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Abstract

Hierarchical hub location problems locate hub facilities on the first and second of three levels under
the best economic conditions. The present study introduced a novel hierarchical hub set covering
problem with capacity constraints. This study showed the significance of fixed charge costs for locating
facilities, assigning hub links and designing a productivity network. Set covering was imposed to
use the minimum number of variables and coverage constraints. The proposed model employs mixed
integer programming to locate facilities and establish links between nodes according to the travel time
between an origin-destination pair within a given time bound. The demand nodes are fairly covered
at each service level and no demand node remains unanswered. The formulation was linearized by
replacing the non-linear constraints with less intuitive linear structures. The resulting linear model
was solved using GAMS and tested on the Australian Post dataset and the Iranian Airport dataset.
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—————————————————————————————————–

1 Introduction

ub location problems find the locations of hub fa-
cilities to assign demand nodes to them and to ob-
tain a minimum total cost for the established net-
work. There are two assignment styles for links
over the hub networks. Single assignment allo-
cates any demand node to exactly one hub; multi-
assignment connects any non-hub node to more
than one hub. The single assignment hierarchical
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hub location problem operates on three levels to
locate hub facilities at any level of the hierarchy
and allocate demand nodes to exactly one hub
and one central hub. Travel time between hubs
and central hubs and between two central hubs is
discounted to profit from economies of scale. In
classical hub networks, hub facilities in the top
level are usually connected to the complete net-
work and links in the second and third levels form
a star network. These problems were first devel-
oped by Hakimi [1] to find the optimal location
of a facility in a communication network to min-
imize total routing cost. He proved that the best
locations of facilities in a network are at the p-
medians of the corresponding weighted graph [2].
Farahani et al. [3] focused on reviewing the most
recent advances in hub location problems (HLP).
They reviewed all variants of a HLP (network,
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continuous, discrete) and discussed mathematical
models, solution methods, main specifications,
and applications of HLPs and introduced case
studies that illustrate real-world applications of
HLPs. The present study builds upon their work
and divides the literature on HLPs into four main
sections.

1.1 Hierarchical hub location problem

Elmastas [4] presented a 3-level hierarchical hub
location problem and tested the proposed model
in a cargo company in Turkey. Yaman [5] al-
tered the style developed by Elmastas. He first
added the top level network [4] to linking hub fa-
cilities with a star network. In the second level,
he connected the hubs to each other. The network
structure for the complete network in Yaman [5]
has the same hub connection as in the first level.
Next, where Yaman [5] minimized the total rout-
ing cost in a time constraint for the objective
function, Elmastas [4] minimized the total fixed
charge cost. Alumur et al. [6] proposed a mixed-
integer programming formulation and carried out
comprehensive sensitivity analysis on the Turk-
ish network. They showed that the locations of
airport hubs are less sensitive to cost parameters
than the locations of ground hubs and it was pos-
sible to improve service quality at no additional
cost in multimodal networks. Dukkanci and Kara
[7] proposed a hierarchical multimodal hub net-
work structure with characteristics of a hub cov-
ering problem and a service time bound, So that
the hierarchical network consists of three layers
as a ring-star-star network. They developed a
heuristic solution algorithm based on the subgra-
dient approach to solve the problem. Torkestani
et al.[8] presented a novel mixed-integer math-
ematical programming formulation for a hierar-
chical multi-modes transportation hub location
problem. The main issue was how to tackle the
hub nodes and edges disruption in a dynamic sys-
tem.

1.2 Hub covering problem

Hub covering location problems developed by
Campbell [9] locate hub facilities and allocate
demand nodes to the nearest hub facilities. He
presented two models for hub location problems

(p-hub center and hub covering) with different
objective functions. There are two types of hub
covering problem. In one, the hub set covering
minimizes the fixed charge cost of covering hubs
or uses the least number of hubs and all demand
nodes. In the other, the hub covering maximizes
the number of covered non-hubs for a predeter-
mined number of hubs. Campbell [9] introduced
the first mixed- integer formulation for both prob-
lems. Kara and Tansel [10] studied a single as-
signment hub set covering problem and showed
that it is NP-hard. Wagner [11] proposed new for-
mulations for hub covering problems with single
and multiple assignments. Ernst et al. [12] pre-
sented new formulations for single and multiple
assignment hub set covering problems by using
as the covering radius. These formulations were
an improvement over Kara and Tansel [10] be-
cause they require less CPU processing time. Tan
and Kara [13] focused on cargo delivery systems.
They used their model formulation for different
cargo delivery companies in Turkey. Calik et al.
[14] studied a single assignment hub set-covering
problem over incomplete hub networks and pre-
sented an integer programming formulation with
a heuristic solution based on tabu search. Peker
and Kara [15] extended the definition of cover-
age, introducing partial coverage, which changes
with distance. They presented a new and efficient
mixed-integer programming models that are also
valid for partial coverage for single and multiple
allocations. Ebrahimi-Zade et al.[16] proposed
a mixed integer model for a multi-period single-
allocation hub set covering problem in which the
covering radius is a decision variable and vali-
dated through a real world case study. They ex-
tended a genetic algorithm (GA) for solving that.
Silva and Cunha [17] presented a tabu search
heuristic algorithm for the uncapacitated single
allocation p-hub maximal covering problem, and
reported the optimal solutions for larger instances
of benchmark problems. Karimi [18] introduced
a new hub location-routing problem. So that, his
model minimizes the total cost of hub location
and vehicle routing, subject to predefined travel
time, hub capacity, vehicle capacity, and simulta-
neous pickups and deliveries.
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1.3 Uncapacitated and capacitated
hub location problems

OKelly [19] developed the first uncapacitated
single allocation p-hub median problem (US-
APHMP). Skorin-Kapov et al. [20] suggested
a mixed integer programming formulation for
the OKelly [19] problem. Sohn and Park [21]
and Ebery [22] improved and linearized the US-
APHMP. A hubs capacity to provide services is
important to decision-making and designing the
network in hub location problems because a tar-
get for these problems is to respond to requests
by demand nodes. Yaman [23] installed a two-
level telecommunication network and studied the
uncapacitated hub location problem with modu-
lar arc capacities. They minimized the cost of
installing hubs and capacity units on arcs. Ya-
man and Carello [23] considered the amount of
traffic passing through a hub to be that hubs ca-
pacity; this was an extension of Yaman [23]. Ya-
man [24] identified hub locations and hub links
to decrease costs in a hub median problem with
regard to capacity of arcs. [24] also developed
two formulations and an innovative algorithm to
solve the problem and compare the quality of the
solutions. Correia et al. [25] revised and modified
a well-known formulation for a capacitated single
allocation hub location problem. They showed
that the previous formulation for balance limi-
tations (constraints) has disadvantages. Stano-
jevi et al. [26] proposed a hybrid optimization
method, consisting of an evolutionary algorithm
and a branch-and-bound method for solving the
capacitated single allocation hub location prob-
lem. Merakl and Yaman [27] considered a ca-
pacitated multiple allocation hub location prob-
lem with hose demand uncertainty in which the
routing cost is a function of demand and capacity
constraints are imposed on hubs, demand uncer-
tainty has an impact on both the total cost and
the feasibility of the solutions. They developed
two different Benders decomposition algorithms
for their problem. Correia et al. [25] focused
on the development of a modeling framework for
multi-period stochastic capacitated multiple al-
location hub location problems and considered a
planning horizon divided into several time peri-
ods.

1.4 Applications

Hub location problems have used hierarchical net-
works for freight transportation [29, 30, 31, 5, 32],
public transportation [33, 34, 35, 36, 37], air
transportation [38, 13, 39], maritime transporta-
tion [40, 41, 42, 43] and telecommunication sys-
tems. This paper presents a single allocation ca-

Figure 1: A three-level network on 25 nodes with
10 hubs and 4 central hubs.

pacitated hierarchical hub set location covering
model with delivery time constraints (SA-DT-
CHSC.) The model allows traffic demand from an
origin to a destination to meet up to four hubs on
its route. The non-hub links to exactly one hub
and the hub nodes to a central hub. The central
hubs are linked over a complete network, creat-
ing a direct link from any top-level facility to any
other facility. Figure 1 shows the transportation
network with two levels of hub facilities to illus-
trate the problem having the best resolution. The
network has 25 nodes. The non-hubs are denoted
by circles, hubs by squares and central hubs by
hexagons. The covering radii of the hubs are de-
noted by incomplete circles. There are different
routes and traffic paths shown. One visits 4 hubs
and shows traffic demand from node 12 to node
21; its flow path is 12 - 5 - 1 - 3 - 9 - 21. Another
path encounters 2 hubs crossing from node 17 to
node 25 with a flow path of 17 - 2 - 4 - 25.
Hierarchical hub location problems are used in
distributed systems, transportation, waste man-
agement, health services, emergency services and
telecommunications. Creating a pattern and
comprehensive plan will facilitate accurate and
logical decision-making that is closer to reality.
The complexity and challenging nature of man-
agement decisions in this field will emerge to de-
crease direct and indirect costs to the service
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provider systems.
This paper focuses on the hierarchical structure
and set covering problem at the same time. In
addition, we are approaching the actual situation
by imposing capacity constraints to the problem
formulation. This formulation provides a logi-
cal approach that gives priority to costs and will
prevent indiscriminate increases in priority costs.
These costs are divided into routing and fixed
charges. The shortest path between an origin
and destination must be prioritized so that com-
panies can decrease investment expenditure while
providing services to meet demand. Fixed charge
costs affect long-term decision-making by exec-
utive management. This study focuses particu-
lar attention on different situations and output
network structures. The output of the proposed
model will illustrate that a hierarchical structure
is sometimes necessary and sometimes inappro-
priate.
Previous studies have focused on general aspects
of the given time bounds, but have not separately
considered travel time in the second and third
levels. The travel time plays a significant role at
these levels because some traffic demand requires
few second-level services and can use these ser-
vices in a short time. Traditionally, studies have
not considered that travel time constraints may
be higher on low level routes. Covering problems
are related to travel time at all levels; thus, a com-
bined model of hierarchical hub covering problem
is proposed to resolve this problem by defining
covering constraints for each level of service. The
model does not allow the service time at each level
to exceed the specified upper bound.
Hub nodes in all levels tend to gather together
to minimize routing costs. In many studies,
the models were designed with a routing cost
objective that ends up increasing the number
of facilities to decrease costs. Today, at least
one communication path exists between demand
nodes. Companies and transportation organiza-
tions must choose the best places to set up fa-
cilities. It is important to minimize the total
fixed charge cost for organizations to allow them
to devote minimum investment to these activi-
ties. OKelly [44] first introduced the fixed charge
cost as a hub node setup cost for one level of hub
facilities. Limited budgets to establish facilities

impel researchers to find an optimal number of
facilities to meet the predetermined fixed charge
costs. The proposed study extends the work done
by OKelly to a 3-level network.
As seen in literature, there is a very large vari-
ety of applications for hierarchical hub location
problems, which is at the strategic decision level
of organizations. In the meantime, for the devel-
opment of the service system, covering problems
are of particular importance. Despite, the many
studies have been done on covering problems; the
many research gaps remain to achieve these is-
sues to the fullest extent. One of these cases oc-
curs when a demand unit receives its service at a
first level, then it go to the next second level, but
the demand unit is faced with a lack of capac-
ity. This leads to traffic congestion or outages of
the service. This situation in telecommunications
networks is very common. Therefore, the prob-
lem formulation must consider simultaneously the
aspects of covering with the capacity of the facil-
ities. Also, the service delivery in the covering
problems is significant in the time frame, and it
should be noted that failing to comply with this
issue will have two dilemmas, first the demand
centers will be discontented, second, the traffic
increases and the queue is created. In transporta-
tion system, regardless of its type, when a vehi-
cle moves from an origin toward a destination,
after arrival in the destination and completing
their service, the destination is redefined as ori-
gin. Therefore, the vehicle serves the destination
demand now. So, the delay in the service system
will be increased lead times for demand centers.
Hence, that is very particular important, we have
paid attention on the service delivery time, hier-
archical structure and facilities capacity in the
form of covering problems, simultaneously.
The proposed model designed new capacitated
constraints for hierarchical networks so that all
traffic demands are met on each level of service.
All demands are met in the least time and best
location in this capacitated approach. The hier-
archical hub set covering problem of the present
research locates the hubs and central hubs, the
demand nodes with the nearest hub nodes, and
connects a hub to a central hub with a unique cov-
ering situation so that no demand node remains
unanswered. The new hub location problem is
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defined based on the time bound at each level
of hierarchy and considers fixed charge costs of
establishing the hubs, central hubs, and links be-
tween them.
The structure of this paper is organized as fol-
lows. Section 2 suggests a new formulation for the
hierarchical hub location problem. Section 3 ex-
plains the computational analysis using the Aus-
tralia Post (AP) and Iranian Airport Data (IAD)
data sets. It will be shown that some results from
the proposed model do not coincide with simi-
lar results available in the literature. Section 4
concludes the paper and recommends future re-
search.

2 Mathematical formulation

This section introduces the notations, parameters
and decision variables for the proposed model and
present a mathematical formulation for SA-DT-
CHSC problems. It is assumed that I is a set of
nodes, H ⊆ I is a potential hub set and C ⊆ H is a
set of possible locations for central hubs. In hub
location problems, discount factor α is the de-
crease in establishment link costs (or travel time)
between hubs α ∈ [0, 1] [45]. Yaman [5] denoted
the reduction coefficients of travel time between
hubs and central hubs as αH and between central
hubs as αC . It was assumed that αH ≥ αC [5].
The upper bound of the delivery time is denoted
by β, which is the maximum time required for
any flow demand to arrive at its destination.

2.1 Model parameters

The decision variables and other parameters of
the model are as follows:

fhj = fixed charge cost of opening hub in node
j ∈ H.
fcl = fixed charge cost of opening central hub in
node l ∈ C.
f∗
ij= fixed charge cost of opening hub links
between hubs i ∈ H and j ∈ H.
f∗∗
kl = fixed charge costs of opening hub links
between central hubs k ∈ C and l ∈ C.
tij= travel time from node i ∈ I to node ,j ∈ I
where tij=tji and tii = 0 .
fij= flow demand from node i ∈ I to node ,j ∈ I
where fij=fji and fii = 0 .

Cij= routing cost of each unit of flow from node
i ∈ I to node ,j ∈ I where Cij=Cji and Cii = 0 .
Γhi= potential hub capacity of node i ∈ I .
Γci= potential central hub capacity of node i ∈ I
.
Si= time required for all traffic originating at
node i ∈ I to prepare for travel; after this time
in the telecommunications context, let Si = 0 for
all i ∈ I [5, 46].

2.2 Decision variables

The decision variables for models are as follows:
Xijl = 1 if node i is assigned to a hub at node j
and a central hub at node l; 0 otherwise.
gkl = 1 if node k and node l have central hub so
that k ̸= l; 0 otherwise.
r∗j= covering radius of hub j.
r∗∗l = covering radius of central hub l.
Dl = time in which all demand flows arrive at
their destination central hub l.
vikl= amount of trade demand passing central hub
k ∈ C to central hub l ∈ C; l ̸= k , where is the
origin.
If the Xjjl = 1 for some j ∈ H where node j is
assigned to a central hub at node l, it means that
node j is a hub node; if Xlll = 1 for some l ∈ C ,
it means that node l is a central hub node.

2.3 SA-DT-CHSC model

This study suggests a nonlinear mathematical
model for SA-DT-CHSC. Central hub links and
central hub capacity constraints in this formula-
tion cause the model to be nonlinear. The objec-
tive function and constraints of the SA-DT-CHSC
nonlinear problem (SA-DT-CHSC-NLP) are:
Objective function:

The Objective function will be obtained as fol-
lows:

Min =∑
j∈H

∑
l∈C
l ̸=j

fhjXjjl +
∑

l∈C fclXlll+∑
j∈H

∑
l∈C
l ̸=j

f∗
jlXjjl +

∑
k∈C

∑
l∈C
l>k

f∗∗
kl gkl.

(2.1)
SA-DT-CHSC-NLP has designed the objective

function as the the fixed charge costs of facili-
ties and their links. This objective function is
to minimize total establishment costs, including



324 E. Korani et al., /IJIM Vol. 11, No. 4 (2019) 319-335

fixed charge costs of hubs, central hubs, hub links
and central hub links using formulation (2.1).

Single assignment hierarchical hub constraints:∑
j∈H

∑
l∈C

Xijl = 1, ∀i ∈ I. (2.2)

Xijl ≤ Xjjl,
∀i ∈ I, j ∈ H : j ̸= i, l ∈ C.

(2.3)

∑
m∈H Xjml ≤ Xlll,

∀j ∈ H, l ∈ C : j ̸= l.
(2.4)

Xljl = 0, ∀j ∈ H, l ∈ C : j ̸= l. (2.5)

Xijl = {0, 1}, ∀i ∈ I, j ∈ H, l ∈ C. (2.6)

The presented model corresponds to a single
assignment. Each non-hub node should be allo-
cated to exactly one hub facility and and each
hub to one central hub facility. Constraints (2.2),
(2.4) and (2.5) guarantee the single assignment
for this model. Constraint (2.4) ensures that
no hub can be linked to another nodes unless
that node is a central hub node. Constraint
(2.3) states that if a demand node is assigned to
another node, then that node should be a hub
node. Constraint (2.5) increases LP relaxation.

Top level hub-links constraints:

gkl ≤ Xlll, ∀k ∈ C, l ∈ C. (2.7)

gkl ≤ Xkkk, ∀k ∈ C, l ∈ C. (2.8)

XkkkXlll ≤ gkl, ∀k ∈ C, l ∈ C : k ̸= l.
(2.9)

gkl ∈ {0, 1}, ∀k ∈ C, l ∈ C. (2.10)

Constraints (2.7), (2.8) and (2.10) ensure that
central hub links are only established between
two different central hubs. If two central hubs
are open to the nodes of k ∈ C and l ∈ C and

both Xkkk and Xlll are equal to 1, then direct
connections exist between these two central hubs
according to constraint (2.9).

Flow balance constraints:

∑
k∈C
l ̸=k

vilk −
∑

k∈C
l ̸=k

vikl =∑
r∈I fir

∑
j∈H(Xijl −Xrjl), ∀i ∈ I, l ∈ C.

(2.11)

vikl ≥ 0, ∀i ∈ I, k ∈ C, l ∈ C : k ̸= l. (2.12)

If Xijl =1, there is a direct link between node
i and central hub l; hence, traffic from demand
node i to other nodes will pass from central hub
l. This flow is balanced by constraints (2.11) and
(2.12).

Capacity constraints:
Attribute capacity has been added to the model

by constraints (2.14) and (2.15). Γhj is the poten-
tial hub capacity of node j and Γcl is the poten-
tial central hub capacity of node l . Constraints
(2.14) and (2.15) ensure the summation of all flow
passing through each hub j and each central hub l
does not equal more than Γhj or Γcl . Constraint
(2.13) (cut constraint) is the upper bound for the
amount of traffic between central hubs, because
the traffic demand that passes from each central
hub should not exceed its capacity and that of
all demands by the origin node. It is logical that
the amount of traffic between two nodes should
not exceed the maximum flow between them; if
there is no direct connection between them, there
should be no direct flow. Formulation (2.13) was
derived from Correia [25]. Constraint (2.13) is a
depiction of the capacity problem; this constraint
does not allow vilk to be positive when Xijl = 0.∑

k∈C
l ̸=k

vilk ≤
∑

m∈I fim
∑

j∈H Xijl,

∀i ∈ I, l ∈ C.
(2.13)

∑
l∈C

∑
i∈I

∑
m∈I(fim + fmi)Xijl ≤ Γhj ,

∀j ∈ H.
(2.14)∑

j∈H
∑

i∈I
∑

m∈I
m̸=j

fimXijl−∑
j∈H

∑
i∈I

∑
m∈I
m̸=j

fimXijlXmjl+∑
i∈I

∑
k∈C
l ̸=k

vikl
∑

j∈H Xijk ≤ Γcl,

∀l ∈ C.

(2.15)
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Figures 2 and 3 illustrate the capacity con-
straints. Figure 2 contains an input node set
where n = 9. Figure 3 shows the resulting
network with 4 hubs and 2 central hubs. In
the solution when X175 = X275 = X775 =
X355 = X689 = X489 = X889 = 1, nodes 5,
7, 8 and 9 are chosen as hub nodes. When
X555 = X999 = 1, nodes 5 and 9 are selected
as central hub nodes. The capacity constraints
for hub node 7 and central hub node 9 are:
(f12+f13+f14+ +f19+f91+ +f31+f21)X175+
(f21+ f23+ f24+ + f29+ f92+ + f12)X275 ≤ Γh7
and (f41 + f42 + f43 + + f49 − f48)X489 + (f61 +
f63 + f64 + + f69 − f68)X689 + (f81 + f82 + f83 +
+ f89)X889 − f46X489X689 + v159X175 + v259X275 +
v759X775 + v359X355 ≤ Γc9.

Figure 2: The node set with n = 9.

Figure 3: The output network of the model with
n = 9, four hubs and two central hubs.

Covering and time bound constraints:

The delivery time bound constraints used
were introduced by Kara and Tansel [10],
Wagner [11], Ernst et al.[12], ahin and Sral
[48], Yaman [5] and Korani and Sahraeian [46].
The total solution space was classified and the
assignment of each non-hub node and each hub
node to the nearest facility in the top level was
modified. It was specified that each assignment
between two nodes will be implemented when
the nodes are a specific distance apart. The
closeness criterion is equal to the shortest
distance between nodes. The travel time and
distance in the configuration model are similar to
those from Yaman [5] and Korani and Sahraeian
[46]. The closeness criteria for the first level is
r∗∗l and for the second level is r∗j . The model

creates links having the best travel times for
each level. Constraints (2.16)-(2.21) have been
designed such that constraint (2.16) ensures that
each demand node is assigned to hub j when the
related node meets closeness criterion r∗j .

si + tijXijl ≤ r∗j , ∀i ∈ I, j ∈ H, l ∈ C. (2.16)

αHtijXijl ≤ r∗∗l ,∀, j ∈ H, l ∈ C. (2.17)

r∗j + r∗∗k + αCtklXkkk ≤ Dl,

∀, j ∈ H, k ∈ C : k ̸= j, l ∈ C.
(2.18)

Dl + r∗∗l + r∗j ≤ β, ∀, j ∈ H, l ∈ C : l ̸= j.

(2.19)
r∗∗l , r∗j ≥ 0, ∀, j ∈ H, l ∈ C. (2.20)

Dl ≥ 0, ∀, l ∈ C. (2.21)

This hierarchical model has a nested hierarchy

Figure 4: The node set I.

Figure 5: The resulting network of a solution.

where a higher-level facility supplies all services
provided by a lower level facility plus at least one
additional service [47]. It is possible to assign
non-hubs to a central hub to acquire low service.
Constraint (2.17) states that each hub node is
allocated to central hub l to obtain top service
according to closeness criterion r∗∗l . Constraints
(2.18), (2.19) and (2.21) impose given time
bound β to the model, as suggested by Kara
and Tansel [10], Wagner [11], and Yaman [5].
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Constraint (2.18) shows the travel time for each
traffic demand to reach the central hub of the
destination and inserts travel times for each
route in Dl. Constraints (2.19) and (2.21) ensure
that the traffic from each origin arrives at the
destination at or before time β.
Figures 4 and 5 show the covering and time
bound constraints of the mathematical model.
A node set in Figure 4 is used as the data set
of the resulting network shown in Figure 5.
The covering radii of level 1 are denoted by
an incomplete circle at 9 and of level 2 by an
incomplete circle at 11.
In this solution, central hubs open at nodes 5,
6 and 9 and nodes 2, 7 and 11 nodes are hub
nodes. X555 = X666 = X999 = 1 for the central
hub nodes and X225 = X776 = X11119 = 1 for
hub nodes.
For the route between nodes 1 and 8, there are 4
covering constraints. In level 2, t12X125 ≤ r∗2 and
t87X876 ≤ r∗7 are the hub covering constraints
in accordance with mathematical relationship
(2.16).
The central hub covering constraints in
accordance with formulation (2.17) are
αHt25X225 ≤ r∗∗5 and αHt76X776 ≤ r∗∗6 .
The time bound constraint imposes an upper
bound for delivery on this route (nodes 1 to 8), so
r∗2 + r∗∗5 +αct56X555 ≤ D6 and D6 + r∗∗6 + r∗7 ≤ β
are considered to be constraints (2.18) and (2.19),
respectively. An additional binary variable is
required for linerazation as follows:
Yim: 1 if nodes i and m have the same hub node
in level 2; 0 otherwise.
As stated, this formulation is nonlinear with con-
straints (2.9) and (2.15). To linearize the model,
for each nonlinear constraint a linearization pro-
cedure is proposed. Thus, XlllXkkk is replaced
by Xlll + Xkkk1 in constraint (2.9), XijlXmjl is
replaced by Yim in constraint (2.15),and Xijl is
deleted in the second summation of constraint
(2.15). Constraints (2.23), (2.25), (2.26), (2.27)
and (2.28) are added to the model. Constraints
(2.9) and (2.15) can be replaced with constraints
(2.22) to (2.28). The outcome of these methods
is linear model SA-DT-CHSC. The constraints
are as follows:

Xkkk +Xlll − 1 ≤ gkl, ∀, k ∈ C, l ∈ C : l ̸= k.
(2.22)

Xkkk +Xlll ≥ 2gkl, ∀, k ∈ C, l ∈ C : l ̸= k.
(2.23)∑

j∈H
∑

i∈I
∑

m∈I
m̸=j

fimXijl−∑
j∈H

∑
i∈I

∑
m∈I
m̸=j

fimYim+∑
i∈I

∑
k∈C
l ̸=k

vikl ≤ Γcl, ∀, l ∈ C.

(2.24)

vikl ≤ M
∑

j∈H Xijk, ∀, i ∈ I, k ∈ C,

l ∈ C : k ̸= l.
(2.25)

Xijl +Xmjl − 1 ≤ Yim, ∀, i ∈ I,m ∈ I
: m ̸= i, l ∈ C.

(2.26)

Xijl +Xmjl ≥ 2Yim, ∀, i ∈ I,m ∈ I : m
̸= i, l ∈ C.

(2.27)

Yim ∈ {0, 1}, ∀, i ∈ I,m ∈ I. (2.28)

Theorem 2.1 Any feasible solution for SA-DT-
CHSC-NLP is a feasible solution for SA-DT-
CHSC.

1. Suppose X is a feasible solution for SA-DT-
CHSC-NLP. Because constraints (2.1) to (2.8),
(2.10) to (2.14) and (2.16) to (2.21) are the same
for two formulations, it is sufficient to prove that
X is feasible for constraints (2.22) and (2.23)
as for constraint (2.9). There are four cases to
consider for linearization based on Xlll and Xkkk.
Case .1.1: If Xlll = Xkkk = 1, then constraint
(2.22) causes Xlll + Xkkk − 1 = 1, otherwise
XlllXkkk = 1. The left sides of constraints (2.9)
and (2.22) are the same. Xkkk and Xlll equal 1
and direct connections exist between these two
central hubs as ensured by constraint (2.23).
Case .1.2: If Xlll = 0, Xkkk = 1 then constraint
(2.22) causes Xlll + Xkkk − 1 = 0, otherwise
XlllXkkk = 0. The left sides of constraints (2.9)
and (2.22) are the same. Constraint (2.23)
ensures that a direct connection in the form of
a central hub link does not exist between these
two nodes.

Case .1.3: If Xlll = 1, Xkkk = 0 then
constraints (2.22) causes Xlll+Xkkk−1 = 0, oth-
erwise XlllXkkk = 0. The left side of constraints
(2.9) and (2.22) are the same. Constraint (2.23)
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ensures that a direct connection in the form of
a central hub link does not exist between these
two nodes.

Case .1.4: If Xlll = 0 and Xkkk = 0 then
Xlll + Xkkk − 1 = −1, otherwise XlllXkkk = 0.
The values for gkl and glk are always greater than
-1 because gkl and glk are binary variables (-1 is
always less than 0 or 1). The objective function
is a minimization problem, so the minimum
value of gkl for equals zero. The right side of
constraints (2.9) and (2.22) are the same and
glk = gkl = 0. Constraint (2.23) ensures that a
direct connection in the form of a central hub
link does not exist between the l and k nodes.

Corollary 2.1 Constraints (2.26) and (2.27)
operate similarly to constraints (2.22) and (2.23).

2. Suppose X is a feasible solution for SA-DT-
CHSC-NLP because constraints ((2.1) to (2.8),
(2.10) to (2.14) and (2.16) to (2.21) are the same
for the two formulations. It is sufficient to prove
that X is feasible for constraints (2.24) and (2.25)
as for constraint (2.15). There are 2 cases to con-
sider for linearization based on vikl and

∑
j∈H Xijl

. Since the model has a single assignment at-
tribute,

∑
j∈H Xijl equals zero or one..

Case .2.1: If
∑

j∈H Xijl = 1, then con-

straint (2.25) causes 0 ≤ vikl ≤ M , otherwise
0 ≤ vikl

∑
j∈H Xijl ≤ M . The left side of

constraints (2.15) and (2.24) are the same.
Case .2.2: If

∑
j∈H Xijl = 0, then constraint

(2.25) causes vikl = 0 , otherwise vikl
∑

j∈H Xijl

=0 . The left sides of constraints (2.15) and
(2.24) are the same.
This theorem shows that each optimum solution
for SA-DT-CHSC-NLP is an optimum solution
for SA-DT-CHSC.

3 Computational Analysis

Next the computational analysis was run for
IAD and AP data sets. Karimi and Bashiri
[49] compiled the IAD data set, which contains
the distances, travel times, flows, and capacities
for 37 cities in Iran as well as fixed hub costs
for these cities based on hub airport location.

The method suggested by [5] was used to create
subsets of the IAD to determine the effects of
different parameters on the outcome of the pro-
posed model (Yaman [5]; Korani and Sahraeian
[46]). Demand set I comprises all cities in the
IAD data. These include 17 cities in Iran with
large populations. In addition, Set H is the set of
17 IAD city hubs that include the international
airport and set C comprises 7 cities with the
largest populations as potential central hubs.
The model was solved for sets H and I.
The AP data set was first used by Ernst and
Krishnamoorthy (1996) and is arranged accord-
ing to postal delivery in Sydney, Australia. It
consists of 200 nodes that represent the postal
districts. This data set features 5 small sized
groups for test hub problems with sizes of 10, 20,
25, 40, and 50 and 4 strategies. The strategies
are designed for capacity and fixed charge costs
of nodes. The groups are labeled light fixed cost
and light capacity (LL), light fixed cost and
tight capacity (LT ), tight fixed cost and light
capacity (TL) and tight fixed cost and tight
capacity (TT ). Because the proposed model is
new, a sample with 10 nodes and 3 strategies
(LL,LT, TT ) was tested to verify the capacity
and covering constraint effects.
All nodes were positional nodes for the hubs and
central hubs (I = H = C) as done by Yaman
[5], Calik et al. [14] and Korani and Sahraeian
[46]. The travel time between two nodes is equal
to their distance apart (tij = dijandi, j ∈ I).
The formula employed by Calik et al. [14] and
Alumur et al. [32] was used to calculate the fixed
charge costs of the hub links as follows:

f∗
ij =

dij
fij

Maxij{dij
fij

}
× 100, ∀i, j ∈ I; i ̸= j.

(3.29)
where dij is the distance between nodes i ∈ I

and j ∈ I, and fij is the flow between nodes
i ∈ I and j ∈ I. The fixed charge costs of the
opening central hubs and hub links between the
central hubs is denoted as λ1 where f∗∗

ij = λ1f
∗
ij

and fcj = λ1fhj . The capacity of the central
hubs is denoted as λ2, where Γci = λ2Γhi . Let
λ1 ∈ {2, 4} and λ2 = 4 for all nodes because the
facilities and links in level 1 provide different
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services than those in level 2 [5], so they need
additional fixed costs and capacity.
The performance of the model was tested
using GAMS21.7 and optimization solver
CPLEX11.0.0 on an Intel(R)core2 processor
(2.10GHz) with 3GBRAM .
The effect of different values for β and the
discount coefficients were tested on total cost.
The proposed method solved the problem for the
AP data at n = 10 and the IAD data at n = 37,
where αH = {0.9, 0.8} and αC = {0.9, 0.8}. The
smallest β was obtained for each data set as
done by Tan and Kara (2007), Calik et al. [14],
Yaman [5] and Korani and Sahraeian [46]; this
problem is feasible when αH = 0.9 and αC = 0.8.

Figure 6: The total fixed charge costs for the IAD
data, where n = 37, αH=0.9, αC = 0.8, λ1 = 4,
λ2 = 4.

Figure 7: The CPU times for the IAD data,
where n = 37, αH=0.9, αC = 0.8, λ1 = 4, λ2 = 4.

The values for β for the AP data were calcu-
lated as an increase of 150, 4000 over units more
than the smallest value for IAD for the light strat-
egy and 10000 units more than the smallest value
for IAD for the tight strategy. This means that
β ∈ {3100, 3250 and ∞} for the IAD data and
β ∈ {31000, 35000 and ∞} for AP data for the
light strategy and β ∈ {45000, 55000 and ∞} for
AP data for the tight strategy. Only feasible cases

were reported.
Table 1 shows the total costs and computational
times (CPU times or time) for the AP data and
Table 2 shows these for the IAD data. Table
2 shows data for the capacitated problem and
then for the uncapacitated problem. The total
cost and CPU time of the problem strongly de-
creased without capacity constraints. Figures 6
and 7 were designed for total cost and CPU time,
respectively, where αH = 0.8, αC = 0.8, λ1 =
4, λ2 = 4 and β ∈ {3100, 3250 and ∞}. The to-
tal costs and CPU time dropped without capac-
ity constraints (WOCC) over those with capacity
constraints (WCC) as β increased. This indicates
that the proposed model contains an accurate de-
sign for capacity constraints.

In Tables, the Inf equal infeasible, and the
capacity and constraints abbreviations are CAP
and CON respectively. Figures 8 and 9, respec-
tively, show the total cost and number of open
central hubs for AP data at n = 10, αH =
0.9, αC = 0.8, λ1 = 2, λ2 = 4 and different values
for β. Figures 10 and 11, respectively, show the
total cost and number of open hubs for IAD data
at n = 37, αH = {0.9, 0.8}, αC = {0.9, 0.8}, λ1 =
2, λ2 = 4 and different values for β. The figures
indicate that the total cost and facilities num-
bers of the problem decrease as β increases for
all reduction factors. The increase in the number
of facilities is necessary to decrease delivery time
nor at any time.
A hierarchical structure is necessary to cover the
demand nodes in the best possible time. Table 1
shows that the problem is infeasible for all cases
where (αH , αC) = (0.9, 0.9) and β = {31000 and
45000}. Table 2 shows that the problem is infea-
sible for all cases where (αH , αC) = (0.9, 0.9) and
β =3100.

Figure 8: The total fixed charge costs for the AP
data at n = 10.
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Table 1: Total costs and CPU times for the AP data with n = 10,λ1 = 2 and λ2 = 4.

(αH , αC) β Strategy Total Cost CPU time
(0.9, 0.9) 31000 LL Infeasible Infeasible

35000 388495.703 0.871
∞ 65837.124 0.734

(0.9, 0.8) 31000 481900.975 1.466
35000 367589.957 1.302
∞ 65837.124 0.718

(0.8, 0.8) 31000 388495.703 1.566
35000 314246.734 1.119
∞ 65837.124 0.748

(0.9, 0.9) 45000 LT infeasible Infeasible
55000 244882.623 3.656
∞ 91718.385 5.348

(0.9, 0.8) 45000 388301.994 2.253
55000 240930.496 5.236
∞ 91718.385 5.320

(0.8, 0.8) 45000 354326.524 2.833
55000 212511.966 2.916
∞ 91718.385 5.339

(0.9, 0.9) 45000 TT infeasible Infeasible
55000 278277.902 6.342
∞ 99554.106 3.226

(0.9, 0.8) 45000 470756.550 1.999
55000 275006.616 4.082
∞ 99554.106 3.088

(0.8, 0.8) 45000 424526.703 3.576
55000 242146.129 5.907
∞ 99554.106 3.186

Table 2: Total costs and CPU times for the IAD data with n = 37 and different values for λ1 and λ2 = 4 .

(αH , αC) β

with CAP CONs
λ1 = 4 λ1 = 2
Cost time Cost time

without CAP CONs
λ1 = 4 λ1 = 2
Cost time Cost time

(0.9, 0.9)
3100
3250
∞

Inf Inf Inf Inf
5518.79 157.19 4128.79 121.61
2624 27.27 131 8.79

Inf Inf Inf Inf
5518.79 66.72 4128.79 45.44
2256 1.45 1128 1.57

(0.9, 0.8)
3100
3250
∞

11128.9 148.14 7094.53 148.58
4482.26 82.59 3092.26 76.95
2624 27.582 1312 8.692

11128.9 38.90 7094.53 58.40
4482.26 45.26 3092.26 47.25
2256 1.563 1128 1.625

(0.8, 0.8)
3100
3250
∞

4662.24 121.05 3272.24 114.36
4362.11 276.23 2972.11 118.79
2624 27.72 1312 8.076

4610.21 27.85 3220.21 34.28
3996.09 70.32 2606.09 55.17
2256 1.968 1128 1.968

Table 3 shows the locations of the hubs and
central hubs for the AP data. Table 4 shows the
location of facilities for capacitated and uncapac-
itated problems for the IAD data. The tables
make it easier to understand the problem of se-
lecting hubs and central hubs in each situation.
It is evident that the number of hubs and central
hubs decreased as increased for both data sets.

This is illustrated by Figures 9 for AP and Fig-
ure 11 for IAD where αH = 0.9, αC = 0.8, λ1 =
2, λ2 = 4. β ∈ {45000, 55000 and ∞} in Table
3 is a good example of this because the number
of facilities number decrease from 10 to 7 to 3
hubs and from 5 to 2 to 1 for central hubs. This
proves the necessity of a hierarchical structure in
the output network.
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Table 3: Locations of hubs and central hubs for IAD data at n = 37 and different values for λ1.

(αH , αC) β Strategy Hub Central Hub
(0.9, 0.9) 3100 LL Infeasible Infeasible

3250 1,2,3,4,5,6,7,8,9,10 1,2,5,6
∞ 4,6 6

(0.9, 0.8) 3100 1,2,3,4,5,6,7,8,9,10 1,2,5,6,8,9,10
3250 1,2,3,4,5,6,7,8,9,10 1,2,5
∞ 4,6 6

(0.8, 0.8) 3100 1,2,3,4,5,6,7,8,9,10 1,2,5,6
3250 1,2,3,4,5,6,7,8,9,10 3
∞ 4,6 6

(0.9, 0.9) 45000 LT infeasible Infeasible
55000 1,2,4,5,9,10 1,4,5
∞ 4,5,6 6

(0.9, 0.8) 45000 1,2,3,4,5,6,8,9,10 2,3,6,9,10
55000 1,2,4,5,6,9,10 2,5
∞ 4,5,6 6

(0.8, 0.8) 45000 1,2,3,4,5,6,8,9,10 1,2,5,6
55000 1,2,4,5,9,10 5
∞ 4,5,6 6

(0.9, 0.9) 45000 TT infeasible Infeasible
55000 1,2,4,5,9,10 1,4,5
∞ 4,5,6 4

(0.9, 0.8) 45000 1,2,3,4,5,6,7,8,9,10 2,3,6,9,10
55000 1,2,4,5,6,9,10 2,5
∞ 4,5,6 4

(0.8, 0.8) 45000 1,2,3,4,5,6,8,9,10 1,2,4,5
55000 1,2,4,5,6,9,10 5
∞ 4,5,6 4

Table 4: Locations of hubs and central hubs for IAD data at n = 37 and different values for λ1.

(αH , αC) β CC Hub CHub Hub CHub
λ1 = 4 λ1 = 4 λ1 = 2 λ1 = 2

(0.9, 0.9) 3100 WCC Infeasible Infeasible Infeasible Infeasible
3250 λ2 = 4 2,4,10,15,23,36 10 2,4,10,15,23,36 10
∞ 28 28 28 28

(0.9, 0.8) 3100 2,10,15,19,30,31,36 10,19,30 2,10,15,19,30,31,36 10,19,30
3250 10,23,30,36 10 10,23,30,36 10
∞ 28 28 28 28

(0.8, 0.8) 3100 10,19,30,36 10 10,19,30,36 10
3250 10,14,23,35 10 10,14,23,35 10
∞ 28 28 28 28

(0.9, 0.9) 3100 WOCC Infeasible infeasible Infeasible infeasible
3250 λ2 = ∞ 2,4,10,15,23,36 10 2,4,10,15,23,36 10
∞ 2 2 2 2

(0.9, 0.8) 3100 2,10,15,19,30,31,36 10,19,30 2,10,15,19,30,31,36 10,19,30
3250 10,23,30,36 10 10,23,30,36 10
∞ 2 2 2 2

(0.8, 0.8) 3100 10,14,19,30 10 10,14,19,30 10
3250 10,14,19 10 10,14,19 10
∞ 2 2 2 2
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Figure 9: The number of opening central hubs
for the AP data at n = 10.

Figure 10: The total costs for the IAD data at
n = 37.

Tables 3 and 4 show that the problems created
more hubs than central hubs because the fixed
charge cost of hubs is lower than that for cen-
tral hubs and number of hubs increased as β
decreased. This indicates the necessity of fixed
charge costs in a hierarchical structure. Table 3
shows that 4 nodes have been selected as central
hubs in 100% of cases and 10 nodes have been
selected as central hubs in 67% of cases. Table 4
shows that the 10, 2 and 28 nodes were chosen as
central hubs in the tight capacity. In the Table 4,
the abbreviation of words is used, therefor, capac-
ity constraints is CC and used CHub for central
hub.
CPU time usually decreases as β increases; how-
ever, CPU times are suitable when discount fac-
tors equal 0.9. In 87.5% of instances (Table 4),
the IAD data has a central hub. In two cases,
when (αH , αC) = (0.9, 0.8) and β = 3100, there
are 3 central hubs. Table 4 shows that only 10
nodes were selected as central hubs in 69% of
cases. In all instances, the number of hubs was
greater than the number of central hubs. These
results do not indicate a specific relationship;
hence, the network output of the problem for all
nodes of IAD data in Iran was examined. The

Figure 11: The number of opening hubs for the
IAD data at n = 37.

results are discussed in detail in the next subsec-
tion.
Figure 12 shows a map of Iran with 37 demand
nodes. The nodes for potential central hubs are
denoted by hexagons and those for potential hubs
by squares. The outcomes of the problem for IAD
data where n = 37, αH = 0.9,αC = 0.8, λ1 = 4
and λ2 = 4 are shown in Figures 13, 14 and 15,
respectively, for β = 3100, β = 3250 and β = ∞.
It was found that the hierarchical structure must
be applied to a hub location when the tight struc-
ture for covering and capacity is imposed on the
problem. This is evident in Figures 13, 14 and 15
where the model chose the increasing numbers of
hubs and central hubs as β decreased.
The number of facilities on each level of the hier-
archical structure is determined by the specific
problem conditions and not by predetermined
constraints. Purposive and targeted investment
is essential to modern business. The proposed ap-
proach will help companies to move in the right
direction using strategic planning.

Figure 12: The map of Iran with 37 demand
nodes, 17 cities as potential hub nodes and 7 cities
as potential central hubs nodes.
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Figure 13: The hierarchical hub network for IAD
data where αH = 0.9,αC = 0.8,λ1 = 4, λ2 = 4 and
β = 3100.

Figure 14: The hierarchical hub network for IAD
data where αH = 0.9,αC = 0.8,λ1 = 4, λ2 = 4 and
β = 3250.

The calculations were carried out on the AP
data using 50 nodes so that the solution was
produced in a short amount of time. When
the problem was large in size and complexity,
computation halted because the GAMS software
ran out of memory.

4 Conclusion

The present study examined hierarchical hub
problems and presented a new model for the ca-
pacitated hierarchical hub set covering problem
that features a complete network in the first level
and the star networks in the second and third lev-
els. The model is nonlinear, so a mixed integer-
programming model has been suggested to solve
this problem. AP data and the IAD data were
used to evaluate the model. The results showed

Figure 15: The hierarchical hub network for IAD
data where αH = 0.9,αC = 0.8,λ1 = 4, λ2 = 4 and
β = ∞.

the positive performance of the proposed model.
This study showed that optimization of the fixed
charge costs of facilities is more important than
other objectives for hierarchical hub problems be-
cause the results of the problems target long-
term strategic planning. The proposed model
is very different from previously published mod-
els and uses simple and expressive constraints.
It is called a capacitated hierarchical hub prob-
lem. In addition to being capacitated, the cov-
ering constraints are defined for each level sepa-
rately, which makes the proposed model a hub
set-covering problem. Such problems focus on
strategy and large scale decision-making, which
increases the importance of economies of scale.
The choice of facilities is based on fixed charge
cost without predetermining the number of facil-
ities. This model allows a purposive and targeted
investment approach by opening the facilities and
introduces capacitated constraints for each level
of the hierarchical structure. A linearized for-
mulation was proposed. This problem is used to
design telecommunication systems and that send
signals to a large number of ground receivers that
are widely scattered. Existing facilities should
cover a comparatively wide service zone. For fu-
ture research, we especially suggest the develop-
ment of the hub network reliability aspects to the
problem, where backup hub facility is defined.
The set covering characteristic is good in the gov-
ern system, but this structure leads to increased
pollution, because need more traffic and trans-
portation in environment. Therefore, we propose
the extension of the sustainable hub aspects to
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our model.
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