x2j , . . . , xmj)

t

and Yj = (y1j , y2j , . . . , ysj)
t, respectively. The

ER-measure model [30] is considered for measur-
ing the relative efficiency of the unit under assess-
ment DMUo, o ∈ {1, 2, . . . , n}, as follows:

ρ∗o = min
1
m

∑m
i=1 θi

1
s

∑s
r=1 φr

(2.9)

s.t.

n∑
j=1

λjxij ≤ θixio, ∀i

n∑
j=1

λjyrj ≥ φryro, ∀r

θi ≤ 1, i = 1, . . . ,m,

φr ≥ 1, r = 1, . . . , s,

λ ∈ Ω,

where

Ω = {λ|λ = (λ1, . . . , λn), δ1(
n∑

j=1

λj

+δ2(−1)δ3ν) = δ1, ν ≥ 0, λj ≥ 0,∀j}. (2.10)

In the above model δ1, δ2, and δ3 are parameters
with 0−1 values. It is easy to see that: If δ1 = 0,
then model (2.9) is under a constant returns to
scale (CRS); If δ1 = 1 and δ2 = 0, then the above
model is under a variable returns to scale (VRS);
If δ1 = δ2 = 1 and δ3 = 0, then model (2.9) is
under a non-increasing returns to scale (NIRS);
and If δ1 = δ2 = δ3 = 1, then the above model is
under a non-decreasing returns to scale (NDRS)
assumption of the production technology.

Definition 2.2 (ER-measure) [30] The optimal
value ρ∗o of the model (2.9) is called the ER-
measure of DMUo. DMUo is ER-efficient, if
and only if, ρ∗o = 1(this condition is equivalent
to θ∗i = 1 and φ∗

r = 1 for each i = 1, . . . ,m,
r = 1, . . . , s in any optimal solution).

Inverse DEA concept first was studied by Zhang
and Cui [37]. Since then this problem has allo-
cated to itself some of researches in DEA field and
provided various results in different frameworks.
Jahanshahloo et al. [22] proposed the following
important question in inverse DEA field:

Question. If the efficiency score ρ∗o remains
unchanged, but the decision maker is required
to increase input-output levels, how much should
the input-output levels of DMUo increase?

The aim of Question is estimating the mini-
mum increase of input vector (α∗

o) and the maxi-
mum increase of output vector (β∗

o) provided that
the efficiency score of DMUo is still ρ∗o. In fact,

α∗
o = (α∗

1o, α
∗
2o, . . . , α

∗
mo)

t

= Xo +∆Xo, ∆Xo ≩ 0,

β∗
o = (β∗

1o, β
∗
2o, . . . , β

∗
so)

t

= Yo +∆Yo, ∆Yo ≩ 0.

For convenience, assume that DMUn+1 repre-
sents DMUo after changing the input and output
vectors. The following model is proposed to esti-
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mate the ER-measure of DMUn+1:

ρ+∗
o = min

1
m

∑m
i=1 θi

1
s

∑s
r=1 φr

(2.11)

s.t.

n∑
j=1

λjxij + λn+1α
∗
io ≤ θiα

∗
io, ∀i,

n∑
j=1

λjyrj + λn+1β
∗
ro ≥ φrβ

∗
ro, ∀r,

θi ≤ 1, i = 1, . . . ,m,

φr ≥ 1, r = 1, . . . , s,

λ ∈ Ω+,

where

Ω+ = {λ|λ = (λ1, . . . , λn+1), δ1(
n+1∑
j=1

λj + δ2

(−1)δ3ν) = δ1, ν ≥ 0, λj ≥ 0, j = 1, . . . , n+ 1}.
The variables of the above model are
θ1, θ2, ..., θm, φ1, φ2, ..., φs, λ1, λ2, ..., λn+1. If
the optimal values of problems (2.9) and (2.11)
are equal, we say that the ER-measure un-
changed, i.e., eff(α∗

o, β
∗
o) = eff(Xo, Yo).

11

To answer the above question, Jahanshahloo et
al. [22] proposed the following MOLP problem:

min (α1o, . . . , αmo) (2.12)

max (β1o, . . . , βso)

s.t.

n∑
j=1

λjxij ≤ θ∗i αio, ∀i,

n∑
j=1

λjyrj ≥ φ∗
rβro, ∀r,

αio ≥ xio, i = 1, . . . ,m

βro ≥ yro, r = 1, . . . , s

αo ∈ Λ, βo ∈ Γ,

λ ∈ Ω,

where (θ∗ = (θ∗1, . . . , θ
∗
m), φ∗ = (φ∗

1, . . . , φ
∗
s)) is

the optimal solution of model (2.9). The variables
vector in MOLP (2.12) is (λ, αo, βo). Λ and Γ are
bounded sets and represent the increasing varia-
tion rate of input-output levels of DMUo which
are considered by the decision maker.

Theorems 2.1 and 2.2 are contains some of the
main results of Jahanshahloo et al. [22].

11we use the notation eff(XoYo) instead of measure
efficiency of DMUo.

Theorem 2.1 [22] Suppose that DMUo is ER-
efficient and (λ∗, θ∗, φ∗) is an optimal solution
to problem (2.9). Let (λ̂∗, α̂∗

o, β̂
∗
o) be a Pareto

solution to MOLP(2.12) such that α̂∗
o > Xo. If

the input-output levels of DMUo are increased
to α̂∗

o and β̂∗
o , respectively, then eff(α̂∗

o, β̂
∗
o) =

eff(Xo, Yo).

Theorem 2.2 [22] Suppose that (λ∗, θ∗, φ∗)
is an optimal solution to problem (2.9). Let
(λ̄, ᾱo, β̄o) be a feasible solution to MOLP (2.12).
If eff(ᾱo, β̄o) = eff(Xo, Yo), then (λ̄, ᾱo, β̄o)
must be a weak Pareto solution to MOLP (2.12).

3 Inverse DEA with Fuzzy Data

In this section, we extend Question (the prob-
lem simultaneous estimation of input-output lev-
els, which has been provided by Jahanshahloo et
al. [22]) to a fuzzy framework. In other words,
we provides some theoretical extensions of inverse
DEA theory in the presence of fuzzy data, which
can expand the application area of inverse DEA.
The technique proposed to treat the fuzzy data in
the problem of simultaneous estimation of input-
output levels is using fuzzy ER-measure model.

Let us to consider a set of n DMUs,
{DMUj : j = 1, . . . , n}, in which DMUj con-
sumes multiple positive fuzzy inputs x̃ij to pro-
duce multiple positive fuzzy outputs ỹrj . Sup-
pose that the inputs and outputs of DMUj

be denoted by x̃j = (x̃1j , x̃2j , . . . , x̃mj)
t and

ỹj = (ỹ1j , ỹ2j , . . . , ỹsj)
t, respectively. The input-

output levels are considered as L-R fuzzy num-
bers as

x̃ij = (xij , νij , γij)Lij−Rij , i = 1, 2, . . . ,m,

ỹrj = (yrj , ηrj , µrj)L′
ij−R′

ij
, r = 1, 2, . . . , s,

satisfying

Li1 = . . . = Lin = Li, i = 1, 2, . . . ,m,

Ri1 = . . . = Rin = Ri, i = 1, 2, . . . ,m,

L′
r1 = . . . = L′

rn = L′
r, r = 1, 2, . . . , s,

R′
r1 = . . . = R′

rn = R′
r, r = 1, 2, . . . , s.

As mentioned in [12] these conditions are not too
restrictive, as we are simply requiring that, for
any factor, the corresponding n data can be de-
scribed by means of L-R fuzzy numbers of the
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same type. For instance, if these are trapezoidal
or triangular fuzzy numbers, then the above con-
ditions hold.

To measure the relative efficiency of the unit
under assessment of DMUo, o ∈ {1, 2, . . . , n},
the non-radial ER-measure model (2.9) can be
naturally extended to be the following fuzzy ER-
measure model:

ρ∗o = min
1
m

∑m
i=1 θi

1
s

∑s
r=1 φr

(3.13)

s.t.

n∑
j=1

λj x̃ij ≼ θix̃io, ∀i,

n∑
j=1

λj ỹrj ≽ φrỹro, ∀r,

θi ≤ 1, i = 1, . . . ,m,

φr ≥ 1, r = 1, . . . , s,

λ ∈ Ω.

Using relations (2.4)-(2.7), the above model can
be converted to the following optimization prob-
lem:

ρ∗o = min
1
m

∑m
i=1 θi

1
s

∑s
r=1 φr

(3.14)

s.t. d( θix̃io,
n∑

j=1

λj x̃ij) ≥ 0, ∀i,

d(

n∑
j=1

λj ỹrj , φrỹro) ≥ 0, ∀r,

θi ≤ 1, i = 1, . . . ,m,

φr ≥ 1, r = 1, . . . , s,

λ ∈ Ω.

Now, we devoted to extending Question, provided
by Jahanshahloo et al. [22]. The aim of the study
is estimating the minimum increase of input vec-
tor α̃∗

o = (α∗
o, ν

∗
o , γ

∗
o)L−R and the maximum in-

crease of output vector β̃∗
o = (β∗

o , η
∗
o , µ

∗
o)L−R pro-

vided that the DMUo, with respect to other units,
maintains its current efficiency level. In fact,

α̃∗
o = (α̃∗

1o, α̃
∗
2o, . . . , α̃

∗
mo)

t

= x̃o +∆x̃o, ∆x̃o ∈ (FNLR(R)+)
m,

β̃∗
o = (β̃∗

1o, β̃
∗
2o, . . . , β̃

∗
so)

t

= ỹo +∆ỹo, ∆ỹo ∈ (FNLR(R)+)
s,

where FNLR(R)+ is the family of all non-
negative fuzzy numbers.

Suppose DMUn+1 represents DMUo after
changing the input-output levels. The following
model is proposed to estimate the ER-measure of
DMUn+1:

ρ+∗
o = min

1
m

∑m
i=1 θi

1
s

∑s
r=1 φr

(3.15)

s.t.

n∑
j=1

λj x̃ij + λn+1α̃
∗
io ≼ θiα̃

∗
io, ∀i,

n∑
j=1

λj ỹrj + λn+1β̃
∗
ro ≽ φrβ̃

∗
ro, ∀r,

θi ≤ 1, i = 1, . . . ,m,

φr ≥ 1, r = 1, . . . , s,

λ ∈ Ω+.

If the optimal values of Models (3.13) and
(3.15) are equal, we say that the ER-measure un-
changed, i.e., eff(α̃∗

o, β̃
∗
o) = eff(x̃o, ỹo). To an-

swer Question, the following fuzzy MOLP prob-
lem is considered:

min (α̃1o, . . . , α̃mo) (3.16)

max (β̃1o, . . . , β̃so)

s.t.

n∑
j=1

λj x̃ij ≼ θ∗i α̃io, ∀i,

n∑
j=1

λj ỹrj ≽ φ∗
rβ̃ro, ∀r,

α̃io ≽ x̃io, i = 1, . . . ,m,

β̃ro ≽ ỹro, r = 1, . . . , s,

α̃o ∈ Λ̃, β̃o ∈ Γ̃,

λ ∈ Ω,

where (θ∗ = (θ∗1, . . . , θ
∗
m), φ∗ = (φ∗

1, . . . , φ
∗
s)) is

an optimal solution of Model (3.13). Λ̃ and
Γ̃ are bounded fuzzy sets and represent the in-
creasing variation rate of inputs and outputs of
the DMUo which are considered by the decision
maker. In this model, (λ, α̃o, β̃o) ∈ FNLR(R)n×
FNLR(R)m × FNLR(R)s is the variable vector.

Theorem 3.1 shows how the above fuzzy MOLP
can be applied for input-output levels estimation.

Theorem 3.1 Suppose that DMUo is ER-
efficient and (λ̄∗, θ∗, φ∗) is an optimal solution of
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Model(3.13). Let (λ∗, α̃∗
o = (α∗

o, ν
∗
o , γ

∗
o)L−R, β̃

∗
o =

(β∗
o , η

∗
o , µ

∗
o)L−R) be a Pareto solution to fuzzy

MOLP(3.16). If one of the following assumptions
holds:

i) α̃∗
o ≈ x̃o,

ii) α̃∗
o ≻ x̃o.

Then

eff(α̃∗
o, β̃

∗
o) = eff(x̃o, ỹo).

Proof. To prove the theorem, ρ+∗
o = ρ∗o = 1

should be shown. Because (λ∗, α̃∗
o, β̃

∗
o) is a feasible

solution for model (3.16), we have
n∑

j=1

λ∗
j x̃ij ≼ θ∗i α̃

∗
io ≈ α̃∗

io, ∀i, (3.17)

n∑
j=1

λ∗
j ỹrj ≽ φ∗

rβ̃
∗
ro ≈ β̃∗

ro, ∀r, (3.18)

α̃∗
io ≽ x̃io, ∀i, (3.19)

β̃∗
ro ≽ ỹro, ∀r, (3.20)

β̃∗
o ∈ Γ̃, α̃∗

o ∈ Λ̃, (3.21)

λ∗ ∈ Ω. (3.22)

Let λ̄ = (λ̄1, . . . , λ̄n, λ̄n+1), in which λ̄j = λ∗
j

for each j = 1, . . . , n and λ̄n+1 = 0. It is clear
that λ̄ ∈ Ω+. Since λ̄ ∈ Ω+, because of (3.17)
and (3.18), (λ̄, θ∗, φ∗) ∈ Rn+1 × Rm × Rs is
a feasible solution to problem (3.15). Therefore,
ρ+∗
o ≤ ρ∗o = 1.

Let (λ+∗ = (λ+∗
1 , . . . , λ+∗

n+1), θ+∗ =
(θ+∗

1 , . . . , θ+∗
m ), φ+∗ = (φ+∗

1 , . . . , φ+∗
s )) be

an optimal solution to problem (3.15). The
inequalities (3.17) and (3.18) will be used
in problem (3.15), the following results are
obtained:

θ+∗
i α̃∗

io ≽
n∑

j=1

λ+∗
j x̃ij + λ+∗

n+1α̃
∗
io

≽
n∑

j=1

λ+∗
j x̃ij + λ+∗

n+1(

n∑
j=1

λ∗
j x̃ij),

θ+∗
i α̃∗

io ≽
n∑

j=1

(λ+∗
j + λ+∗

n+1λ
∗
j )x̃ij , ∀i, (3.23)

φ+∗
r β̃∗

ro ≼
n∑

j=1

λ+∗
j ỹrj + λ+∗

n+1β̃
∗
ro

≼
n∑

j=1

λ+∗
j ỹrj + λ+∗

n+1(
n∑

j=1

λ∗
j ỹrj),

φ+∗
r β̃∗

ro ≼
n∑

j=1

(λ+∗
j + λ+∗

n+1λ
∗
j )ỹrj , ∀r. (3.24)

Set λ̂j := λ+∗
j +λ+∗

n+1λ
∗
j for each j = 1, 2, . . . , n.

It is easily seen that λ̂ = (λ̂j , . . . , λ̂n) ∈ Ω.
By contradiction assume that ρ+∗

o < ρ∗o = 1. If
assumption (i) holds, then by (3.23) and (3.24),
we get

n∑
j=1

λ̂j x̃ij ≼ θ+∗
i α̃∗

io ≈ θ+∗
i x̃io, ∀i, (3.25)

n∑
j=1

λ̂j ỹrj ≽ φ+∗
r β̃∗

ro ≽ φ+∗
r ỹro, ∀r. (3.26)

Hence, λ̂ ∈ Ω, (3.25) and (3.26) imply that
(λ̂, θ+∗, φ+∗) is a feasible solution to model (3.13).

This implies ρ∗o ≤
1
m

∑m
i=1 θ

+∗
i

1
s

∑s
r=1 φ

+∗
r

< 1, which contra-

dicts the ER-measure of DMUo and completes
the proof under assumption (i).

To prove the theorem under assumption (ii),
we should show that ρ+∗

o = ρ∗o = 1. By contradict
assumption, since ρ+∗

o < ρ∗o = 1, then

1

m

m∑
i=1

θ+∗
i < 1 or

1

s

s∑
r=1

φ+∗
r > 1.

Therefore, there are two cases:
Case(a) If 1

m

∑m
i=1 θ

+∗
i < 1, then there exists at

least one t, 1 ≤ t ≤ m, such that θ+∗
t < 1. Since

α̃∗
to is a positive fuzzy number, for all α ∈ [0, 1]

the following inequality is obtained:

α∗
to − ν∗to

∫ 1

0
L−1(α)dα > 0,

α∗
to + γ∗to

∫ 1

0
R−1(α)dα > 0.

Therefore,

2α∗
to − ν∗to

∫ 1

0
L−1(α)dα

+γ∗to

∫ 1

0
R−1(α)dα > 0. (3.27)
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By (3.23), we have

θ+∗
t (2α∗

to − ν∗to

∫ 1

0
L−1(α)dα

+γ∗to

∫ 1

0
R−1(α)dα) ≥ 2

n∑
j=1

λ̂jxtj

−(
n∑

j=1

λ̂jνtj)

∫ 1

0
L−1(α)dα

+(

n∑
j=1

λ̂jγtj)

∫ 1

0
R−1(α)dα. (3.28)

By (3.27), (3.28), and θ+∗
t < 1, we get

2α∗
to − ν∗to

∫ 1

0
L−1(α)dα

+γ∗to

∫ 1

0
R−1(α)dα) > 2

n∑
j=1

λ̂jxtj

−(

n∑
j=1

λ̂jνtj)

∫ 1

0
L−1(α)dα

+(

n∑
j=1

λ̂jγtj)

∫ 1

0
R−1(α)dα. (3.29)

In other words,

n∑
j=1

λ̂j x̃tj ≺ α̃∗
to. (3.30)

If assumption (ii) holds, then α̃∗
io ≻ x̃io for each

i = 1, . . . ,m. Considering i = t, we have

2α∗
to − ν∗to

∫ 1

0
L−1(α)dα

+γ∗to

∫ 1

0
R−1(α)dα > 2xto

−νto

∫ 1

0
L−1(α)dα

+γto

∫ 1

0
R−1(α)dα. (3.31)

Now, we define

κ1to = 2

n∑
j=1

λ̂jxij

−(

n∑
j=1

λ̂jνtj)

∫ 1

0
L−1(α)dα

+(

n∑
j=1

λ̂jγtj)

∫ 1

0
R−1(α)dα,

κ2to = ρ1to = 2α∗
to − ν∗to

∫ 1

0
L−1(α)dα

+γ∗to

∫ 1

0
R−1(α)dα,

ρ2to = 2xto − νto

∫ 1

0
L−1(α)dα

+γto

∫ 1

0
R−1(α)dα.

If

ϵ = min

{
κ2to − κ1to

2
,
ρ1to − ρ2to

2

}
, (3.32)

then ϵ > 0, because κ2to−κ1to > 0 and ρ1to−ρ2to > o.

Now, define
ˆ̃
βo ≈ β̃∗

o and

ˆ̃αio ≈


(α∗

io − 2ϵ, ν∗io, γ
∗
io)L−R if i = t,

(α∗
io, ν

∗
io, γ

∗
io)L−R if i ̸= t.

Considering (3.32), the following inequality is ob-
tained:

ϵ ≤ κ2to − κ1to
2

=⇒ κ1to ≤ κ2to − 2ϵ.

Because θ∗t = 1, therefore

n∑
j=1

λ̂jxtj − (
n∑

j=1

λ̂jνtj)

∫ 1

0
L−1(α)dα

+(
n∑

j=1

λ̂jγtj)

∫ 1

0
R−1(α)dα ≤ 2α∗

to

−ν∗to

∫ 1

0
L−1(α)dα+ γ∗to

∫ 1

0
R−1(α)dα

−2ϵ = θ∗t 2((α
∗
to − ϵ)− ν∗to

∫ 1

0
L−1(α)dα

+γ∗to

∫ 1

0
R−1(α)dα).
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In other words,

n∑
j=1

λ̂j x̃tj ≼ θ∗t ˆ̃αto. (3.33)

By (3.32), we have

ϵ ≤ ρ1to − ρ2to
2

=⇒ ρ2to ≤ ρ1to − 2ϵ,

then

2xto−νto

∫ 1

0
L−1(α)dα+γto

∫ 1

0
R−1(α)dα

≤ 2α∗
to − ν∗to

∫ 1

0
L−1(α)dα

+γ∗to

∫ 1

0
R−1(α)dα− 2ϵ = 2(α∗

to − ϵ)

−ν∗to

∫ 1

0
L−1(α)dα+ γ∗to

∫ 1

0
R−1(α)dα.

In other words,

x̃to ≼ ˆ̃αto. (3.34)

By (3.19) and (3.34) (x̃io ≼ α̃∗
io ≈ ˆ̃αio for i ̸= t),

it is clear that

x̃io ≼ ˆ̃αio, i = 1, . . . ,m. (3.35)

In addition,

ˆ̃αo ∈ Λ̃, (3.36)

because x̃o ≼ α̃∗
o ∈ Λ̃, by (3.35), and

d(α̃∗
io, ˆ̃αio) =


2ϵ if i = t,

0 if i ̸= t,

imply that x̃o ≼ ˆ̃αo ∈ Λ̃.
By Eqs. (3.23), (3.24), and (3.33) we have

n∑
j=1

λ̂j x̃ij ≼ θ+∗
i α̃∗

io

≼ θ∗i α̃
∗
io ≈ θ∗i ˆ̃α

∗
io, ∀i, i ̸= t, (3.37)

n∑
j=1

λ̂j x̃tj ≼ θ∗t ˆ̃αto, (3.38)

n∑
j=1

λ̂j ỹrj ≽ φ+∗
r β̃∗

ro

≽ φ∗
rβ̃

∗
ro ≈ φ∗

r
ˆ̃
β∗
ro, ∀r, (3.39)

Since λ̂ ∈ Ω, because of (3.35)-(3.39) and ỹo ≼
β̃∗
o ≈ ˆ̃

βo ∈ Γ̃, (λ̂, ˆ̃αo,
ˆ̃
βo) is a feasible solution to

problem (3.16), in which

d(α̃∗
io, ˆ̃αio) =


2ϵ if i ∈ t,

0 if i ̸= t,

d(
ˆ̃
βro, β̃

∗
ro) = 0, r = 1, . . . , s.

Therefore,
ˆ̃αo ≼ α̃∗

o, ˆ̃αo ̸≈ α̃∗
o,

ˆ̃
βo ≈ β̃∗

o .

This contradicts the assumption that (λ∗, α̃∗
o, β̃

∗
o)

is a Pareto solution to problem (3.16), and the
proof of case (a) is completed.

Case (b) If 1
s

∑s
r=1 φ

+∗
r > 1, then there exists

at least one t, 1 ≤ t ≤ m, such that φ+∗
t > 1.

Since β̃∗
to is a positive fuzzy number, for all α ∈

[0, 1] the following inequality is obtained:

β∗
to − η∗to

∫ 1

0
L−1(α)dα > 0,

β∗
to + µ∗

to

∫ 1

0
R−1(α)dα > 0.

Therefore,

2β∗
to − η∗to

∫ 1

0
L−1(α)dα

+µ∗
to

∫ 1

0
R−1(α)dα > 0. (3.40)

By (3.24) we have

φ+∗
t (2β∗

to − η∗to

∫ 1

0
L−1(α)dα

+µ∗
to

∫ 1

0
R−1(α)dα) ≤ 2

n∑
j=1

λ̂jytj

−(
n∑

j=1

λ̂jηtj)

∫ 1

0
L−1(α)dα

+(

n∑
j=1

λ̂jµtj)

∫ 1

0
R−1(α)dα. (3.41)
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By (3.40), (3.41), and φ+∗
t > 1, we get

2β∗
to − η∗to

∫ 1

0
L−1(α)dα

+µ∗
to

∫ 1

0
R−1(α)dα) < 2

n∑
j=1

λ̂jytj

− (
n∑

j=1

λ̂jηtj)

∫ 1

0
L−1(α)dα

+(

n∑
j=1

λ̂jµtj)

∫ 1

0
R−1(α)dα. (3.42)

In other words,

n∑
j=1

λ̂j ỹtj ≻ β̃∗
to. (3.43)

If

κ1to = 2
n∑

j=1

λ̂jytj − (
n∑

j=1

λ̂jηtj)

∫ 1

0
L−1(α)dα

+(
n∑

j=1

λ̂jµtj)

∫ 1

0
R−1(α)dα,

κ2to = 2β∗
to−η∗to

∫ 1

0
L−1(α)dα+µ∗

to

∫ 1

0
R−1(α)dα,

then there exists a ϵ > 0 that satisfies

ϵ ≤ κ1to − κ2to
2

. (3.44)

Now, define ˆ̃αo ≈ α̃∗
o and

ˆ̃
βro ≈


(β∗

ro + 2ϵ, η∗ro, µ
∗
ro)L−R if r = t,

(β∗
ro, η

∗
ro, µ

∗
ro)L−R if r ̸= t.

Considering (3.44), the following inequality is ob-
tained:

κ2to + 2ϵ ≤ κ1to.

Since φ∗
t = 1, then

2
n∑

j=1

λ̂jytj − (
n∑

j=1

λ̂jηtj)

∫ 1

0
L−1(α)dα

+(

n∑
j=1

λ̂jµtj)

∫ 1

0
R−1(α)dα ≥ 2β∗

to

−η∗to

∫ 1

0
L−1(α)dα+ µ∗

to

∫ 1

0
R−1(α)dα

+2ϵ = φ∗
t (2(β

∗
to + ϵ)− η∗to

∫ 1

0
L−1(α)dα

+µ∗
to

∫ 1

0
R−1(α)dα).

In other words,

n∑
j=1

λ̂j ỹtj ≽ φ∗
t
ˆ̃
βto. (3.45)

On the other hand, because β̃∗
to ≽ ỹto we get

2yto−ηto

∫ 1

0
L−1(α)dα+µto

∫ 1

0
R−1(α)dα

≤ 2β∗
to−η∗to

∫ 1

0
L−1(α)dα+µ∗

to

∫ 1

0
R−1(α)dα

< 2(β∗
to + ϵ)− η∗to

∫ 1

0
L−1(α)dα

+µ∗
to

∫ 1

0
R−1(α)dα.

In other words,

ỹto ≺ ˆ̃
βto. (3.46)

By (3.20) and (3.46) (ỹro ≼ β̃∗
ro ≈ ˆ̃

βro for r ̸= t),
it is clear that

ỹro ≼ ˆ̃
βro, r = 1, . . . , s. (3.47)

By Eqs. (3.23), (3.24), and (3.45) we have

n∑
j=1

λ̂j x̃ij ≼ θ+∗
i α̃∗

io ≼

θ∗i α̃
∗
io ≈ θ∗i ˆ̃α

∗
io, ∀i, (3.48)

n∑
j=1

λ̂j ỹtj ≽ φ∗
t
ˆ̃
βto, (3.49)

n∑
j=1

λ̂j ỹrj ≽ φ+∗
r β̃∗

ro ≽

φ∗
rβ̃

∗
ro ≈ φ∗

r
ˆ̃
β∗
ro, ∀r, r ̸= t. (3.50)
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Since λ̂ ∈ Ω, because of (3.47)-(3.50) and x̃o ≼
α̃∗
o ≈ ˆ̃αo ∈ Λ̃, (λ̂, ˆ̃αo,

ˆ̃
βo) is a feasible solution to

problem (3.16), in which

d(
ˆ̃
βro, β̃

∗
ro) =


2ϵ if r = t,

0 if r ̸= t,

d( ˆ̃αio, α̃
∗
io) = 0, i = 1, . . . ,m.

Therefore,

ˆ̃
βo ≽ β̃∗

o ,
ˆ̃
βo ̸≈ β̃∗

o and ˆ̃αo ≈ α̃∗
o.

This contradicts the assumption that (λ∗, α̃∗
o, β̃

∗
o)

is a Pareto solution to problem (3.16), and the
proof of case (b) is completed.

So, both cases lead to contradiction. Therefore,
ρ+∗
o = ρ∗o, and the proof is completed. 2

Remark 3.1 It is easy to see that Theorem
3.1 will remain valid if one replaces the ob-
jective function of fuzzy MOLP (3.16) with
“min(α̃1o, . . . , α̃mo)”.

To illustrate the using of the methodology that
extended, the following numerical example with
real data is considered to show the accuracy of
the proposed method.

Example 3.1 The data from the work of by
Ghobadi and Jahangiri ( Research work done at
Khomeinishahr Azad University, Isfahan, Iran
2010), could be used to demonstrate the ap-
plication of the method proposed in this paper.
There are 14 educational departments in this dis-
trict; D1, D2,...,D14. Each educational depart-
ment(DMU) uses two inputs to produce two out-
puts. The considered inputs and outputs, denoted
by x̃1; x̃2 and ỹ1; ỹ1, are as follows, respectively:
x̃1 : Facilities,
x̃2 : Amount of the attention paid to the depart-
ment by the university; and
ỹ1 : Satisfaction of the students,
ỹ2 : Satisfaction of the professors and staff.

Suppose that L(x) = R(x) = 1−x and all the in-
puts and outputs are symmetric triangular fuzzy
number. The data of input, output, and the ER-
measure for all DMUs are shown in the table 1.
It can be seen that D3 is an ER-efficient DMU.

Suppose that the decision maker determined the
variations rate of increase input-output levels for
D3 as follows:

(9.7, 1.0) ≼ x̃1 ≼ (11.0, 1.0),

(8.5, 1.0) ≼ x̃2 ≼ (10.5, 1.0),

(12.4, 1.0) ≼ ỹ1 ≼ (16.7, 1.0),

(16.0, 1.0) ≼ ỹ2 ≼ (19.5, 1.0).

In order to propose pattern to the decision maker
to increase input-output levels for this DMU,
provided that the efficiency score remains un-
changed, fuzzy MOLP (3.16) is considered and
using the weight-sum method [8] the following
Pareto solutions are generated:

(α̃∗
1, α̃

∗
2, β̃

∗
1 , β̃

∗
2) = ((9.7, 1.0), (9.9, 1.0),

(14.4, 1.0), (19.5, 1.0)),

( ˜̄α∗
1, ˜̄α

∗
2,

˜̄β∗
1 ,

˜̄β∗
2) = ((9.7, 1.0), (10.5, 1.0),

(16.5, 1.0), (19.5, 1.0)).

According to Theorem 3.1, it is obvious that:

eff((α̃∗
1, α̃

∗
2, β̃

∗
1 , β̃

∗
2)) = eff(( ˜̄α∗

1, ˜̄α
∗
2,

˜̄β∗
1 ,

˜̄β∗
2))

= eff(x̃13, x̃
2
3, ỹ

1
3, ỹ

2
3).

Therefore, the above Pareto solutions offer the
two patterns to the decision maker to take better
decision in order to extend D3. That is to say
that the decision maker can take necessary ac-
tions by choosing a suitable strategy for spread-
ing D3. Note that, according to Theorem 3.1 the
ER-measure for the two patterns are equal one.2
The rest of the paper in this section will focus on
converse version of Theorem 3.1. In other words,
the following theorem is converse version of The-
orem 3.1. Notice that, unlike Theorem 3.1, The-
orem 3.2 holds in general case without assuming
the efficiency DMUo.

Theorem 3.2 Suppose that (λ∗, θ∗, φ∗) is an op-
timal solution to problem (3.13). Let (λ, α̃o =

(αo, νo, γo)L−R, β̃o = (βo, ηo, µo)L−R) be a feasi-
ble solution to the problem (3.16). If

eff(α̃o, β̃o) = eff(x̃o, ỹo),

then (λ, α̃o, β̃o) must be a Pareto solution to
problem (3.16).
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Table 1: The data and ER-measure under VRS assumption.

Inputs Outputs

D1 (3.9,1.0) (7.8,1.0) (11.8,1.0) (14.0,1.0) 0.90
D2 (5.4,1.0) (7.8,1.0) (12.2,1.0) (10.0,1.0) 0.70
D3 (9.7,1.0) (8.5,1.0) (12.4,1.0) (16.0,1.0) 1.00
D4 (5.5,1.0) (7.1,1.0) (11.3,1.0) (14.4,1.0) 1.00
D5 (3.6,1.0) (9.1,1.0) (12.5,1.0) (13.1,1.0) 0.85
D6 (4.2,1.0) (6.7,1.0) (9.6,1.0) (14.5,1.0) 1.00
D7 (5.1,1.0) (7.8,1.0) (12.3,1.0) (14.5,1.0) 0.99
D8 (3.9,1.0) (8.4,1.0) (13.2,1.0) (10.4,1.0) 1.00
D9 (5.6,1.0) (8.3,1.0) (12.3,1.0) (12.7,1.0) 0.69
D10 (2.7,1.0) (8.1,1.0) (12.3,1.0) (14.1,1.0) 1.00
D11 (2.0,1.0) (8.8,1.0) (11.6,1.0) (12.8,1.0) 1.00
D12 (5.5,1.0) (7.5,1.0) (12.5,1.0) (14.4,1.0) 1.00
D13 (5.6,1.0) (9.6,1.0) (13.0,1.0) (14.4,1.0) 1.00
D14 (10.0,1.0) (10.0,1.0) (12.2,1.0) (14.4,1.0) 0.60

Proof. If (λ, α̃o, β̃o) is not a Pareto solu-
tion to problem (3.16), then there exists an-
other feasible solution of problem (3.16), (λ̂, ˆ̃αo =

(α̂o, ν̂o, γ̂o)L−R,
ˆ̃
βo = (β̂o, η̂o, µ̂o)L−R), such that

ˆ̃αio ≼ α̃io and
ˆ̃
βro ≽ β̃ro for all i, r and there ex-

ist at least one i in which ˆ̃αio ≺ α̃io or at least one

r such that
ˆ̃
βro ≻ β̃ro. Without loss of generality,

we assume that ˆ̃αto ≺ α̃to. Therefore

2αto − νto

∫ 1

0
L−1(α)dα

+γto

∫ 1

0
R−1(α)dα > 2α̂to

−ν̂to

∫ 1

0
L−1(α)dα

+γ̂to

∫ 1

0
R−1(α)dα.

Because 0 < θ∗t ≤ 1, we have

θ∗t (2αto − νto

∫ 1

0
L−1(α)dα

+γto

∫ 1

0
R−1(α)dα) > θ∗t (2α̂to

−ν̂to

∫ 1

0
L−1(α)dα

+γ̂to

∫ 1

0
R−1(α)dα). (3.51)

Feasibility of (λ̂, ˆ̃αo,
ˆ̃
βo) for fuzzy MOLP (3.16),

implies

n∑
j=1

λ̂j x̃ij ≼ θ∗i ˆ̃αio, i = 1, . . . ,m, (3.52)

n∑
j=1

λ̂j ỹrj ≽ φ∗
r
ˆ̃
βro, r = 1, . . . , s, (3.53)

λ̂ ∈ Ω. (3.54)

Considering i = t and by (3.52), the following
inequality is obtained:

2

n∑
j=1

λ̂jxtj − (

n∑
j=1

λ̂jνtj)

∫ 1

0
L−1(α)dα

+(
n∑

j=1

λ̂jγtj)

∫ 1

0
R−1(α)dα ≤ θ∗t (2α̂to−

η̂to

∫ 1

0
L−1(α)dα+ µ̂to

∫ 1

0
R−1(α)dα). (3.55)

Inequalities (3.51) and (3.55) imply that

2

n∑
j=1

λ̂jxtj − (

n∑
j=1

λ̂jνtj)

∫ 1

0
L−1(α)dα

+(

n∑
j=1

λ̂jγtj)

∫ 1

0
R−1(α)dα < θ∗t (2αto−

νto

∫ 1

0
L−1(α)dα+ γto

∫ 1

0
R−1(α)dα). (3.56)

In other words

n∑
j=1

λ̂j x̃tj ≺ θ∗t α̃to. (3.57)
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By inequality (3.56), there exists positive scalar
0 < kt < 1 such that

2

n∑
j=1

λ̂jxtj − (

n∑
j=1

λ̂jνtj)

∫ 1

0
L−1(α)dα

+(

n∑
j=1

λ̂jγtj)

∫ 1

0
R−1(α)dα ≤

θ∗t kt(2αto − νto

∫ 1

0
L−1(α)dα

+γto

∫ 1

0
R−1(α)dα). (3.58)

In other words
n∑

j=1

λ̂j x̃tj ≼ θ∗t ktα̃to. (3.59)

By Eqs. (3.52), (3.53), (3.59), ˆ̃αio ≼ α̃io and
ˆ̃
βro ≽ β̃ro for all i, r, we have

n∑
j=1

λ̂j x̃ij ≼ θ∗i ˆ̃αio

≼ θ∗i α̃io, i = 1, . . . ,m, i ̸= t, (3.60)
n∑

j=1

λ̂j x̃tj ≼ θ∗t ktα̃to, (3.61)

n∑
j=1

λ̂j ỹrj ≽ φ∗
r
ˆ̃
βro ≽ φ∗

rβ̃ro, ∀r, (3.62)

For each i = 1, . . . , n and r = 1, . . . , s, defining

θ̄i =


θ∗i if i ̸= t,

kiθ
∗
i if i = t,

φ̄r = φ∗
r.

According to Eqs. (3.54), and (3.60)-(3.62),
(λ = λ̂, λn+1 = 0, θ̄ = (θ̄1, . . . , θ̄m), φ̄ =
(φ̄1, . . . , φ̄s)) is a feasible solution to problem

(3.15)(considering α̃∗
o = α̃o and β̃∗

o = β̃o in prob-
lem (3.15)). The value of the objective function
of fuzzy LP (3.15) at this feasible point is equal
to 1

m(
∑m

i=1,i̸=t θ̄i + θ̄t)/
1
s

∑s
r=1 φ̄r. Therefore,

eff(α̃o, β̃o) = ρ+∗
o ≤

1
m(

∑
i ̸=t θ̄i + θ̄t)

1
s

∑s
r=1 φ̄r

<
1
m(

∑m
i=1 θ

∗
i )

1
s

∑s
r=1 φ

∗
r

= eff(x̃o, ỹo).

This contradicts the assumption and completes
the proof.2

4 Conclusion

In this paper, we have provided a technique to
treat the fuzzy data in the problem of simulta-
neous estimation of input-output levels in the
framework of inverse DEA. In this technique,
the fuzzy DEA model is transferred to a mathe-
matical programming model, using the weighted
signed distance of fuzzy data. The sufficient con-
ditions, in the problem of simultaneous estima-
tion of input-output levels in the presence of fuzzy
data, were provided not only for the ER-efficient
DMUs, but also for the given necessary conditions
in general case without assuming the efficiency of
DMU. It should be noted that there are various
approaches/methods in the literature of DEA for
solving fuzzy DEA models. Some approaches are
as follows:
1) Some of the proposed approaches transform
a fuzzy DEA model to a category of ordinary
DEA models, see e.g. [25]. It is not an appropri-
ate computational point of view because in this
method, to approximate the membership func-
tion of the efficiency measure, multiple LP prob-
lems must be solved.
2) Some of the proposed methods develop an or-
dinary DEA model to a fuzzy DEA model, using
some ranking methods. This method changes the
number of the constraints of the model, see e.g.
[29]; therefore, this approach increases the com-
putational complexity.
3) Some of the proposed methods develop a fuzzy
DEA model in which to evaluate a DMU, a non-
linear multiple-objective mathematical program-
ming problem needs to be solved, see e.g. [23].
This method is not appropriate from a computa-
tional point of view.
4) A number of suggested methods develop a pos-
sibility approach to treat the fuzzy DEA models,
see e.g. [28]. This approach is almost useless with
regard to any RTS assumption of product tech-
nology.
Moreover, Soleimani-damaneh et al. [33] re-
viewed some of the existing fuzzy DEA mod-
els and showed that many of the current mod-
els/methods are suffering from theoretical and
computational problems. However, the approach
used in the present study does not have the above
mentioned pitfalls. In this method, unlike other
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proposed methods, at first the fuzzy DEA model
is transferred to a mathematical programming
model, while the number of constraints and the
computational complexity will not increase. Also,
this technique can be applied under any RTS as-
sumption of technology. The results obtained are
theoretically significant since they provide some
of theoretical extensions of inverse DEA theory in
the presence of fuzzy data, which can expand the
application area of inverse DEA. Future works
can be based on ratio-based (polynomial-time)
approaches which are able to solve the proposed
models from a computational view. In addition,
analyzing other helpful ranking functions which
are available in fuzzy mathematics to denazify the
provided problem can be experimented theoreti-
cally.
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