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Abstract

Redundancy allocation problem (RAP) is one of the most important and applicable problems in
reliability area. This problem aims to find the optimal configuration of system components in order
to optimize system reliability under some constraints. In classical model, the system component
states are binary, i.e., each component is whether working or failed. In new research studies, the
components are considered as multistate components, i.e., each component may have some working
states ranging from full performance to completely fail. In this paper, we work on an RAP with
multistate components and the performance rate of each working state may increase by spending
technical and organizational activities costs. Because RAP belongs to Np-hard problems, we used
Genetic Algorithm (GA) and Simulated Annealing (SA) for solving the presented problem and the
Universal Generating Function (UGF) for calculating system reliability.

Keywords : Reliability optimization; Redundancy allocation problem; Multistate components; univer-
sal generating function; Genetic algorithm.

—————————————————————————————————–

1 Introduction

R
AP1 was introduced by Fyffe et al. [6] in 1968.
In their model, the system has series-parallel

configuration with active redundancy strategy
and each subsystem possesses identical compo-
nents. Table 1 contains some research studies in
this area. In this paper, we presented an RAP
with multistate components. The performance
rate of component working states may increase
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1 Redundancy Allocation Problem

by some technical activities. These activities
change the component specifications and increase
the probability of working state and decrease the
probability of failed state. For calculating sys-
tem reliability, we used UGF2. In 1992, Chern [2]
proved that RAP belongs to Np-hard problems,
so we used GA3 and SA4 for solving the presented
problem. This paper was divided into five sec-
tions. The model is presented in the second sec-
tion. The third sections deals with the solving
method. A numerical example is presented in the
fourth section and the final section is devoted to
conclusion and further studies.

2 Universal Generating Function
3 Genetic Algorithm
4 Simulated Annealing
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Table 1: Some Related Research Studies on RAP.

Fault Penalty Objective type Parameter Cost availability

Garg et al. [8] Binary Heterogeneous Bee colony No

Khalili et al. [11] Binary Heterogeneous e-constraint No

Chambari et al. [1] Binary Heterogeneous SA No

Gago et al. [7] Binary Heterogeneous Greedy, Walk back No

Ebrahimipour et al. [4] Binary Heterogeneous Fuzzy inference system (FIS) No

Liu et al. [18] Multistate Heterogeneous Imperfect repair model Yes

Ding et al. [3] Multistate Heterogeneous GA No

Ouzineb et al. [22] Multistate Heterogeneous GA No

Sharma et al. [24] Multistate Heterogeneous ACO No

Ouzineb et al. [23] Multistate Homogeneous TS No

Levitin et al. [13] Multistate Heterogeneous GA No

Liu [19] Binary Heterogeneous TS-GA No

Lins et al. [14] Binary Heterogeneous GA No

Lins et al. [15] Binary Heterogeneous ACO No

Maatouk et al. [20] Multistate Heterogeneous GA No

Garg et al. [9] Binary Heterogeneous GA No

Ebrahimipour et al. [5] Binary Heterogeneous PSO Yes

Lins et al. [16] Binary Heterogeneous GA No

Mousavi et al. [21] Multistate Homogeneous CE-NRGA Yes

2 Problem definition

In this paper, we work on an RAP with
ssubsystems that are serially connected together.
The problem aims to attribute the optimal allo-
cated components to each subsystem under bud-
get and weight constraints. The components are
multistate and the probability of the working
states can be increased by spending money.

2.1 Assumptions

• The system contain S subsystems that are
connected serially,

• The components of each subsystem are par-
allel,

• The components are multistate,

• The components are nonreplicable,

• The system parameters are deterministic,

• The components failures are independent
and the failure of one component has no ef-
fect on system performance individually,

• Different types of components are available
for allocating to each subsystem,

• The components of each subsystem are iden-
tical, and

• The components states p.d.f can be changed.

2.2 Nomenclatures

i : Subsystems index, i = 1, 2, . . . , S

S : Number of subsystems,

j : Components type index, j = 1, 2, . . . , Ti,

k : System state index, k = 1, 2, . . . ,Mj ,
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Table 1. Continue

Fault elements Penalty function Objective Parameter setting Cost discount strategy

Non-repairable Yes Single No No

Non-repairable No Multiple No No

Non-repairable Yes Single No No

Non-repairable No Single No No

Non-repairable No Single No No

Repairable No Single No No

Non-repairable No Single No No

Non-repairable No Single No No

Non-repairable No Single No No

Non-repairable No Single No AUD

Non-repairable No Single No No

Repairable No Single No No

Repairable No Multiple No No

Repairable No Multiple No No

Repairable No Single No No

Non-repairable No Multiple No No

Non-repairable No Multiple O AUD

Repairable Yes Multiple No No

Non-repairable Yes Multiple Taguchi AUD and IQD

Table 2: GA parameter levels and optimal solutions.

Optimal solution Upper bound Lower bound Parameters

50 100 50 npop

0.5697 0.7 0.4 pc

0.2051 0.3 0.1 pm

Table 3: SA parameter levels and optimal solutions.

Optimal solution Upper bound Lower bound Parameters

16 20 10 nMove

10 100 10 T0

0.1 0.3 0.1 Mu0

xij : Number of j st component type allocated to
subsystem i,

zijk : Binary variables: if in subsystem i, for com-
ponent type j, in state k apply decreasing
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Table 4: Price of components.

Component types

1 2 3 4

Subsystems 1 18 13 20 18

2 19 16 15 20

3 11 20 18 17

4 20 20 11 10

5 16 11 14 19

6 11 20 20 20

Table 5: Weight of components.

Component types

1 2 3 4

Subsystems 1 8 5 8 7

2 5 6 6 8

3 6 8 9 9

4 7 9 6 5

5 9 8 9 10

6 5 7 6 9

performance level is equal 1,

αijk : Decreasing amount of state probability in
subsystem i, for component type j, in state
k,

βijk : Increasing amount of state probability in
subsystem i, for component type j, in state
k,

fα
ijk : Cost of decreasing state probability in sub-

system i, for component type j, in state k,

fβ
ijk : Cost of increasing state probability in sub-

system i, for component type j, in state k,

γjk : Maximum amount of decreasing state prob-
ability for component type j, in state k,

φjk : Maximum amount of increasing state proba-
bility for component type j, in state k,

cij : Cost of component type j in subsystem i,

C : Available budget,

wij : Weight of component type j in subsystem i,

C : Total acceptable system weight,

Pijk : Probability of state k for the component type
j in subsystemk.

2.3 Mathematical model

Max R (t) =
s∑

i=1

Ri (t) (2.1)

S.t :∑
i

∑
j

cij .xij +
∑
i

∑
j

m(j)∑
k=1

αijk.f
α
ijk

+
∑
i

∑
j

m(j)∑
k=1

βijk.f
β
ijk+ ≤ C (2.2)

(2.3)
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Table 6: Weight of components

State
1 2 3

C-type 1 C-type 2 C-type 3 C-type 4 C-type 1 C-type 2 C-type 3 C-type 4 C-type 1 C-type 2 C-type 3 C-type 4
4 4 4 4 4 1 4 3 5 4 5 1
4 1 2 4 4 3 2 1 2 3 2 1
4 2 5 1 2 5 3 1 5 2 4 3
2 1 1 3 4 2 4 2 2 5 4 4
4 1 3 3 4 3 5 5 1 3 2 5
1 5 2 4 1 2 5 2 2 3 3 1

Table 7: Cost of increasing the probability of the states

State
1 2 3

C-type 1 C-type 2 C-type 3 C-type 4 C-type 1 C-type 2 C-type 3 C-type 4 C-type 1 C-type 2 C-type 3 C-type 4
3 2 4 1 1 1 1 3 3 3 2 2
3 3 4 5 5 2 2 1 1 1 5 3
1 1 3 3 1 2 1 5 2 5 2 1
2 4 1 5 4 5 1 4 1 5 1 1
1 2 2 1 5 3 5 2 1 3 4 5
4 4 5 3 5 5 3 3 2 3 2 5

∑
i

∑
j

wij .xij ≤ W (2.4)

P ′
ijk = Pijk. (1 + αijk − βijk) ; ∀i, j, k (2.5)

Ti∑
j=i

Nij ≥ 1; ∀i = 1, 2, . . . , S (2.6)

P ′′
ijk =

P ′
ijk∑

k

P ′
ijk

; ∀i, j, k (2.7)

αijk ≤ zijk.γjk; ∀i, j, k (2.8)

βijk ≤ (1− zijk) .φjk; ∀i, j, k (2.9)

xij ≥ 0 (2.10)

zijk = {0, 1} (2.11)

0 ≤ αijk ≤ 1 (2.12)

0 ≤ βijk ≤ 1 (2.13)

Eq. (2.1) is the objective function that maxi-
mizes system reliability. Eqs (2.2) and (2.3) are
the system budget and weight constraints. Eq.
(2.5) determines the effects of increasing and de-
creasing policies of system states probabilities.
Eq. (2.6) ensures that each subsystem contains
at minimum one component. Eq. (2.7) ensures
that sum of the system states probabilities are
equal one. Eqs (2.8) and (2.9) make a balance
between increasing and decreasing state’s prob-
abilities and the Eqs (2.10) to (2.13) define the
variables conditions.

3 Solving method

In this paper, UGF and GA have been used for
calculating the system reliability, and for solving
the presented model, respectivel.

3.1 UGF method

Ushakov [25] presented a method for calculat-
ing the reliability/availability of a MSS5, which
is called UGF. This method aims to reduce the
calculation complexity of MSS reliability. It has
been used for calculating the reliability of the sys-
tem in this paper. Lisniaski and Levitin [17] pre-
sented more information about this method.

3.2 Genetic algorithm

In 1975, Holland [10] from Michigan University
presented the basic ideas of GA. This algorithm
is based on human genetic and its steps are as
follows:

1. Producing n chromosomes (each chromo-
some represents a solution) called initial pop-
ulation,

2. Calculating the fitness function of each chro-
mosome,

3. Producing the offspring by deploying three
operators:

5Multi State System
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Table 8: States probabilities

State
1 2 3

C-type 1 C-type 2 C-type 3 C-type 4 C-type 1 C-type 2 C-type 3 C-type 4 C-type 1 C-type 2 C-type 3 C-type 4
0.6098 0.4709 0.3104 0.2607 0.283 0.2478 0.2284 0.2783 0.1071 0.2814 0.4612 0.4611
0.5015 0.5101 0.5946 0.2142 0.1964 0.1186 0.2588 0.0835 0.302 0.3713 0.1466 0.7024
0.3028 0.3607 0.4470 0.5848 0.1543 0.5065 0.3036 0.3684 0.5429 0.1328 0.2495 0.0469
0.3972 0.2083 0.3830 0.1607 0.5649 0.5392 0.1825 0.2222 0.0379 0.2525 0.4345 0.6171
0.2908 0.3666 0.3269 0.3870 0.1779 0.1983 0.3165 0.1944 0.5312 0.4351 0.3566 0.4186
0.2360 0.4475 0.3466 0.1299 0.4266 0.0933 0.4199 0.3388 0.3374 0.4592 0.2335 0.5312

Table 9: Cost of decreasing the probability of the states (for all states are equal).

Component types

1 2 3 4

Subsystems 1 0.1099 0.1107 0.1891 0.1500

2 0.1262 0.1654 0.1334 0.1480

3 0.1335 0.1494 0.1699 0.1905

4 0.1680 0.1779 0.1198 0.1610

5 0.1137 0.1715 0.1031 0.1618

6 0.1721 0.1904 0.1744 0.1859

Table 10: Cost of decreasing the probability of the states (for all states are equal).

Component types

1 2 3 4

Subsystems 1 0.1099 0.1107 0.1891 0.1500

2 0.1262 0.1654 0.1334 0.1480

3 0.1335 0.1494 0.1699 0.1905

4 0.1680 0.1779 0.1198 0.1610

5 0.1137 0.1715 0.1031 0.1618

6 0.1721 0.1904 0.1744 0.1859

(a) Crossover,

(b) Mutation,

(c) Elitism,

4. Replacing the offspring with parents

3.3 Solution encoding

The problem chromosome contains fourxi×j ,
αi×j×k,βi×j×k and zi×j×k matrixes. Definitions
of these matrixes are the same as presented in
2.2. The pseudo-code of GA is presented in Fig.
1.

3.4 Simulated Annealing

This algorithm has been created by Kirkpatrick
[12] in 1983. It is a single point metaheuristic
algorithm. In this algorithm, we initially obtain
a random solution and introduce it to a prede-
fined neighborhood and get another solution as
the neighbor of the present solution. If the new
solution has a better objective function than the
old solution, the old solution will replace by new
one. But if the new solution lacks a better ob-
jective function, it has still the opportunity of re-
placement under a certain probability. After this
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Table 11: Maximum acceptable increasing of states probabilities (for all states are equal).

Component types

1 2 3 4

Subsystems 1 0.1805 0.1490 0.1060 0.1818

2 0.1577 0.1168 0.1682 0.1818

3 0.1183 0.1979 0.1042 0.1722

4 0.1240 0.1713 0.1071 0.1150

5 0.1887 0.1500 0.1522 0.1660

6 0.1029 0.1471 0.1097 0.1519

Table 12: Optimal solutions of the problems.

Problem System reliability (GA) System reliability (SA) RS

1 0.22218 0.28374 0.0019200

2 0.21908 0.27601 0.0017000

3 0.22788 0.25952 0.0014900

4 0.20272 0.20977 0.0015600

5 0.22914 0.2348 0.0011590

6 0.22065 0.2607 0.0018889

7 0.20991 0.27286 0.0015719

8 0.21491 0.26616 0.0017350

9 0.23276 0.25324 0.0015565

10 0.22181 0.25849 0.0016049

11 0.22634 0.2699 0.0015773

12 0.22015 0.27529 0.00160350

13 0.22556 0.26014 0.0016731

14 0.24149 0.26158 0.00159780

15 0.22191 0.24428 0.00161610

15 0.22191 0.24428 0.00161610

state, the old solution stays or is replaced by a
new one. In both situations, the result again in-
troduces it to a predefined neighborhood and be
continued until algorithm meets stop condition.
The pseudo-code of SA is presented in Fig. 2.

3.5 Parameter tuning

For parameter tuning of GA, we used RSM6. The
GA and SA parameter levels and optimal solu-
tions of parameter are presented in Tables 2 and
3.

The non-linear regression model for GA and

6 Response Surface Methodology
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Figure 1: Pseudo-code of Genetic Algorithm.

SA parameters are as follows:

R (t)GA =0.129724− 0.00623639× npop

+ 0.464773× pc+ 1.91017× pm

+ 3.63922e− 005× npop× npop

− 0.246438× pc× pc

− 2.87848× pm× pm

+ 0.001307× npop× pc

− 0.0008845× npop× pm

− 1.21258× pc× pm

Figure 2: Pseudo-code of simulated annealing.

R (t)SA =0.196733− 0.0152087×Nmove

− 0.00141701× T0

− 0.32329×Mu0 − 0.000396208

×Nmove×Nmove

+ 1.10607e− 006× T0 × T0 + 1.70698

×Mu0 ×Mu0

+ 5.33389e− 005×Nmove× T0

− 0.0333775×Nmove×Mu0

− 0.00124583× T0 ×Mu0

4 Numerical example

A numerical example has been solved in this
section to show the performance of solving
methods (GA and SA). Our example contains 6
subsystems and 4 different component types for
subsystems. The components of each subsystem
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have three different working states. The upper
bound of system weight considered 100 and the
available budget is 1000. Also the minimum sys-
tem performance was considered 10. The other
parameters of example are presented in tables 4
to 10. Considering the presented parameters, 15
different problems are solved with GA and SA
and the optimal solutions are presented in Table
11. In this 15 problem, the price of component
type 1 for subsystem 1 is considered as different.

The optimal values of the problem number
10 are presented as follows:

xGA =



0 0 0 1
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0



αGA−state1 =



0 0 0 0
0 0 0 0
1 0 0 0.1283
0 0 0

0.1029 0 0 0
0 0 0 0



αGA−state2 =



0 0 0 0.1500
0 0 0 1

0.1219 0.0456 0 0.1123
0 0.1258 0.0258 0
0 0 0.1031 0.0028

0.1709 0.0691 0 0



αGA−state3 =



0 0.0868 0 0.1268
0.0545 0 0.615 0.1038
0.0548 0 0.1048 0

0 0.1675 0.0699 0
0.389 0.1027 0.0638 0.0016
0.1423 0.0762 0 0



βGA−state1 =



0.1759 0.0098 0.0281 0.1660
0.0751 0.1168 0.0094 0.1759
0.0618 0.1559 0.0247 0
0.0724 0 0.1071 0.0290

0 0.0139 0.1196 0.0327
0.0573 0.1471 0.0334 0.0066



βGA−state2 =



0.1404 0.1385 0.0914 0
0.0340 0.1168 0.1426 0.0570

0 0 0.0137 0
0.0190 0 0 0
0.1189 0 0 0

0 0 0.0684 0.0995



BGA−state3 =



0.1692 0 0.1040 0
0 0.0416 0 0
0 0 0 0

0.0605 0 0 0.0126
0 0 0 0
0 0 0.0797 0.1202



zGA−state1 =



0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
1 0 0 0
0 0 0 0



zGA−state2 =



0 0 0 1
0 0 0 0
1 1 0 1
0 1 1 1
0 0 1 1
1 1 0 0



zGA−state3 =



0 1 0 1
1 0 1 1
1 1 1 1
0 1 1 0
1 1 1 1
1 1 0 0



xSA =



0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1
1 0 0 0
0 0 0 1



αSA−state1 =



0 0.0970 0 0
0 0.0618 0 0
0 0 0.1046 0
0 0 0 0
0 0 0 0

0.0813 0 0 0


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αSA−state2 =



0 0 0.1891 0
0.0632 0 0 0.1480
0.0884 0.1494 0.0258 0
0.1680 0 0 0.1061
0.1137 0 0 0

0 0 0 0



αSA−state3 =



0 0 0.1129 0
0 0 0.1334 0.1480

0.0919 0.1494 0.1284 0.1905
0 0 0 0.1610

0.1137 0.0759 0 0.1046
0 0 0.0267 0.1440



βSA−state1 =



0.0689 0 0.0965 0.0661
0.0375 0 0.0124 0.1805
0.1018 0.1979 0 0.1253
0.1146 0.1621 0.0208 0.0694
0.1221 0.0417 0.0209 0.0349

0 0.1471 0.0413 0.1280



βSA−state2 =



0.0015 0.0208 0 0.0964
0 0 0 0
0 0 0 0.0794
0 0.0105 0.0834 0
0 0.1274 0.1385 0.0536

0.0964 0 0 0



BSA−state3 =



0.1116 0 0 0.1112
0 0 0 0
0 0 0 0

0.1122 0 0.1054 0
0 0 0.0604 0

0.0964 0.0685 0 0



zSA−state1 =



0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
1 0 0 0



zSA−state2 =



0 0 1 0
1 0 1 1
1 1 1 0
1 0 0 1
1 0 0 0
0 0 1 0



zSA−state3 =



0 1 1 0
0 0 1 1
1 1 1 1
0 1 0 1
1 1 0 1
0 0 1 1


And the convergence diagram of GA and SA for
this solution is presented in Fig. 3 and 4.

Figure 3: Convergence diagram of GA for prob-
lem No. 10..

Figure 4: Convergence diagram of SA for prob-
lem No. 10.

5 Conclusion and further stud-
ies

In this paper, we worked on a redundancy
allocation problem without component mixing
(RAPCM) with MSS using UGF, GA and SA. It
has been considered that working states probabil-
ity may increase by technical and organizational
activities. Also for GA and SA validation, a ran-
dom search and 15 different problems have been
used.
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We propose some topics for future studies:

• Presenting a multi-objective RAP,

• Solving the presented problem for time-
dependent component failure rate,

• Considering the components as repairable,

• Using other metaheuristic algorithm and
comparing the results.
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