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Abstract

In most of real world problems data suffer from inaccuracy, thus considering an interval for data
perturbation seems to be a good idea. There exist many papers in literature about Interval linear
programming problems (ILP) dealing with non negative variables. Here the general form of an ILP
is considered where all the parameters and variables are considered to be intervals. Moreover, in this
study more general conditions for variables are considered, variables which are unrestricted in sign.
Although this is the case in most of the real world problems, due to high complexity it has not been
dealt with in literature yet. In this paper a new method is presented in order to obtain fully interval
linear programming problems (FILPP ) using a nonlinear programming problem (NLP). Furthermore,
in order to demonstrate how the proposed method works two numerical examples are illustrated.
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—————————————————————————————————–

1 Introduction

D
ue to inexactness in data in real world prob-
lems system of interval linear programming

(ILP) problems are gained significant attentions.
Thus many researchers presented models and
methods for dealing with this kind of problems.
In their paper, Zhou et al. [27], provided an en-
hanced interval programming problems. Consid-
ering this method, stated in Zhou et al. [27] about
the advantage of this model, corresponding solu-
tion space is absolutely feasible while being com-

∗Corresponding author. Hosseinzadeh−ali@yahoo.com,
Tel:+98(911)9073365.

†Department of Mathematics, Lahijan Branch, Islamic
Azad University, Lahijan, Iran.

‡Department of Mathematics, Rasht Branch, Islamic
Azad University, Guilan, Iran.

pared to the solution of ILP. As advantage of this
method is that while it is compared to ILP, cor-
responding degree of uncertainty is much lower
than that of ILP model considering the feasible
solution space. As stated in Lodwick and Jami-
son, [15], they proposed a method, in the com-
puted result, automatical controlling the errors
interval analysis is introduced and utilized. This
method used for solving LP problems with in-
terval coefficient. Note that it incorporates un-
certainty of numbers with out any assumption
about the distributions. Some examples of this
method are as follows: Huang and Moore, 1993
[11],Chinneck and Ramadan, [4]; Sengupta et al.,
[20]. Specifically, for solving a special LP model
with limited constraints, while the upper and
lower bounds are at hand, a basic model provided
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by Ben-Israel and Robers [3]. This method en-
hanced by Rommelfanger et al. [19] and Inuiguchi
and Sakawa [13] with an interval objective func-
tion while having upper and lower bounds. Under
such circumstances a new LP model and a new
BWS method are also provided by Huang and
Moore [11] and Tong [25], respectively.
Hladik [10] presented a new approach in which an
exact range for optimal value function, while con-
sidering any linear interval system, is computed.
As an advantage of the presented method it can
be mentioned that the constraint matrix coeffi-
cients are dependant to each other. Moreover as
Hladik [10] stated, relations between the primal
and dual solution sets can be characterized. In re-
gards of inexactness inherent in real world prob-
lems, Hladik [9], considering interval data, gen-
eralized linear fractional programming problems.
In this generalized approach, a new method pre-
sented for computing the range of optimal val-
ues. One important key feature of this method is
that, while an ideal interior point solver method
is accounted for, computation done in polyno-
mial time. As regards of recent researches, multi-
objective linear programming (MOLP) problems
gained specific attentions. This subject discussed
with interval data in Oliveira, C., Antunes, C.H.
[17] differently. In a paper provided by Oliveira,
C.,Antunes, C.H. [18], mentioned condition is
taken into account merely in objective functions
coefficients. Noted that a significant issue in
MOLP is necessary efficiency, for all realizations
of interval data, showing that a feasible point is
efficient, as stated in Ida, M. [12], Hladik [8]. In
2011, Hladik [7] for checking necessary efficiency
while an interval multiobjective linear program-
ming is considered, some complexity results pre-
sented. Wu [26] presented a paper discussed weak
and strong duality theorems in presence of inter-
val data are considered. This issue is proposed in
Soyster [23], [22], Thuente [24]. The provided ap-
proach in Wu [26] is based upon the concept of an
inner product of closed intervals. This approach
is some how relates to MOP problems. In a pa-
per Sengupta and Pal [21] considered two inter-
val numbers on the real line and presented a sur-
vey of the existing works for comparing and rank-
ing such intervals. Then, they proposed two ap-
proaches for ranking. One describes a value judg-

ment index and the other defines strict and fuzzy
preference ordering in regards of a pessimistic de-
cision maker’s viewpoint. Li et al. [2] in their
paper, considered linear programming problems
with interval right-hand side and checked weak
optimality with the necessary and sufficient con-
ditions. Hladk [14] presented a robust optimal
solutions in interval linear programming. Ashay-
erinasab et al. [6]2018 considered interval linear
equations system and presented a new algorithm
for solving an interval LP model.
In this paper a new method defined which ac-
quires algebraic solutions of fully interval linear
programming problems (FILPP ) using a nonlin-
ear programming problem(NLP). Novotn et al.
[16] discussed about the issue of duality gap ex-
ists in the interval linear programming. As an im-
portant issue they talked about the specifications
of strongly and weakly zero duality gap in inter-
val linear programming. They also paid attention
to the important case in which there exists the
real matrix of coefficients. Garajov et al. [5] in
their paper discussed the transformations which
are usually utilized in linear programming. They
talked about imposing non-negativity of free vari-
ables, splitting equations into inequalities, and
their effects on interval programs. They noted
that some of the mostly used properties do not
holds in the general case. Thus, in their paper
they taken into account a special class of interval
programs, where uncertainty exists in objective
function and the right-hand-side vectors.
This paper unfolds as follows: First some pre-
liminaries and basic definition will be briefly re-
viewed. Then, in section 3, main subject, ranking
interval numbers and the new for finding inter-
val optimal solution of FILP problems presented.
Section 4 conclude the paper.

2 Preliminaries

In this section, some necessary backgrounds and
notions of interval numbers theory and definition
are briefly reviewed.

2.1 Basic definitions

Definition 2.1. An interval number [x] is de-
fined as the set of real numbers such that [x] =
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[x, x] = {x′ ∈ R : x ⩽ x′ ⩽ x} where x ⩽ x. We
denote the set of all interval numbers by I.

Definition 2.2. A vector [X] =
([x1], [x2], . . . , [xn])

T , where [xi] = [xi, xi],
1 ⩽ i ⩽ n are called an interval number vectors.
In this case, we denote [X] ∈ In.

Definition 2.3. Let [x] = [x, x] and [y] = [y, y]
be two interval numbers, then

[x, x]⊕ [y, y] = [x+ y, x+ y]

[x, x]⊖ [y, y] = [x− y, x− y],

[x, x]⊗ [y, y] = [c, c]{
c = min {x.y, x.y, x.y, x.y}
c = max {x.y, x.y, x.y, x.y},

[x, x]⊘ [y, y] = [x, x]⊗ [1/y, 1/y], y, y ̸= 0,

k.[x, x] =

{
[kx, kx] k ⩾ 0
[kx, kx] k < 0

k ∈ R.

Definition 2.4. The width of an interval number
[x] is defined as follows:

W ([x]) = x− x.

2.2 Nonlinear Partition Interval

Definition 2.5. [2] Consider the nonlinear
partition interval of an interval number [x] =
[x, x] that x ⩾ 0 or x ⩽ 0 as follows:

[x] = [x, x] = [x1, x
′
1]⊕ [x′2, x2]

x1 ⩽ x′1 ⩽ 0 ⩽ x′2 ⩽ x2,
λ1.x1 + λ2.x2 = 0,
λ1 + λ2 = 1, λ1, λ2 ∈ {0, 1}.

(2.1)

Example 2.1. Consider the following interval
numbers

[x] = [−6,−2], [y] = [3, 7].

Using Eq. (2.1), the following nonlinear nartition
interval can be presented:{

[−6,−2] = [−6,−2] ⊕ [0, 0],
[3, 7] = [0, 0] ⊕ [3, 7].

(2.2)

3 Main subject

As mentioned above this paper mainly deals with
solving fully interval linear systems. In doing so
a new method for ranking interval numbers will
be proposed, then in accordance with that, Stan-
dard Interval Splitting (SIS) will also be defined.
As regards, it is possible to solve fully interval lin-
ear systems. One great feature of the proposed
method is that it helps solving fully interval linear
problems. For checking validity of the proposed
method some examples are provided.

3.1 New approach for ranking of inter-
val numbers

In this subsection a new index of interval number
has been defined then this index use for rank-
ing interval numbers. The proposed index has
some novel features in comparison to those ex-
isting methods for ranking interval numbers that
will be explained in following.

Definition 3.1. For an arbitrary interval num-
ber [x] = [x, x], we define the ranking function
index Ind() : I → R of the interval number [X] as

Ind([x]) =

n∑
i=0

wixi, (3.3)

where:
xi = i

(
x−x
n

)
+ x i = 0, 1, . . . , n,∑n

i=0wi = 1
0 < w1 < w2 < . . . < wn ⩽ 1,

(3.4)

In the above definition, (3.1), wi(i =
0, 1, . . . , n) are the operator weights for determin-
ing Ind([x]). The proposed approach allows the
operator weights with different values to be de-
termined in terms of decision maker.
As explained above the Ind([x]) synthetically re-
flects the information on interval number [x].
Noted that the larger the magnitude of n is, the
more number points of interval for determining
Ind([x]) will be defined. Meaning of this magni-
tude is visual and natural. The resulted scalar
value is then used to rank the interval numbers.
In accordance to what has been proposed above,
the larger Ind([x]) is, the larger interval number
will be.
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Definition 3.2. For any two interval numbers
[x] and [y], ranking of [x] and [y] by Ind([x]) on
I, with fixed operator weights wi(i = 0, 1, . . . , n),
will be defined as follows:

1) Ind([x]) > Ind([y]) if and only if [x] ≻
[y].

2) Ind([x]) < Ind([y]) if and only if [x] ≺
[y].

3) Ind([x]) = Ind([y]) if and only if [x] ∽
[y].

Then the order ≽ and ≼ will be formulated as
[x] ≽ [y] if and only if [x] ≻ [y] or [x] ∽ [y], and
[x] ≼ [y] if and only if [x] ≺ [y] or [x] ∽ [y].
Obviously, [x] ≼ [y] if and only if
Ind([x]) ⩽ Ind([y]).

Using ranking function Ind(), we define an
equivalence class for interval number [x] as fol-
lowing:

Class([x]) = {[y]|
∑n

i=0wi(xi − yi) = 0}
= {[y]|(x− y)

∑n
i=0 iwi

+(x− y)
∑n

i=0(n− i)wi = 0}.
(3.5)

Obvious, if [t] ∈ Class([x]) then [t] ∽ [x].

Theorem 3.1. For any [x], [y], [z] ∈ I and for
the fixed operator weights, wi(i = 0, 1, . . . , n), the
index Ind(.) defined in Definition 3.1, satisfies in
the following properties:

1. If [x] is crisp numbers, i.e., [x] = [k, k] then
Ind([x]) = k.

2. Ind([x]) ∈ [x].

3. Ind(k[x]) = k.Ind([x]) k ∈ R+.

4. Ind([x]⊕ [y]) = Ind([x]) + Ind([y])

5. If x ⩾ 0 then Ind([x]) ⩾ 0 (if x ⩽ 0 then
Ind([x]) ⩽ 0)

Proof. 1: Let [x] be crisp numbers, i.e., [x] =
[k, k] then xi = k i = 0, 1, . . . , n. Hence

Ind([x]) =

n∑
i=0

wixi =

n∑
i=0

wik = k

n∑
i=0

wi = k

2: Using Definition 3.2, we have:

xi = i

(
x− x

n

)
+ x =

i

n
x+

n− i

n
x

⇒ x ⩾ xi ⩾ x, (i = 0, 1, . . . , n)

⇒
n∑

i=0

wix ⩾
n∑

i=0

wixi ⩾
n∑

i=0

wix

⇒ x ⩾ Ind([x]) ⩾ x ⇒ Ind([x]) ∈ [x]

3: suppose k ⩾ 0. Then k[x] = [kx, kx] Hence,
we have:

Ind(k[x]) =

n∑
i=0

wi

(
i

(
kx− kx

n

)
+ kx

)

=

n∑
i=0

wikxi = k

n∑
i=0

wixi = k.Ind([x])

4: Using Definition 2.3, [x]⊕ [y] = [x+ y, x+ y].
Hence, we have:

Ind([x]⊕ [y]) =∑n
i=0wi

(
i
(
x+y−x−y

n

)
+ x+ y

)
=∑n

i=0wi((i(
x−x
n ) + x) + (i(

y−y

n ) + y))

=
∑n

i=0wi

((
i
(
x−x
n

)
+ x

))
+∑n

i=0wi

((
i
(
y−y

n

)
+ y

))
= Ind([x]) + Ind([y])

5: Let x ⩾ 0. Hence,

xi =
i

n
x+

n− i

n
x ⩾ 0 ⇒

Ind([x]) =

n∑
i=0

wixi ⩾ 0 (i = 0, 1, . . . , n)

Theorem 3.2. The ordering approaches defined
formerly have the reasonable properties as follow-
ing:

1. [x] ≼ [x].

2. [x] ≼ [y] and [y] ≼ [x] if and only if [x] ∽ [y].

3. [x] ≼ [y] and [y] ≼ [z] if and only if [x] ≼ [z].

4. For any [z] ∈ I if [x] ≼ [y] then [x] ⊕ [z] ≼
[y]⊕ [z].

5. If [x] ≼ [y] and z ⩾ 0 and x, y ⩾ 0 (x, y ⩽
0) then [x]⊗ [z] ≼ [y]⊗ [z] .
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6. If x ⩾ y then [x] ≽ [y](If x ⩽ y then [x] ≼
[y]).

7. If x = y (or x > y) and x ⩾ y then [x] ≽ [y]

8. If x = y (or x > y) and x ⩾ y then [x] ≽ [y]

Proof. 1: Using Definition 3.2, the proof is obvi-
ous.
2: Using Definition 3.2, we have:{

[x] ≼ [y] ⇔ Ind([x]) ⩽ Ind([y])
[y] ≼ [x] ⇔ Ind([y]) ⩽ Ind([x])

⇔ Ind([y]) = Ind([x]) ⇔ [x] ∽ [y]

3: Using Definition 3.2, we have:{
[x] ≼ [y] ⇔ Ind([x]) ⩽ Ind([y])
[y] ≼ [z] ⇔ Ind([y]) ⩽ Ind([z])

⇔ Ind([x]) ⩽ Ind([z]) ⇔ [x] ≼ [z]

4: Let [z] ∈ I and [x] ≼ [y]. Using Theorem 3.1,
we have:

[x] ≼ [y] ⇔ Ind([x]) ⩽ Ind([y])

⇔ Ind([x]) + Ind([z]) ⩽ Ind([y]) + Ind([z])

⇔ Ind([x] + [z]) ⩽ Ind([y] + [z])

⇔ [x]⊕ [z] ≼ [y]⊕ [z]

5: Let [x] ≼ [y] and z ⩾ 0, we consider two
following cases.

Case A: Firstly, suppose x, y ⩾ 0.
By contradiction assume that:

[x] ⊗ [z] ≻ [y] ⊗ [z] ⇐⇒ Ind([x] ⊗ [z]) =∑n
i=0wi

(
i
nx.z +

n−i
n x.z

)
> Ind([y] ⊗ [z]) =∑n

i=0wi

(
i
ny.z +

n−i
n y.z

)
=⇒

∑n
i=0wi(z

i
n(x −

y) + z n−i
n (x− y)) > 0

=⇒
∑n

i=0wi(z
i
n(x− y) + z n−i

n (x− y)) > 0

=⇒
∑n

i=0wi

(
i
n(x− y) + n−i

n (x− y)
)
> 0∑n

i=0wi

(
i
nx+ n−i

n x
)
>

∑n
i=0wi(

i
ny +

n−i
n y)

⇐⇒ Ind([x]) ≻ Ind([y]).2

Therefore it is concluded that it is incoher-
ence, and the proof is down.
Case B: Now, suppose x, y ⩽ 0. The proof of
this case is similar to that of Case A.

6: Let x ⩾ y then: x ⩾ y and x ⩾ y,

⇒ xi =
i
nx+ n−i

n x ⩾ yi =
i
ny +

n−i
n y

⇒ wi.xi ⩾ wi.yi i = 0, . . . , n
⇒

∑n
i=0wi.xi ⩾

∑n
i=0wi.yi

⇒ Ind([x]) ⩾ Ind([y]) ⇒ [x] ≽ [y]

7: Let x = y (or x > y) and x ⩾ y. Hence, we
have

⇒ xi =
i
nx+ n−i

n x ⩾ yi =
i
ny +

n−i
n y

⇒ wi.xi ⩾ wi.yi i = 0, . . . , n
⇒

∑n
i=0wi.xi ⩾

∑n
i=0wi.yi

⇒ Ind([x]) ⩾ Ind([y]) ⇒ [x] ≽ [y]

8: Now suppose x ⩾ y and x = y (or x > y.) The
proof of this case is similar to that of Case 7.

Example 3.1. Consider the following interval
[X] = [2, 6]. Let n = 8 therefore, using Defini-
tion.(3.1) choice points on interval are as follow-
ing:
x0 = 2, x1 = 2.5, x2 = 3, x3 = 3.5, x4 = 4, x5 =
4.5, x6 = 5, x7 = 5.5, x8 = 6, and, for n = 16 we
have:
x0 = 2, x1 = 2.25, x2 = 2.5, x3 = 2.75, x4 =
3, x5 = 3.25, x6 = x7 = 3.75, x8 = 4, x9 =
4.25, x10 = 4.5, x11 = 4.75, x12 = 5, x13 =
5.25, x14 = 5.5, x15 = 5.75, x16 = 6, let opera-
tor weights for n = 8 be as follows:
w0 = 1

100 , w1 = 2
100 , w2 = 3

100 , w3 = 5
100 , w4 =

8
100 , w5 = 12

100 , w6 = 17
100 , w7 = 23

100 , w8 = 29
100 , like-

wise for n = 16:
w0 = 1

1000 , w1 = 2
1000 , w2 = 3

1000 , w3 = 4
1000 , w4 =

5
1000 , w5 = 6

1000 , w6 = 8
1000 , w7 = 11

1000 , w8 =
15

1000 , w9 = 20
1000 , w10 = 35

1000 , w11 = 50
1000 , w12 =

80
1000 , w13 = 110

1000 , w14 = 150
1000 , w15 = 200

1000 , w16 =
300
1000 . Hence, considering n = 8:

Ind([x]) =
∑8

i=0wi.xi =
1

1002 + 2
1002.5 + 3

1003 + 5
1003.5 + 8

1004 + 12
1004.5 +

17
100 .5 + 23

1005.5 + 29
100 .6 = 5.5, and for n = 16 as

similar, the proposed index is:

Ind([x]) =
16∑
i=0

wi.xi = 5.4213.

Example 3.2. Consider the following example in
which for delineating the ranking function index
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Ind(), the operator weights are set as follows:

For 10 points :
wi =

1+2∗i
100 (i = 0, 1, . . . , 9).

For 50 points :
wi =

1+2∗i
2500 (i = 0, 1, . . . , 49).

For 100 points :
wi =

1+2∗i
10000 (i = 0, 1, . . . , 99).

For 100 points :
w′
i =

1+5∗i
24850 (i = 0, 1, . . . , 99).

(3.6)

3.2 Fully interval linear programming
problem

In this section a fully interval LP problem will
be introduced. Also, a method for solving such
problems will be thoroughly explained and dis-
cussed.
Fully interval linear programming (FILP) prob-
lems with m equality constraints and n interval
variables will be formulated as follows:

Max (Min) [Z] = [C]⊗ [X]

subject to [A]⊗ [X] ≼ (≽)[b]
(3.7)

where [A] = ([aij ])m×n is an interval num-

ber matrix and [C] = ([c1], [c2], . . . , [cn])
T

,[X] = ([x1], [x2], . . . , [xn])
T and [b] =

([b1], [b2], . . . , [bn])
T are interval number vec-

tors.

Definition 3.3. The interval optimal solution of
FILP problem 3.7 will be a interval number [X]
if it satisfies the following characteristics:

(i) Ind([A]⊗ [X]) ⪕ (⪖) Ind([b])

(ii) If there exist any interval number vector [X
′
]

such that

Ind([A]⊗ [X
′
]) ⪕ (⪖) Ind([b]),

then
Ind([C] ⊗ [X]) ⩾ Ind([C] ⊗
[X

′
])(in case of maximization problem)

and
Ind([C] ⊗ [X]) ⪕ Ind([C] ⊗
[X

′
])(in case of minimization problem).

Remark 3.1. Let [X] be an interval optimal so-
lution of FILP problem 3.7. If there exist an in-
terval number vector [Y ] such that,

(i) Ind([A]⊗ [Y ]) ⪕ (⪖) Ind([b])

(ii) Ind([C]⊗ [X]) = Ind([C]⊗ [Y ]) .

then [Y ] is said to be a an alternative interval
optimal solution of 3.7.

Lemma 3.1. For any interval numbers, [x] =
[x, x] and [a] = [a, a] if (x ≤ 0 or x ≥ 0) then we
have

[a]⊗ [x] =
[a.x1, a.x1]⊕ [a.x2, a.x2], a ⩽ 0 ⩽ a,

[a.x1, a.x
′
1]⊕ [a.x′2, a.x2], a ⩾ 0,

[a.x′1, a.x1]⊕ [a.x2, a.x
′
2], a ⩽ 0.

(3.8)
where:

[x] = [x, x] = [x1, x
′
1]⊕ [x′2, x2]

x1 ⩽ x′1 ⩽ 0 ⩽ x′2 ⩽ x2,
λ1.x1 + λ2.x2 = 0
λ1 + λ2 = 1, λ1, λ2 ∈ {0, 1}

(3.9)

Proof. Let the assumptions be categorized into
three cases:
Case 1)
let a ≤ 0 ≤ ā then we have the following two
subcases:

1) x ≥ 0 in this case according to the definition
(2.3) we have
[a]⊗ [x] = [ax, ax]
In regards of the nonlinear partition interval (2.5)
we have [x] as following:
[x] = [x, x] = [0, 0]⊕ [x′2, x2] = [x′2, x2]
on the other hand we have:
[a.x1, a.x1] ⊕ [a.x2, a.x2] = [0, 0] ⊕ [ax, ax] =
[ax, ax]
Thus we have:
[a]⊗ [x] = [a.x1, a.x1]⊕ [a.x2, a.x2]
2) x̄ ≤ 0 In this case according to definition (2.3)
We have

[a]⊗ [x] = [ax, ax]

Then, in regards of the nonlinear partition inter-
val (2.5) [x] we have

[x] = [x̄, x] = [x1, x
′
1]⊕ [0, 0] = [x1, x

′
1]

on the other hand we have:

[a.x1, a.x1]⊕[a.x2, a.x2] = [ax, ax]⊕[0, 0] = [ax, ax]
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Table 1: Comparative results of ranking interval numbers using ind (.) function.

interval Ind(.) Ind(.) Ind(.) Ind(.)
n=9 n=49 n=99 n=99

w w w w
′

a = [4, 10]
b = [4.5, 10]
c = [5, 10]
Results

8.1000
8.2583
8.4167
a ≺ b ≺ c

8.0200
8.1850
8.3500
a ≺ b ≺ c

8.0100
8.1758
8.3417
a ≺ b ≺ c

8.0161
8.1814
8.3467
a ≺ b ≺ c

a = [5, 18]
b = [5, 18.5]
c = [5, 18.75]
Results

13.8833
14.2250
14.3958
a ≺ b ≺ c

13.7100
14.0450
14.2125
a ≺ b ≺ c

13.6883
14.0225
14.1896
a ≺ b ≺ c

13.7015
14.0362
14.2036
a ≺ b ≺ c

a = [2, 3]
b = [2.2, 2.8]
c = [2.4, 2.6]
Results

2.6833
2.6100
2.5367
a ≻ b ≻ c

2.6700
2.6020
2.5340
a ≻ b ≻ c

2.6683
2.6010
2.5337
a ≻ b ≻ c

2.6693
2.6016
2.5339
a ≻ b ≻ c

a = [30, 50]
b = [37, 46]
c = [38, 47]
Results

43.6667
43.1500
44.1500
b ≺ a ≺ c

43.4000
43.0300
44.0300
b ≺ a ≺ c

43.3667
43.0150
44.0150
b ≺ a ≺ c

43.3870
43.0241
44.0241
b ≺ a ≺ c

a = [50, 100]
b = [52, 98]
c = [60, 97]
Results

84.1667
83.4333
85.2833
b ≺ a ≺ c

83.5000
82.8200
84.7900
b ≺ a ≺ c

83.4167
82.7433
84.7283
b ≺ a ≺ c

83.4675
82.7901
84.7659
b ≺ a ≺ c

a = [2000.55, 3000.55]
b = [2000.56, 3000.55]
c = [2000.55, 3000.56]
Results

2683.8833
2683.8865
2683.8902
a ≺ b ≺ c

2670.5500
2670.5533
2670.5567
a ≺ b ≺ c

2668.8833
2668.8867
2668.8900
a ≺ b ≺ c

2669.8994
2669.9027
2669.9061
a ≺ b ≺ c

a = [−16,−10]
b = [−15.5,−10]
c = [−15,−10]
Results

−11.9000
−11.7417
−11.5833
a ≺ b ≺ c

−11.9800
−11.8150
−11.6500
a ≺ b ≺ c

−11.9900
−11.8242
−11.6583
a ≺ b ≺ c

−11.9839
−11.8186
−11.6533
a ≺ b ≺ c

a = [−18,−4]
b = [−18,−4.5]
c = [−18,−5]
Results

−8.4333
−8.7750
−9.1167
a ≻ b ≻ c

−8.6200
−8.9550
−9.2900
a ≻ b ≻ c

−8.6433
−8.9775
−9.3117
a ≻ b ≻ c

−8.6291
−8.9638
−9.2985
a ≻ b ≻ c

Thus we have:

[a]⊗ [x] = [a.x1, a.x1]⊕ [a.x2, a.x2]

Case 2) Let a ≥ 0 then we consider the two fol-
lowing subcases.
1) x ≥ 0 2) x ≤ 0
Case 3) Let ā ≤ 0 then we have the following two
subcases.

1) x ≥ 0 2) x̄ ≤ 0.

3.3 Proposed method to find the fuzzy
optimal solution of FILP problems

Now, a new method is proposed to find the fuzzy
optimal solution of following type of FILP prob-
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lems:

Max(Min) [z] =
∑n

j=1([cj , cj ]⊗ [xj , xj ])

subject to :∑n
j=1

(
[aij , aij ]⊗ [xj , xj ]

)
≼ (≽)[bi, bi] i = 1, . . . ,m.

(3.10)
Let the interval number vector [X] =
([x1], [x2], . . . , [xn])

T be a feasible solution
of FILP problem (3.10) that 0 ̸∈ (xj , xj) j =
1, . . . , n then:

[z] =
∑n

j=1

(
[cj , cj ]⊗ [xj , xj ]

)
∑n

j=1

(
[aij , aij ]⊗ [xj , xj ]

)
≼ (≽)[bi, bi] i = 1, . . . ,m,

(3.11)

So, we consider two separate cases for the ele-
ments of matrix A and C as following:

J−i = {j | aij ⩽ 0aij ̸= 0}
G−

={j | cj ⩽ 0cj ̸= 0},
J+i = {j | aij ⩾ 0aij ̸= 0}
G+

={j | cj ⩾ 0cj ̸= 0},
J0i = {j | aij ⩽ 0 ⩽ aij}
G0

={j | cj ⩽ 0 ⩽ cj},
i = 1, . . . ,m

(3.12)

Using the above mentioned separation, (3.11) is
written as follows;

∑
J−i

([aij , aij ]⊗ [xj , xj ])+∑
J+i

([aij , aij ]⊗ [xj , xj ])+∑
J0i

([aij , aij ]⊗ [xj , xj ])

≼ (≽)[bi, bi] i = 1, . . . , n,
[z] =

∑
G−

i

([cj , cj ]⊗ [xj , xj ])+∑
G+

i

([cj , cj ]⊗ [xj , xj ])+∑
G0

i

([cj , cj ]⊗ [xj , xj ])

i = 1, . . . , n,

(3.13)

Now, using Lemma 3.1, system ( 3.13) is written
as follows:

[z] =∑
G−

([cjx
′
j1 + cjxj2, cjxj1 + cjx

′
j2])+∑

G+

([cjxj1 + cjx
′
j2, cjx

′
j1 + cjxj2])+∑

G0

([cjxj1 + cjxj2 , cjxj1 + cjxj2])∑
J−
([aijx

′
j1 + aijxj2, aijxj1 + aijx

′
j2])+∑

J+
([aijxj1 + aijx

′
j2, aijx

′
j1 + aijxj2])∑

J0
([aijxj1 + aijxj2, aijxj1 + aijxj2])

≼ (≽)[bi, bi], i = 1, 2, . . . , n,

[xj , xj ] = [xj1, x
′
j1]⊕ [x′j2, xj2]

xj1 ⩽ x′j1 ⩽ 0 ⩽ x′j2 ⩽ xj2,

λj1.xj1 + λj2.xj2 = 0
λj1 + λj2 = 1, λj1, λj2 ∈ {0, 1},
j = 1, . . . , n.

(3.14)
Now we set:∑

G−

(
cjx

′
j1 + cjxj2

)
+

∑
G+

(
cjxj1 + cjx

′
j2

)
+
∑
G0

(
cjxj1 + cjxj2

)
=: CX,∑

G−

(
cjxj1 + cjx

′
j2

)
+

∑
G+

(
cjx

′
j1 + cjxj2

)
+
∑
G0

(
cj · xj1 + cj · xj2

)
=: CX,

∑
J−

(
aijx

′
j1 + aijxj2

)
+

∑
J+

(
aijxj1 + aijx

′
j2

)
+
∑
J0

(
aijxj1 + aijxj2

)
=: (AX)

i∑
J−

(
aijxj1 + aijx

′
j2

)
+

∑
J+

(
aijx

′
j1 + aijxj2

)
+
∑
J0

(
aijxj1 + aijxj2

)
=: (AX)i,

i = 1, 2, . . . ,m.
(3.15)

Then using ( 3.15) model ( 3.10) can be rewritten
as follows:

Max(Min)[z] = [CX,CX]
subjectto :

[(AX)
i
, (AX)i] ≼ (≽)[bi, bi]i = 1, . . . ,m

xj1 ⩽ x′j1 ⩽ 0 ⩽ x′j2 ⩽ xj2,

λj1.xj1 + λj2.xj2 = 0
(3.16)
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λj1 + λj2 = 1, λj1, λj2 ∈ {0, 1},
j = 1, . . . , n.

Now, using the operator weights wi i =
0, 1, . . . , n, the ranking function index Ind(.), as
presented in section (2) can be delineated. Then,
applying the ranking function index Ind(.) it is
possible to obtain the interval optimal solution of
FILP problem 3.16 as follows:

Max(Min) Ind([z]) = Ind([CX,CX])
subjectto :

Ind([(AX)
i
, (AX)i]) ⩽ (⩾)Ind([bi, bi])

i = 1, . . . ,m,
xj1 ⩽ x′j1 ⩽ 0 ⩽ x′j2 ⩽ xj2,

λj1.xj1 + λj2.xj2 = 0
λj1 + λj2 = 1, λj1, λj2 ∈ {0, 1},
j = 1, . . . , n

(3.17)
The above NLP 3.17 can be easily solved by using
GAMS or LINGO software package.

Theorem 3.3. Let X∗ =
([x1, x1], [x2, x2], ..., [xn, xn]) be an in-
terval optimal solution of FILP
problem ( 3.10) then X∗

Ind =
(x11, x12, x

′
11, x

′
12, x21, x22, x

′
21, x

′
22, . . . , xn1,

xn2, x
′
n1, x

′
n2) is an optimal solution of ( 3.17)

where [xj , xj ] = [xj1, x
′
j1] ⊕ [x′j2, xj2] (j =

1, . . . , n).

Proof. Using Definitions (3.3) and Eqs.(3.11)-
(3.15), the proof is obvious.

In addition, it is possible to explain the new
proposed method by following algorithm:

3.3.1 Algorithm

step 1 Consider the following FILP problem:

Max(Min)[Z] = [C]⊗ [X]
subjectto
[A]⊗ [X] ≼ (≽)[b]

(3.18)

step 2 Now using Lemma 3.1,model (3.18) can
be written as model ( 3.16).

step 3 Using the operator weights wi(i =
0, 1, . . . , n) it is possible to delineate the
ranking function index Ind() as in section
(2).

step 4 Apply the ranking function index Ind(.)
to obtain the interval optimal solution of
FILP problem (3.16) as model (3.17).

step 5 Solving model (3.17)
xj1, xj2, x

′
j1, x

′
j2, j = 1, 2, . . . , n and [xj , xj ]

are found which is the interval optimal
solution of FILP problem.

Example 3.3. Consider the following FILP
problem:

Min[z] = [−145,−28][x1] + [31, 186][x2]
+[−44, 127][x3] + [−62, 281][x4],

subject to :

[46, 137][x1] + [35, 152][x2] + [72, 183][x3]
+[115, 218][x4] ≼ [−1400, 1500],

[−75, 48][x1] + [−121, 162][x2]+
[−183, 192][x3] + [82, 253][x4]

≼ [−26000, 20000],

[−152,−39][x1] + [28, 179][x2]+
[−53, 138][x3] = [100, 2100],

[x4] ≽ [0, 0],

[x1], [x2], [x3] isfree.
(3.19)

Now using Lemma 3.1, system (3.19) can be writ-
ten as follows:

Min [z] = [−145x12 − 28x′11 + 186x21
+31x′22 + 127x31 − 44x32 − 62x42
−145x11 − 28x′12 + 186x22 + 31x′21
+127x32 − 44x31 + 281x42]

subjectto :
[137x11 + 46x′12 + 152x21 + 35x′22
+183x31 + 72x′32 + 115x′42 , 137x12
+46x′11 + 152x22 + 35x′21 + 183x32
+72x′31 + 218x42] ≼ [−1400, 1500],
[48x11 − 75x12 + 162x21 − 121x22
+192x31 − 183x32 + 82x′42 , 48x12
−75x11 + 162x22 − 121x21 + 192x32
−183x31 + 253x42] ≼ [−26000, 20000],
[−152x12 − 39x′11 + 179x21 + 28x′22
+138x31 − 153x32 , −152x11 − 39x′12
+179x22 + 28x′21 + 138x32 − 153x31]

(3.20)



310 A. Hosseinzadeh et al., /IJIM Vol. 13, No. 3 (2021) 301-312

= [100, 2100]
xj1 ⩽ x′j1 ⩽ 0 ⩽ x′j2 ⩽ xj2, x41 ⩾ 0

λj1.xj1 + λj2.xj2 = 0
λj1 + λj2 = 1, λj1, λj2 ∈ {0, 1},
j = 1, . . . , 3

Now for delineating the ranking function index
Ind(), set the operator weights wi =

1+12∗i
550 (i =

0, 1, . . . , 9). Obviously
∑9

i=0wi = 1 , 0 < w1 <
w2 < . . . < w9 ⩽ 1. Hence,

Ind([a, b]) =
∑9

i=0wi

(
i

9
b +

9− i

9
a

)
= 0.33 ∗

a+ 0.67 ∗ b.
Apply the ranking function index Ind([a, b]) =
0.3 ∗ a + 0.7 ∗ b to obtain the interval optimal
solution of FILP problem 3.19 as following:

Min Z ′ = 0.3(−145x12 − 28x′11+
186x21 + 31x′22 + 127x31 − 44x32 − 62x42)
+0.7(−145x11 − 28x′12 + 186x22 + 31x′21
+127x32 − 44x31 + 281x42)

subject to :

0.3(137x11 + 46x′12 + 152x21 + 35x′22
+183x31 + 72x′32 + 115x′42)+
0.7(137x12 + 46x′11 + 152x22 + 35x′21
+183x32 + 72x′31 + 218x42) ⩽ 6300,

0.3(48x11 − 75x12 + 162x21 − 121x22
(3.21)

+192x31 − 183x32 + 82x′42)+
0.7(48x12 − 75x11 + 162x22 − 121x21
+192x32 − 183x31 + 253x42) ⩽ 6200,

0.3(−152x12 − 39α1 + 179x21 + 28β2
+138x31 − 153x32)+
0.7(−152x11 − 39β1 + 179x22 + 28α2

+138x32 − 153x31) = −1250,

xj1 ⩽ x′j1 ⩽ 0 ⩽ x′j2 ⩽ xj2, x41 ⩾ 0,

λj .xj2 + λj .xj1 − xj1 = 0,
λj ∈ {0, 1} j = 1, . . . , 4.

Thus, the obtained results are as follows:

x11 = 0, x12 = 89.12946
, x′11 = 0, x′12 = 0,

x21 = 0, x22 = 11.45378,
x′21 = 0, x′22 = 11.45378,
x31 = −61.38407, x32 = 0,
x′31 = 0, x′32 = 0,
x41 = 0, x42 = 0,
x′41 = 0, x′42 = 0.

(3.22)

Hence, the following results are obtained as:

[x∗1] = [0, 89.12946],
[x∗2] = [11.45378, 11.45378],
[x∗3] = [−61.38407, 0], [x∗4] = [0, 0].

And z∗ = −5962.190

4 Conclusion

This article introduce a ranking function for or-
dering interval numbers and explain some fea-
tures of this function. Moreover, a new method
for solving FILS in general case presented while
using standard splitting provided by Allahviran-
loo et al. In this method positive and negative
optimal interval solutions obtained which are al-
gebraically verified in feasible region in regards
of introduced ranking function. In doing so, a
FILS model transferred into a NLP which can be
solved by related softwares. Great advantages of
this model are its simplicity and that it can be
used in any kind of FILS models. Also, further
improvements can be done for more simplifying
the proposed model.
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