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Abstract

One of the key issues raised in networks flow is its interdiction. Keshavarzi et al. scrutinized the issue
with the multi-sources and multi-sinks conditions in mind while considering the specific conditions of
flow being sent from sources to sinks [R. Keshavarzi et al., Multi-source-sinks network flow interdiction
problem, International Journal of Academic Research, 2015]. Moreover, the matter was also examined
in the state of multi-interdictors and a practical solution was presented [Keshavarzi and, Salehi, Multi
commodity multi source-sinks network flow interdiction problem with several interdictors, Journal of
Engineering and Applied Sciences, 2015]. In this paper, the networks flow interdiction in multi-source
and multi-sink conditions was addressed; meanwhile, bearing in mind the uncertain data (from a
specified beginning to an ending interval), an optimal interval was presented. Finally, a numerical
example for this issue was provided and then solved by the program ”Lingo”.

Keywords : Interdiction problem; Network flow; Simplex method; Duality; Bi-level programming;
Decomposition; Interval data.

—————————————————————————————————–

1 Introduction

G
enerally speaking, network flow interdiction
is an issue with two distinct decision mak-

ers (defender and attacker). Examples such as
drug delivery, antidote delivery, narcotics systems
and issues like these in which two decision makers
with different goals use the network flow simulta-
neously are a kind of network flow interdiction.
This matter was first taken under investigation
by Wood [9].
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Almost all studies prior to Wood [9] are specific
to the applications stated above and are not ex-
tendable to more general contexts. Wood was
the first to adopt a mathematical programming
model to solve the problem. He developed a min-
max formulation of Maximum Flow Network In-
terdiction problem and then converted it to an
integer-programming model.
Cormican et al. [1] formulated and solved a
stochastic version of the interdictor’s problem.
They minimized the expected maximum flow go-
ing through the network with interdiction vari-
ables being binary and random. Extensions
were also made to handle uncertain arc capaci-
ties. Such stochastic integer programming prob-
lems can be used to interdict illegal drugs and
to reduce the effectiveness of moving materials,
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troops, information, etc. in a military force
through a network in wartime.
Wollmer [8] presented two algorithms for tar-
geting strikes in a lines-of-communication (LOC)
network. The LOCs were represented by a net-
work of nodes and directed arcs. It was assumed
that the user of the LOCs is attempting to achieve
a circulation flow at a minimum cost. A very gen-
eral goal was as special cases, maximizing the flow
between two points, meeting the required flows
between a source and a sink at a minimum cost,
and combinations of these two.
Another category of the network-interdiction
problem is that of maximizing the length of the
shortest path where a set of network arcs are
disabled in order to maximize the length of the
shortest path between s and t through the usable
portion of the network. Fulkerson and Harding
[3] and Israeli [4] have notably contributed to re-
solving this problem.
In the real world, the network flow data may
be expressed indecisively. For example, Network
flow data such as capacity of arcs, the costs of
sending the flow or flow interdiction on each arc
are expressed in an interval or fuzzy form.
Nam [7] suggested a network in which its vari-
ables are located in a time period with a spec-
ified beginning and ending. They demonstrate
their framework on vision tasks such as recog-
nition and temporal segmentation of action se-
quence, or parsing and making future predictions
online when running in streaming mode while ob-
serving an assembly task.
The present study sought to investigate the multi-
source-sink network flow interdiction problem
with interval data. This study dealt with two
adverse elements: a network user/defender and
multi interdictors/attackers. The network user
attempts to maximize the out flow coming from
a number of sources which are a subset of a node
set V, in an undirected network. The interdictor
tries to reduce the network user’s maximum flow
through the limited interdiction resource in order
to block the arcs of the network.

2 Multi Source-Sinks Network
Flow Interdiction problem

The topic under discussion in this paper was
presented within an undirected, capacitated
network G(V, L). Also, it is supposed that V
indicates the node set of the network and L
represents arc set of the network. The arc set L
includes ordered pairs (i, j) in which i and j are
the vertices of network; additionally, the sending
flow of each arc (i, j) is restricted by positive
integral capacity uij from the top and by zero
from the bottom.
In the proposed issue, the two subsets of the
network’s nodes are considered as the sets
of sources and sinks which is shown with
N = {n1, n2, . . . , nn} and D = {d1, d2, . . . , dm}.
Without excluding any generalities, it is sup-
posed that these two sets have no common
features. (i.e.D ∩N = ∅)
This problem is written in such a way that each
source can send flows just to certain predeter-
mined destinations. For the ni source, the set of
sinks is considered as the following:

Di = {dj |dj ∈ D and dj is a sink for ni}

It is supposed that the sets Di may have
several joint nodes and each sink is the only pos-
sible receiver of flow. The issue under discussion
has two separate decision makers: the target of
the first decision maker is to send the max flow
from the certain sources to the predetermined
sinks for each source and the target of the second
decision maker is to reduce this amount with
destructing (eliminating) the network’s arcs.
The first and second decision makers will be
orderly called attacker and interdictor. Also,
we suppose that the interdictor uses a specified
interdiction resource with a total amount of R
units. Interdicting an arc (i, j) and eliminating
it from the network requires cij ≥ 0 units of the
source.
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3 Mathematical structure of
the problem

In this problem, xijk be the amounts of flow out
of the source node nk on the (i, j) arc and the
interdictor’s variable for (i, j) arc is shown by wij

.In this condition we suppose that the interdictor
utilizes two motifs in confronting each arc: either
eliminating the arc from the network wij = 1 and
considering the capacity of the arc as 0 or not
eliminating the arc and with the capacity arc pa-
rameter (uij) remaining in the network. This de-
cision of the interdictor is shown by placing the
amounts uij(1−wij) instead of the arc capacity in
the network. uij(1 − wij). The set of intermedi-
ate nodes (which are neither a source nor a sink)
with NP are shown. Also, it is presumed that the
middle nodes have no supply and demand (prob-
lem of maximum flow) and their role is only going
to be sending and receiving the flow.

Model 1

minwmax
∑n

k=1

∑
(nk,j)∈L xnkjk

s.t :
∑n

k=1(xijk+xjik) ≤ uij(1−wij) ∀(i, j) ∈
L (1)∑

j:(i,j)∈L xijk −
∑

j:(j,i)∈L xjik = 0 ∀i ∈
NP ∀k = 1, . . . , n (2)∑

(i,j)∈L,j∈Dk
xijk =

∑
(nk,j)∈L xnkjk ∀k =

1, . . . , n (3)∑
(i,j)∈L cijwij ≤ R (4)

wij ∈ {0, 1} ∀(i, j) ∈ L (5)

xijk ≥ 0 ∀(i, j) ∈ L, k = 1, . . . , n

The objective function in the above model cal-
culates the true value of the output flow from
sources with two purposes of Max and Min or-
derly for the attacker and the interdictor. The
first constraint indicates the capacity of sending
flow on each arc of the network. The second con-
straint (flow balance constraint) guarantees that
the middle nodes (the nodes which are member
of NP) have the supply and demand value of
zero. The third constraint shows that the sent
flow from the sources should be equal to the re-
ceived flow in the predetermined destinations and

the fourth constraint limits the expenditure of in-
terdiction resources.

4 Interval Model:

In the suggested model, a number of the deter-
mined data in the problem (in this paper uij )
is considered as an interval form, to this end, ulij
and uuij are respectively considered as the lower
and upper bounds for the capacity of (i, j) arc;
in other words, for each (i, j) arc, we will have
the relation of ulij ≤ uij ≤ uuij . This is called
the Interval model since the arcs network capac-
ity instead of being fixed is located in certain in-
tervals. We note that the relation of ulij ≤ uuij
and ulij , u

u
ij ≥ 0 are confirmed for each arc. If

for a special arc, the relation is expressed equally
(ulij = uuij) , this data will be defined by a deter-
mined amount. For writing the Interval Model:
Model 1, we shall consider the interval capacity
of the arcs as reformulated below:

interval model

minwmax
∑n

k=1

∑
(nk,j)∈L xnkjk

s.t :
∑n

k=1(xijk + xjik) ≤ uij(1 − wij)
∀(i, j) ∈ L∑

j:(i,j)∈L xijk −
∑

j:(j,i)∈L xjik = 0 ∀i ∈
NP , ∀k = 1, . . . , n∑

(i,j)∈L,j∈Dk
xijk =

∑
(nk,j)∈L xnkjk ∀k =

1, . . . , n∑
(i,j)∈L cijwij ≤ R

wij ∈ {0, 1} ∀(i, j) ∈ L

xijk ≥ 0 ∀(i, j) ∈ L, k = 1, . . . , n

ulij ≤ uij ≤ uuij ∀(i, j) ∈ L

In the interval model, arc capacities are located
in the predetermined intervals instead of the real
non-negative value. Since solving the model is
nonlinear; henceforth, a strategy for linearizing
and easily solving the model will be expressed.
For this purpose, firstly we substitute the capac-
ity of each arc which is an interval data with the
upper bound corresponding to the interval and
introduce the following model with the definite
capacity for uuij the (i, j) arc.
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model U

Zu = minwmax
∑n

k=1

∑
(nk,j)∈L xnkjk

s.t :
∑n

k=1 xijk ≤ uuij(1− wij) ∀(i, j) ∈ L∑
j:(i,j)∈L xijk −

∑
j:(j,i)∈L xjik = 0 ∀i ∈

NP , k = 1, . . . , n∑
(i,j)∈L,j∈Dk

xijk −
∑

(nk,j)∈L xnkjk = 0
k = 1, . . . , n∑

(i,j)∈L cijwij ≤ R

wij ∈ {0, 1} ∀(i, j) ∈ L

xijk ≥ 0 ∀(i, j) ∈ L, k = 1, . . . , n

In the following, a method to solve the model U is
presented and its optimal answer Zu will be con-
sidered as the bound of the optimization interval.
To determine the lower bound of the optimization
interval, model L is expressed as follows:

model L

Z l = minwmax
∑n

k=1

∑
(nk,j)∈L xnkjk

s.t :
∑n

k=1 xijk ≤ ulij(1−wij) ∀(i, j) ∈ L∑
j:(i,j)∈L xijk −

∑
j:(j,i)∈L xjik = 0 ∀i ∈

NP , k = 1, . . . , n∑
(i,j)∈L,j∈Dk

xijk −
∑

(nk,j)∈L xnkjk = 0
k = 1, . . . , n∑

(i,j)∈L cijwij ≤ R

wij ∈ {0, 1} ∀(i, j) ∈ L

xijk ≥ 0 ∀(i, j) ∈ L, k = 1, . . . , n

Lemma 4.1. Increasing (or decreasing) the ca-
pacity amount of arcs uij in the models U and L
causes an increase (or decrease) in the amount of
the flow sent in the interdicted network.

Proof. In the model, L, the capacity of each arc
uij with the least possible amount (the lower in-
terval bound ulij ) is substituted. This number
with the first bound has the most flow sent on
each arc until the possible minimization and as a
result, the maximum flow sent in the network is
going to be lowered. In the situation, which the
capacity of each arc with its upper bound is sub-
stituted, the similar results are obtained. Then

by increasing the lower bound amount of arcs ulij
the flow sent under the interdicted network will
not be decreased furthermore and vice versa.

5 Solving Method:

To solve models 1, U and L, regarding to the ex-
istence of two decision makers with different pur-
poses, the following strategy is presented. This
strategy is presented for solving model 1, the rest
of models are solvable similarly. Our method con-
sists of 1. Taking the dual of the inner maximiza-
tion by fixing w temporality and then releasing
w to obtain a mix integer nonlinear ”min-min”
model which is simply a transferring the nonlin-
ear model to a linear mix integer programming
problem. The obtained result of the first step is:

Dual Model 1:

minα,β,w
∑

(i,j)∈L uij(1− wij)βij

s.t : −αik + αjk + βij ≥ 0 k = 1, . . . , n
(i, j) ∈ L ; ∀i, j ∈ NP (6)

−αjk+αik+βij ≥ 0 k = 1, . . . , n ; (i, j) ∈
L ; ∀i, j ∈ NP (7)

βij − γk ≥ 1 i ∈ N , (i, j) ∈ L, k =
1, . . . , n (8)

βij − γk ≥ 0 (i, j) ∈ L, j ∈ D, k =
1, . . . , n (9)∑

(i,j)∈L cijwij ≤ R

wij ∈ {0, 1} ∀(i, j) ∈ L

αik free k = 1, . . . , n, i ∈ NP

βij ≥ 0 (i, j) ∈ L

γk free k = 1, . . . , n

The dual variables βij , αik and γk in the model
above correspond to constraints (1) to (3),
respectively.

Lemma 5.1. There is an optimal solution to D-
USRP such that: −1 ≤ αik ≤ 0 , ∀i ∈ NP , k =
1, . . . , n , 0 ≤ βij ≤ 1 , ∀(i, j) ∈ L , −1 ≤ γk ≤ 0
, ∀k = 1, . . . , n
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Table 1: Network parameters.

(i, j) (ul
ij , u

u
ij , cij) (i, j) (ul

ij , u
u
ij , cij)

(1, 3) (1, 5, 2) (3, 6) (1, 6, 3)

(1, 4) (2, 4, 1) (4, 5) (4, 7, 3)

(2, 4) (1, 5, 4) (4, 6) (1, 5, 2)

(2, 6) (3, 7, 1) (3, 4) (2, 5, 2)

(3, 5) (3, 7, 3) R = 6

Table 2: Lingo software results.

Model Optimal value Iteration Interdicted arc

Model L 15 5 (1, 4), (2, 6)

Model U 44 5 (1, 4), (2, 6), (3, 4)

Interval Model 10/28654 25 (1, 3), (1, 4), (2, 6), (3, 4)

Proof. Note that (1) the coefficients of βij in
the objective function are positive so that mak-
ing each βij ’s as small as permitted by the con-
straints, decreases the objective function value.
(2) No two variables αik and αiḱ with the same
node index i and different source indices k and
ḱ appear in the same constraint. Accordingly,
the restriction of a variable αik to the interval
[−1, 0] does not affect any other αiḱ for k ̸= ḱ. (3)
Constraints (6) and (7) imply that, for each arc
(i, j) ∈ L, i, j ∈ NP , the variable βij is bounded
below by maxk = {−αjk +αik,−αik +αjk}. The
restriction of the variables αik and αjk to the in-
terval [−1, 0] implies that the lower bound on βij ,
enforced by constraints (6) and (7), is at most 1.
Accordingly, restricting βij to the interval [0, 1]
for such arcs, maintains feasibility without loss
of optimality. Similarly, constraint (8) and (9)
imply that βij is bounded below by 1 + γk for
(i, j) ∈ L, i ∈ N , k = 1, . . . , n and by γk for
(i, j) ∈ L, j ∈ D, k = 1, . . . , n. Restriction of
γk’s to the interval [−1, 0] for the related arcs im-
plies that the maximum of these lower bounds is
again at most 1. Therefore, we can conclude that
βij = 1 (for the corresponding arcs) in optimal
solution. This completes the proof.

Since the objective function of this model is
nonlinear, in order to make it linear, the new vari-
able of pij is introduced in the following lemma:

Lemma 5.2. If pij = (1 − wij)βij, ∀(i, j) ∈ L
then 0 ≤ pij ≤ 1 and pij ≥ βij − wij, ∀(i, j) ∈ L.

Proof. Since wij ∈ {0, 1}, ∀(i, j) ∈ L then
0 ≤ 1 − wij ≤ 1, ∀(i, j) ∈ L . According to
pij = βij − wijβij and 0 ≤ βij ≤ 1 , we have
0 ≤ pij ≤ 1 and pij ≥ βij − wij .

Now using pij , Dual model 1 is written as:

minwminα,β,p
∑

(i,j)∈L uijpij

s.t : −αik + αjk + βij ≥ 0 k =
1, . . . , n, (i, j) ∈ L, ∀i, j ∈ NP

−αjk + αik + βij ≥ 0 k =
1, . . . , n, (i, j) ∈ L, ∀i, j ∈ NP

βij − γk ≥ 1 i ∈ N , (i, j) ∈ L,
k = 1, . . . , n

βij − γk ≥ 0 ∀(i, j) ∈ L, j ∈ D,
k = 1, . . . , n∑

(i,j)∈L cijwij ≤ R

pij ≥ βij − wij ∀(i, j) ∈ L

0 ≤ pij ≤ 1 ∀(i, j) ∈ L

wij ∈ {0, 1} ∀(i, j) ∈ L

αik free k = 1, . . . , n ∀i ∈ NP

βij ≥ 0 ∀(i, j) ∈ L
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γk free k = 1, . . . , n

Lemma 5.3. The optimal value of pij is βij

Proof. If wij = 0 is optimal in Dual Model 1,
the corresponding term in the objective function
is equal to uijβij . If wij = 1 is optimal then
the corresponding term in objective function is 0.
Thus, to linearize the model, it must be true that
pij = 0 when wij = 1 and pij = βij when wij = 0.
When wij = 1, constraints pij ≥ βij − wij ,
∀(i, j) ∈ L are satisfied for 0 ≤ βij ≤ 1 . How-
ever, because setting pij to any value greater than
0 increases the objective function, the value of
pij must be zero. When wij = 0, constraints
pij ≥ βij − wij , ∀(i, j) ∈ L are satisfied for
pij ≥ βij . However, due to the minimization goal
( minα,β,w,p

∑
(i,j)∈L uijpij ), it must be true that

pij = βij . This justifies the correctness of the lin-
ear objective function with binary and real vari-
ables of binary or real.

6 Complexity:

Wood [9] indicated that the issue of network flow
interdiction problem in the situation of having
one source and one sink with the condition of
certain data is a NP-Hard problem; here it is
shown that the discussed problem in this paper
is also a NP-Hard problem.
For the discussed problem (model 1), the network
was partitioned into three sub-networks. This
network partitioning is named as following:

V1 = N ∪ {(i, j) : i, j ∈ N}
V2 = NP ∪ {(i, j) : (i, j) ∈ L, (i, j) /∈ V1 ∪ V3}
V3 = D ∪ {(i, j) : i, j ∈ D}

The arcs and nodes of the network are di-
vided into three groups including: (i) V1 includes
all sources and arcs that connect sources to-
gether, (ii) V2 all middle nodes (no source and
no sink) and edges which connect middle nodes
together and edges connect middle nodes to the
sources and the sinks, (iii) V3 includes all sinks
and edges that connect sinks together. Now
we can assume V1 as a pseudo-source and V3

as a pseudo-sink. The user tries to maximize
the network flow value from V1 to V3 and the
interdictor tries to decrease this value as much

as his accessible resource allows.
By doing the above, the model is rewritten as
follows which has a virtual source and destination
and is a NP-Hard problem.

minwminα,β,p
∑

(i,j)∈L uijpij

s.t : −αik + αjk + βij ≥ 0
k = 1, . . . , n, (i, j) ∈ L, ∀i, j ∈ V2

−αjk + αik + βij ≥ 0 k =
1, . . . , n, (i, j) ∈ L, ∀i, j ∈ V2

βij − γk ≥ 1 i ∈ V1 (i, j) ∈ L, k =
1, . . . , n

βij − γk ≥ 0 ∀(i, j) ∈ L, j ∈ V3, k =
1, . . . , n∑

(i,j)∈L cijwij ≤ R

pij ≥ βij − wij ∀(i, j) ∈ L

0 ≤ pij ≤ 1 ∀(i, j) ∈ L

wij ∈ {0, 1} ∀(i, j) ∈ L

αik free k = 1, . . . , n, ∀i ∈ V2

βij ≥ 0 ∀(i, j) ∈ L

γk free k = 1, . . . , n

7 Numerical Example

Consider the undirected, in this network, the set
of sources, destinations, and the possible desti-
nations for receiving the flow from a particular
source is considered as follows:
V = {1, 2, 3, 4, 5, 6}
N = {1, 2} D = {5, 6}
D1 = {5} D2 = {6}
In the table below,table 1,the triplet function vec-
tors (ulij , u

u
ij , cij) are similar to the arcs on the

network. The authors of these vectors in order
from the lower bound to upper bound of the ca-
pacity of arcs uij and the others show the cost of
interdicting each arc. R = 6 shows the interdic-
tor’s source in the directional flow of the network.
In the models, L and U, after having taken the
prescribed steps in the solutions section with the
predetermined conditions and boundaries linearly
with the free, zero, one and non-negative vari-
ables reformulated. These two models with the
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numerical example are solved by the program
”Lingo”. Repeated results are shown in the fol-
lowing table, Table 2. The interval model in this
network is used for changing the non-linear func-
tion into a linear function, resulting in a model
designed by Lingo and shown in the table below.

8 Conclusion

The Final Model is translated to linear program-
ming model with two types of variables; binary
and real variables. It should be noted that all con-
straints and objective functions are linear. There-
fore, it may be solved by the mix Integer Pro-
gramming Algorithms. Once more, it should be
noted that the interdictor destroys arcs in order
to minimize the attacker’s optimal reward, sub-
ject to a budget R. The complete interdiction of
each arc, (i, j) , incurs a cost of cij . We denote the
interdictor’s and attacker’s decision variables by
wij and xijk , respectively. The capacity of edge
(i, j) is reduced to, where wij = 1 represents the
complete interdiction of (i, j). The attacker vari-
able xijk represents the amount of flow from the
source nk ∈ N passing the arc (i, j) ∈ L after
interdiction. Now, due to the existence of capac-
ity constraints, both the Final Model and Model
1 problems are feasible (one of the solutions is
wij = 0 , zero flow). Moreover, after presenting
the given solutions, both primal optimal solutions
of problem and optimal solutions of Final Model
are equal (duality theorem).
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