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Abstract

This paper proposes an immediately efficient method, based on Benders Decomposition (BD), for
solving the survivable multicommodity network. This problem involves selecting a set of arcs for
building a survivable network at a minimum cost and within a satisfied flow. The system is subject
to failure and capacity restriction. To solve this problem, the BD was initially proposed with far
outperformed than mixed integer programming. The employed method in this paper is the modified
BD i.e. proposing a new strategy on the basis of s-t cut theorem to identifies the initial failure
scenario which are to be solved by BD. For a comparison between the BD method and our modified
BD method, four network sets including origins, destinations, failure scenarios, supply nodes and
demand nodes have been randomly produced. Next, by using GAMS software, the two methods are
compared with respect to their required CPU time where it is shown that the proposed method vitally
saves time. This strategy reduces iterations more greatly as compared with the BD approach. While
other methods concentrate on valid inequalities for reducing iterations of BD, this study does not use
such valid inequalities. In addition, the new method is easily and quickly implementable.

Keywords : Survivable; Network Design; Benders Decomposition; Quickly implementable method;
New strategy.

—————————————————————————————————–

1 Introduction

T
oday, with the rapid development of technol-
ogy, high-capacity transmission equipment

has been increasingly used in communication net-
works. As a result, network design has turned to
one of the most fundamental issues in engineering
fields such as transportation, communications,
power distribution, and so on [15, 1, 8]. Billions
of dollars are spent on increasing the existing
facilities or building communication networks
with higher bandwidth every year. Consequently,
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sparse communication networks (in which a high
amount of flow passes through every link) are
available. Due to such a structure (being sparse),
networks have low survivability. Failure of one
component of the network leads to the loss of a
large amount of flow (traffic). At present, one of
the issues considered in networks is the design of
flexible and survivable networks. The property
of survivability in networks refers to the state in
which the network done operating tasks in the
failure of one or more components. Since failure
in communication networks can break down the
whole network (like what happens in the real
state), survivability in communication networks
is very difficult. Adding extra components to
the network increases its survivability and also
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the related costs. Therefore, when the network
survivability is considered, it is difficult to design
a cost-effective network. In the previous works
[17, 20, 19], researchers have proposed different
methods for establishing survivability conditions.
One of the powerful methods compared with
mixed integer programming is the use of BD,
in which the problem is divided into multiple
smaller problems, ”master problem” and ”sub-
problem” as a linear programming problems.
Among the advantages of BD are easy solution
of the sub-problem and solution of large-scale
problems [6]. A large number of studies have
covered this area, but here we will mention only
a few. Zhao et. al. [21] proposed a formal
analysis method for survivable network design
problem (SNDP) based on stochastic process
algebra, which incorporates formal modeling
into performance analysis perfectly. Saharidis
et. al. [16] introduce a novel method, which
reinitializes the BD master problem by applying
a set of valid inequalities. Gendron [9] con-
centrates on three methods (cutting plane, BD
and Lagrangian relaxation), which are used for
untangling large-scale multicommodity capaci-
tated fixed-charge SNDP. Costa [7] reviews the
BD approach in cases of dissolved fixed-charge
network design problems. Castet and Saleh [4]
brought considerations of survivability to bear
on space systems. They developed a conceptual
framework and quantitative analyses based on
stochastic Petri nets (SPN) to characterize and
compare the survivability of different space
architectures. Botton et. al. [3] investigated the
hop-constrained SNDP with reliable edges. They
considered a subset of reliable edges that are
not subject to failure and also studies a static
problem where the reliability of edges is given
and an upgrading problem where edges can be
upgraded to the reliable status at a given cost.
Bley et. al. [2] introduced a branch-and-cut
algorithm based on BD method to obtain an op-
timal solution by considering a location problem
with survivability. Ljubi et. al. [13] by using
a two-stage branch-and-cut algorithm obtain
optimal solution for stochastic network design
problem. Konak and Bartolacci [10] proposed a
methodology for the difficult estimation of traffic
efficiency (TE), a measure of network resilience,
and a hybrid genetic algorithm to design net-
works using this measure. Lin [11] defines an

algorithm based on properties of minimal cuts
for evaluating performance. Lin [12] introduces
a simple algorithm for a stochastic-flow network
to estimate the system reliability. Terblanche et.
al. [18] expressed algorithmic ideas for improving
tractability in solving the SNDP by taking into
account uncertainty in the traffic requirements.
Chen et. al. [5] construced the survivable
network that has a feasible multicommodity flow
even after any k-edges failures by using a cutting
plane and a column-and-cut algorithm. Ljubic
et. al. [14] perused SNDP with edge-connectivity
requirements under a two-stage stochastic model
with recourse and finitely many scenarios. They
introduced stronger cut-based formulations and
suggested a two-stage branch and cut algorithm
to solve this problem.

The rest of the paper is organized as follows.
Section 2 introduces a mathematical model for
designing survivable multicommodity networks
and proposes the BD method in order to solve
the model. In Section 3, we present a procedure
for scenario selection which uses the BD method
in order to faster obtain the optimal solution to
the original problem. Computational results are
given in Section 4. The paper ends with a sum-
mary of the main conclusions and suggesions fu-
ture research in section 5.

2 Model Construction

This study examines the direct network including
sets of nodes and capacitated arcs. This network
had known origins, destinations, and demands,
which was the amount of flow that had to be
sent from origins to destinations. Associated
with each arc was the construction and failure
cost, both of which were assumed to be non-
negative. A set of arcs that could simultaneously
fail and lose a part of their capacity was also
considered. Each set of failing arcs was called a
failure scenario. The survivable multicommodity
network flow attempted to design a network that
minimized the total cost of construction and
failure in a way that a feasible multicommodity
flow existed in the event of any failure scenario.
To formulate this problem we introduce the
following notations and definitions:

Sets and Parameters:
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N : Set of nodes.

A: Set of arcs(arc that emanate from node
i and terminate at node j denoted by (i, j)).

cij : Construction cost of arc (i, j).

cfij : Failure cost of arc (i, j).

uij : Capacity of arc (i, j).

N+(i): Set of arcs with positive capacity
that emanate from node i.

N−(i): Set of arcs with positive capacity
that terminate at node i.

F : Set of failure scenarios.

k (k = 1, 2, ...,K): commodity of network.

dk: Demand of commodity k.

sk: Origin of commodity k.

tk: Destination of commodity k.

pe (e = 1, 2, ..., E): E fraction numbers in
interval [0, 1].

fpe : a failure scenario. fpe is a set of arcs
that could simultaneously fail and the failed arcs
lose (1 − pe)th of their capacity (the capacity of
other arcs is not touched).

wpe
ij :

{
pe (i, j) ∈ fpe
1 (i, j) /∈ fpe

Variables:

xpeijk: The amount of k th commodity on
arc (i, j) when the scenario fpe happens.

yij :

{
1 If arc (i,j) is constructed

0 o.w

The model (Original Problem) can be stated as
follows:

min
∑

(i,j)∈A

(cfij + cij)yij (2.1)

s.t ∑
k∈K

xpeijk ≤ yijw
pe
ij uij (2.2)

∀fpe ∈ F, ∀(i, j) ∈ A∑
(i,j)∈N+(sk)

xpeijk −
∑

(i,j)∈N−(sk)

xpeijk = dk (2.3)

∀fpe ∈ F, ∀k ∈ K∑
(i,j)∈N+(tk)

xpeijk −
∑

(i,j)∈N−(tk)

xpeijk = −dk (2.4)

∀fpe ∈ F, ∀k ∈ K∑
(i,j)∈N+(v)

xpeijk −
∑

(i,j)∈N−(v)

xpeijk = 0 (2.5)

∀fpe ∈ F, ∀k ∈ K, ∀v ∈ N − {sk, tk}

xpeijk ≥ 0, yij ∈ {0, 1} (2.6)

∀k ∈ K, ∀fpe ∈ F, ∀(i, j) ∈ A

The objective function (2.1) represents the to-
tal cost of arc construction and failure which has
to be minimized. Constraints (2.2) imply that
flow exists on an arc, if the arc has been con-
structed, and limit the flow on the arc to be no
more than its capacity in each failure scenario.
Constraints (2.3) and (2.4) guarantee that the
demand between all origin-destination pairs and
is satisfied in each failure scenario. Constraints
(2.5) show the flow balance for other nodes (ex-
cept the origin-destination nodes). Given a fail-
ure scenario fpe ∈ F , Problem (2.1)-(2.6) may be
written as:

min
∑

(i,j)∈A

(cfij + cij)yij + 0xpeijk (2.7)

s.t∑
k∈K

xpeijk ≤ yijw
pe
ij uij ∀(i, j) ∈ A (2.8)

∑
(i,j)∈N+(sk)

xpeijk −
∑

(i,j)∈N−(sk)

xpeijk = dk (2.9)

∀k ∈ K∑
(i,j)∈N+(tk)

xpeijk −
∑

(i,j)∈N−(tk)

xpeijk = −dk (2.10)

∀k ∈ K
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∑
(i,j)∈N+(v)

xpeijk −
∑

(i,j)∈N−(v)

xpeijk = 0 (2.11)

∀k ∈ K, ∀v ∈ N − {sk, tk}

xpeijk ≥ 0, yij ∈ {0, 1} (2.12)

∀k ∈ K, ∀(i, j) ∈ A

Now let us define

Y = {yij |(i, j) ∈ A, yij ∈ {0, 1}}

and suppose that yij , (i, j) ∈ A are fixed. Thus
problem (2.7)-(2.12) can be expressed as:

min
yij∈Y

 ∑
(i,j)∈A

(cfij + cij)yij + min
xpe
ijk≥0

{
∑
k∈K

xpeijk ≤ yijw
pe
ij uij

∑
(i,j)∈N+(sk)

xpeijk −
∑

(i,j)∈N−(sk)

xpeijk = dk

∑
(i,j)∈N+(tk)

xpeijk −
∑

(i,j)∈N−(tk)

xpeijk = −dk

∑
(i,j)∈N+(v)

xpeijk −
∑

(i,j)∈N−(v)

xpeijk = 0

∀k ∈ K

}}
(2.13)

The dual variables βij , πik can be introduced
for the inner minimization problem (2.13). Be-
cause the objective function is zero, ”max” in-
stead of ”min” is used in the objective function of
the inner problem (2.13) to obtain dual problem
of it. Drawing upon the duality theory, Problem
(2.13) can be re-written as:

min
yij∈Y

 ∑
(i,j)∈A

(cfij + cij)yij + min
βij≥0

{
∑

(i,j)∈fpe

βijuijw
pe
ij yij +

∑
k∈K

dk(πsk,k − πtk,k)

s.t

βij + πik − πjk ≥ 0
∀k ∈ K, ∀(i, j) ∈ A

}}
(2.14)

As a result, we can re-write original problem
in the following two seprate problems:

min
∑

(i,j)∈A

(cfij + cij)yij (2.15)

s.t

y˙ij∈ Y

and

min
∑

(i,j)∈fpe

βijuijw
pe
ij yij +

∑
k∈K

dk(πskk − πtkk)

(2.16)

s.t

βij + πik − πjk ≥ 0 ∀k ∈ K, ∀(i, j)

βij ≥ 0

Problem (2.16) is called a sub-problem (SP) of
BD.
If the feasible space of SP be empty, then primal
problem is unbounded or infeasible. Suppose that
(hpβ, h

p
π)t P = 1, 2, ..., P are extreme points and

(hrβ, h
r
π)

t r = 1, 2, ..., R are the extreme direc-
tions of the feasible space of SP.
The SP can take either bounded or unbounded
values. When SP is bounded, there is a opti-
mal extreme point (hpβ, h

p
π)t and optimal value

of SP equal to zero. thus unboundedness of
SP is considered. In the unbounded case,
there is a extreme direction (hrβ, h

r
π)

t such that

(uijw
pe
ij yij , dk)(h

r
β, h

r
π)

t < 0. The unboundedness
of SP makes the original problem infeasible. To
prevent the unbounded case, the following restric-
tions are added:

(uijw
pe
ij yij , dk)(h

r
β, h

r
π)

t ≥ 0.

If extreme directions of SP under scenarios
represented by

(hrβfpe , h
r
πfpe

)t r = 1, 2, ..., R,∀fpe ∈ F.

thus we can write Problem (2.14) as:

min
y∈Y

∑
(i,j)∈A

(cfij + cij)yij (2.17)

s.t

(uijw
pe
ij yij , dk)(h

r
βfpe

, hrπfpe )
t ≥ 0 (2.18)

r=1,2,...,R ,∀fpe ∈ F
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Table 1: (|K|= 2, |F |= 4) (in seconds)

|N |=5 |N |=10 |N |=15

BD 7 66 325
fm & BD 4 55 274

Table 2: (|F |= 4, |N |= 10) (in seconds)

|K|=2 |K|=4 |K|=10

BD 66 70 72
fm & BD 39 42 56

Table 3: (|K|= 2, |N |= 10) (in seconds)

|F |=4 |F |=6 |F |=10

BD 80 97 395
fm & BD 47 56 201

yij ∈ Y (2.19)

The above problem (2.17)-(2.19) is Master
Problem (MP) of BD. In practical situations,
there are typically too many extreme rays, which
is a disadvantage of the above formulation. To
overcome this weakness, generating Constraints
(2.18) are postponed. Initially, only the last con-
straint (2.19) is considered. Thus, the first re-
laxed MP is as follows:

min
y∈Y

∑
(i,j)∈A

(cfij+cij)yij

s.t
(2.20)

yij ∈ Y

Once Problem (2.20) is solved, SP of all scenar-
ios would be solved using the trial configuration
of yij . If SP is unbounded, a constraint of type
(2.18) is added to the relaxed MP. This process is
iteratively performed until obtaining an optimal
solution for the original problem.

3 Optimality conditions for a
certain scenario and modified
BD

At the first iteration of BD, the relaxed MP
is (2.20) and we obtain yij = 0, ∀(i, j) ∈ A.
As Constraints (2.18) are added to the model.

Indeed, the choice of scenario also affects on
reducing the number of iterations of relaxed
MP. We focus on finding a scenario that start
with this, finding optimal solution of original
problem or reduce the number of iterations of
BD approach.

The capacity of an s-t cut (s, s) under fpe can
be defined as:

Upe(s, s) = min

 ∑
(i,j)∈(s,s)

wpe
ij uij

 (3.21)

And also define Zfpe as the capacity of the mini-
mum cut:

Zfpe = min
(s,s)

{Upe(s, s)} (3.22)

Theorem 3.1 The optimal solution under fpe
which is Q∗

pe (Q∗
pe ⊆ A) is optimal for original

problem if and only if the capacity of every sk−tk
cut of Q∗

pe under other scenarios is greater than
or equal to dk (∀k ∈ K).
Proof. Without loss of generality, suppose that
Q∗

p1(Q
∗
p1 ⊆ A)is the optimal solution under sce-

nario fp1 such that the capacity of every sk − tk
cut of Q∗

p1under other scenarios is greater than or
equal to the dk. Suppose that Q∗(Q∗ ⊆ A) is the
optimal solution to the original problem. Since
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Q∗
p1 is the optimal solution under fp1 , it follows

that ∑
(i,j)∈Q∗

p1

(cij + cfij) ≤
∑

(i,j)∈Q∗

(cij + cfij) (3.23)

Now, we consider Q∗
p1 under another scenario say

fp2 . Q∗
p1 is not the optimal solution under fp2

. Since the capacity of every sk − tk cut of Q∗
p1

under fp2 is greater than or equal to the dk the
destination demands is satisfied. Therefore∑

(i,j)∈Q∗

(cij + cfij) ≤
∑

(i,j)∈Q∗
p1

(cij + cfij) (3.24)

then ∑
(i,j)∈Q∗

(cij + cfij) =
∑

(i,j)∈Q∗
p1

(cij + cfij) (3.25)

ThusQ∗
p1 is also optimal solution for original prob-

lem.
Now, suppose that the optimal solution under

scenario fp1 (which is Q∗
p1 ) is the optimal

solution to the original problem. Without loss
of generality, we consider Q∗

p1 under scenario
fp2 and suppose that there is an sk − tk cut
corresponding to fp2 such that the capacity
of Q∗

p1 on this cut is less than the dk. Thus,
Q∗

p1 under fp2 cannot satisfy the destination
demands, indicating that Q∗

p1 is not the optimal
solution to the original problem.

Finally, note that this scenario may be diffi-
cult or even impossible to be identified. We will
denote the number of nodes, the number of com-
modities and the number of scenarios by |N | ,
|K| and |F | respectively. In order to find a sce-
nario which would allow us to obtain the optimal
solution to the original problem at fewer itera-
tions, we suggest to start the BD approach with
a failure scenario that has least sk − tk cut of
all scenarios. We nominate this scenario as fm.
If the optimal solution to this scenario is opti-
mal to the original problem (i.e. it satisfies the
conditions of Theorem 1), the original problem is
solved. Otherwise, we put the optimal solution
obtained under fm into others scenarios.

4 Computational results

In this section, in order to demonstrate compu-
tational efficiency of the suggested approach in

terms of cpu time (to obtain the optimal solu-
tion), some sets of random network design ex-
amples with diffrent problem sizes are generated.
The first approach only uses the BD method and
the second approach, as suggested above, starts
the BD method with fm. For comparison pur-
poses, three sets of random network designs are
created. Size of each problem and the total de-
mands pertinent to each problem are so chosen
that it is possible to show the impact of prob-
lem size on computational time of the two above
approaches. The number of nodes, number of
commodity, and number of failure scenario are
changed respectively in the first, second, and
third sets of random networks. The target arc
density is set to 0.5, which is the ratio of the to-
tal number of network arcs to those arcs that can
exist in the network. Capacity, construction, and
failure costs of arcs are randomly set between 0
and 100 according to a uniform probability distri-
bution. Demands are randomly chosen between
45% and 65% of fm . In each failure scenario,
the number of failed arcs is equal. All the results
are obtained by an intel core i7, 2.2GHz cpu with
8 GB RAM. The results are summarized in the
tables 1, 2, 3.

5 Conclusion

This research aimed to develop an effective algo-
rithm for solving survivable network design prob-
lems. To solve this problem, the BD was initially
proposed with far outperformed than mixed inte-
ger programming. To reduce the number of iter-
ations of using the BD approach, we introduced
a new strategy on basis of s-t cut theorem to find
the particular initial failure scenario. Further re-
search in this area could develop a branch-and-
price-and-cut algorithm for SNDP. The obtained
results can be useful for those actual instances of
network arc failure.
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