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Abstract

Let R be a commutative ring and A(R) be the set of all ideals with non-zero annihilators. Assume
that A∗(R) = A(R)⧹{(0)} and F(R) denote the set of all finitely generated ideals of R. In this
paper, we introduce and investigate the finitely generated annihilating-ideal graph of R, denoted by
AGF (R). It is the (undirected) graph with vertices AF (R) = A∗(R) ∩ F(R) and two distinct vertices
I and J are adjacent if and only if IJ = (0). First, we study some basic properties of AGF (R).
For instance, it is shown that if R is not a domain, then AGF (R) has ascending chain condition
on vertices if and only if R is Noetherian. We characterize all rings for which AGF (R) is a finite,
complete, star or bipartite graph. Next, we study diameter and girth of AGF (R). It is proved that
diam(AGF (R)) ⩽ diam(AG(R)) and gr(AGF (R)) = gr(AG(R)).
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1 Introduction

T
he study of algebraic structures, using the
properties of graphs, became an exciting re-

search topic in the past years. There are many pa-
pers on assigning a graph to a ring (see for exam-
ple [6, 7, 9, 10, 13]). Let R be a commutative ring.
We call an ideal I of R is an annihilating-ideal if
there exists a non-zero ideal J of R such that
IJ = (0) and use the notation A(R) for the set of
all annihilating-ideals of R. By the annihilating-
ideal graph AG(R) of R we mean the graph with
vertices A∗(R) = A(R)⧹{(0)} such that there is
an (undirect) edge between vertices I and J if
and only if I ̸= J and IJ = (0). Thus AG(R) is
an empty graph if and only if R is an integral
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domain. The concept of the annihilating-ideal
graph of a commutative ring was first introduced
by Behboodi and Rakeei in [11, 12]. Recently, this
notation of the annihilating-ideal graph has been
extensively studied by various authors (see for in-
stance, [1, 2, 3, 4, 5, 14, 15] and many others).
In [15], Taheri, Behboodi and Theranian, intro-
duce and investigate the spectrum graph of the
annihilating-ideal graph of a commutative ring,
denoted by AGs(R), that is, the graph whose
vertices are all non-zero prime ideals of R with
non-zero annihilator, denoted by As(R) and two
distinct vertices P1, P2 are adjacent if and only if
P1P2 = (0). This is an induced subgraph of the
annihilating-ideal graph of R.

In this paper, we introduce and study the
finitely generated annihilating-ideal graph of a
commutative ring R, denoted by AGF (R), that is,
the graph whose vertices are all non-zero finitely
generated ideals of R with non-zero annihilator
and two distinct vertices I, J are adjacent if and
only if IJ = (0). This is an induced subgraph of
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the annihilating-ideal graph of R. It is clear that,
if R is a Noetherian ring, then AGF (R) = AG(R).

Throughout this paper, all rings are commuta-
tive with identity and all modules are unital. For
a ring R we denote by (R), (R), Z(R), I(R) and
F(R) the set of all prime ideals, the set of all min-
imal prime ideals, the set of all zero divisors, the
set of all non-zero proper ideals and the set of all
finitely generated ideals of R, respectively. Let X
be either an element or subset of R. The annihila-
tor of X is the ideal Ann(X) = {a ∈ R | aX = 0}.

Let G be any graph. We denote the vertex
set of G by V(G). Sometimes, two graphs G
and H have exactly the same form, in the sense
that there is a one-to-one correspondence between
their vertex sets that preserves edges. In such a
case, we say that the two graphs G and H are
isomorphic and we write G ∼= H. The graph G is
called connected if there is a path between every
two distinct vertices. For distinct vertices P , Q of
G, let d(P,Q) be the length of the shortest path
from P to Q and, if the is no such path, we define
d(P,Q) = ∞. The diameter of G is diam(G) =
sup{d(P,Q) : P and Q are distinct vertices of G}.
The girth ofG, denoted by gr(G), is defined as the
length of the shortest cycle in G and gr(G) = ∞ if
G contains no cycles. A complete graph is a graph
in which any two distinct vertices are adjacent. A
complete graph with n vertices denoted by Kn. A
bipartite graph is a graph whose vertices can be
divided into two disjoint sets A and B such that
every edge connects a vertex in A to one in B.
A complete bipartite graph is a bipartite graph in
which every vertex of one part is joined to every
vertex of the other part. In this case, if |A|= n
and |B|= m, we denote the graph by Kn,m. If
|A|= 1 or |B|= 1, then the graph is said to be a
star graph. For a graph G the degree of a vertex
I, is the number of vertices adjacent to I. If the
degree of all vertices of G is equal, we say G is
a regular graph. For every positive integer n, we
denote by Pn a path of order n.

Let R be a ring. In this paper, we denote
the vertex set of AGF (R) by AF (R). In fact,
V (AGF (R)) = AF (R) = A∗(R) ∩ F(R) and two
distinct vertices I and J are adjacent if and only
if IJ = (0). Unlike the spectrum graph, for every
ring R, AGF (R) is a connected graph. In sec-
tion 2, first we give some basic properties of the
finitely generated annihilating-ideal graph. For
instance, it is shown that if R is non-domain,

AGF (R) has ACC on vertices if and only if R
is a Noetherian ring. Also we show that there
is a vertex of AG(R) which is adjacent to ev-
ery other vertex of AG(R) if and only if there
exists a vertex of AGF (R) which is adjacent to
every other vertex of AGF (R) (see Proposition
2.5). Moreover we show that AG(R) is a com-
plete (star) graph if and only if AGF (R) is a com-
plete (star) graph (see Proposition 2.4 and 3.4).
Also we show that finitely generated annihilating-
ideal graph can not be a cycle (see Proposition
2.6). In section 3, diameter and girth of the
AGF (R) are studied. It is shown that for ev-
ery ring R, diam(AGF (R)) ⩽ diam(AG(R)) (see
Corollary 3.1) and gr(AGF (R)) = gr(AG(R))
(see Proposition 3.5). Also it is shown that if
gr(AGF (R)) = 4, then AG(R) is a complete bi-
partite graph if and only if AGF (R) is a complete
bipartite graph (see Theorem 3.1). Consequently,
if R is a reduced ring such that AGF (R) is a com-
plete bipartite graph with gr(AGF (R)) = 4, then
|Min(R)|= 2 (see Corollary 3.5).

2 Some basic proper-
ties of finitely generated
annihilating-ideal graph

By [11, Example 1.9], there exists a local zero-
dimensional ring R such that A∗(R) ̸= ∅, but
AGs(R) is an empty graph. Also, [15, Example
2.5] gives a non-connected spectrum graph of a
local ring. The following proposition shows that
for each non-domain ring R, finitely generated
graph, AGF (R), is a non-empty connected graph,
in general.

Proposition 2.1 For every non-domain ring R,
AGF (R) is a non-empty connected graph.

Proof. Since R is a non-domain, there exists
0 ̸= a ∈ Z(R). Then Ra ∈ AF (R) and hence
AGF (R) ̸= ∅. Assume that I and J are two dis-
tinct vertex of AGF (R). If IJ = (0), then there is
nothing to prove. Suppose that IJ ̸= (0). Since
I, J ∈ A∗(R) and AG(R) is a connected graph
(see [11, Theorem 2.1]), there exist I1, J1 ∈ A∗(R)
such that I1I = J1J = (0). First assume that
I1 = J1. Let a ∈ I1 = J1, then I −−− Ra −−− J
is a path in AGF (R). Now assume that I1 ̸= J1.
Without loss of generality suppose that a ∈ I1\J1
and b ∈ J1, so Ra ̸= Rb. If (Ra)(Rb) = (0), then
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I −−− Ra −−− Rb −−− J is a path in AGF (R). If
(Ra)(Rb) ̸= (0), then I −−− Rab−−− J is a path in
AGF (R). □
Let R be a ring. We say that finitely generated
annihilating-ideal graph has ACC on vertices if
R has ACC on AF (R). The following result is a
generalization of [11, Theorem 1.1].

Theorem 2.1 Let R be a non-domain ring.
Then AGF (R) has ACC on vertices if and only if
R is a Noetherian ring.

Proof. (⇐) It is trivial.

(⇒) Assume that AGF (R) has ACC on ver-
tices. By contrary, suppose that R is not Noethe-
rian ring. Therefore by [11, Theorem 1.1], AG(R)
has not ACC on vertices. So, there exists ideals
Ii ∈ A∗(R) for i ∈ N, such that I1 ⫋ I2 ⫋ I3 ⫋ . . .
form an ascending chain such that is an infinite
chain. Now assume that a1 ∈ I1, then Ra1 ⊆ I1.
Since I1 ⫋ I2, there exists a2 ∈ I2 such that
a2 /∈ I1 and hence Ra1 ⫋ Ra1 + Ra2. By contin-
uing this process, we have a chain as a following:

Ra1 ⫋ Ra1 +Ra2 ⫋ Ra1 +Ra2 +Ra3 ⫋ . . .

which is an infinite chain of elements of AF (R),
a contradiction. □

Corollary 2.1 Assume that R is a non-domain
ring. Then AGF (R) is a finite graph if and only
if AG(R) is finite.

Proof. (⇐) It is trivial.

(⇒) Assume that AGF (R) is a finite graph,
so AGF (R) has ACC on vertices. By The-
orem 2.1, R is a Noetherian ring and hence
AG(R) = AGF (R), therefore AG(R) is a finite
graph. □

Next, we characterize non-domain rings R for
which the finitely generated annihilating-ideal
graph is a finite graph.

Proposition 2.2 Let R be a non-domain ring.
Then the following statements are equivalent.
(1) AGF (R) is a finite graph.
(2) R has only finitely many ideal.
(3) R has only finitely many finitely generated
ideals.
(4) Every vertex of AGF (R) has finite degree.

Proof. (1) ⇒ (2), (2) ⇒ (3) and (3) ⇒ (4) are
clear with Corollary 2.1 and [11, Theorem 1.4].

(4) ⇒ (1) Assume that every vertex of
AGF (R) has finite degree. By contrary suppose
that AGF (R) is an infinite graph. Corollary 2.1
implise that AG(R) is an infinite graph and by
[11, Theorem 1.4], there exists ideal I ∈ A∗(R)
such that vertex I has infinite degree. Suppose
a ∈ I and I0 = Ra, so I0 is a vertex of AGF (R)
with infinite degree, a contradiction. Therefore
AGF (R) is a finite graph. □

Proposition 2.3 Let R be a ring. Then the fol-
lowing statements are equivalent:
(1) There is a vertex of AGF (R) which is adja-
cent to every other vertex of AGF (R).
(2) There is a vertex of AG(R) which is adjacent
to every other vertex of AG(R).
(3) Either R = F⊕D, where F is a field and D is
an integral domain, or Z(R) = Ann(x) for some
0 ̸= x ∈ R.

Proof. (1) ⇒ (2) Suppose that I is a vertex of
AGF (R) which is adjacent to every other vertex
of AGF (R). We claim that for every I ̸= J ∈
A∗(R), IJ = (0). By contrary, suppose that there
exists I ̸= J ∈ A∗(R) such that IJ ̸= (0), so there
exists 0 ̸= a ∈ I and 0 ̸= b ∈ J such that ab ̸= 0.
Let I1 = Ra ⊆ I and I2 = Rb ⊆ J . First assume
that I1 ̸= I2. Since II2 = (0), I2I1 = (0) and
hence ab = 0, a contradiction (with supposing
which I ̸= I2, for case I = I2, we let I2 = Rb+Rc,
where c ∈ J \ I2). Now assume that I1 = I2.
Since J /∈ F(R), there exists 0 ̸= c ∈ J such that
c /∈ Rb = I2, thus I2 = Rb ⫋ Rb+Rc ⫋ J . Since
I(Rb + Rc) = (0), we can conclude that ab = 0,
a contradiction.

(2) ⇒ (3) It is [11, Theorem 2.2].

(3) ⇒ (1) If R = F ⊕ D, where F is a field
and D is an integral domain, then F ⊕ (0) is
adjacent to every other vertex of AGF (R). If
Z(R) = Ann(x) for some 0 ̸= x ∈ R, then Rx is
adjacent to every other vertex of AGF (R). □

Now we characterize all rings for which finitely
generated annihilating-ideal graph is a complete
graph.

Proposition 2.4 Let R be a ring. Then the fol-
lowing statements are equivalent:
(1) AGF (R) is a complete graph.
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(2) AG(R) is a complete graph.
(3) Either R ∼= F1 ⊕ F2, where F1, F2 are fields,
or Z(R) is an ideal of R, (Z(R))3 = (0) and for
each ideal I ⊂ Z(R), IZ(R) = (0).

Proof. (1) ⇒ (2) Suppose that AGF (R) is
a complete graph. We claim that for every
I, J ∈ A∗(R), IJ = (0). By contrary, suppose
that there exist two distinct ideals I, J ∈ A∗(R)
such that IJ ̸= (0), where at least one of them is
not finitely generated, therefore there exist a ∈ I
and b ∈ J such that ab ̸= 0. Let I0 = Ra and
J0 = Rb, so I0, J0 ∈ AF (R) and I0J0 ̸= (0). If
I0 ̸= J0, then we have a contradiction. Suppose
that I0 = J0 and J /∈ F(R). Since J0 ⫋ J ,
there is c ∈ J such that c /∈ J0 and hence
I0 ̸= Rb + Rc and I0(Rb + Rc) ̸= (0). Since
I0, Rb + Rc ∈ AF (R), we have a contradiction.
Therefore AG(R) is a complete graph.

(2) ⇒ (1) It is clear.

(2) ⇔ (3) It is [11, Theorem 2.7]. □

Proposition 2.5 Let R be a non-domain ring.
Then

(1) AGF (R) ∼= K1 if and only if R has
only one non-zero proper ideal.

(2) Assume that AGF (R) ∼= K2, then
R ∼= F1 ⊕ F2, where F1, F2 are two fields or
(R,M) is a local ring with AF (R) = {M2,M}.

(3) Assume that AGF (R) ∼= Kn, where n ⩾ 3.
Then n ⩾ 4 and Z(R) is an ideal of R with
(Z(R))3 = (0).

(4) Let AGF (R) ∼= Pn, where n ⩾ 3. Then
n ∈ {3, 4}.

Proof. (1) (⇒) Suppose that AGF (R) ∼= K1, by
Theorem 2.1, R is a Noetherian ring and hence
AG(R) ∼= K1, which implise |I(R)|= 1.

(⇐) Suppose that I(R) = {I}, since R is an
Artinian ring, A∗(R) = {I}. Since AGF (R)
is a non-empty graph, AF (R) = {I} and so
AGF (R) ∼= K1.

(2) (⇒) Assume that AGF (R) ∼= K2. By
Theorem 2.1, R is a Noetherian ring and hence
AG(R) ∼= K2. By [11, Corollary 2.9], proof is
complete.

(⇐) It is easy.
(3) Assume that AGF (R) ∼= Kn, where n ⩾

3. If n = 3, then it is clear that AG(R) ∼= K3,
a contradiction (see [3, Corollary 9]). Therefore
n ⩾ 4. By Proposition 2.4, Z(R) is an ideal of R
with (Z(R))3 = (0).

(4) Assume that AGF (R) ∼= Pn, where n ⩾ 3.
Since each vertex of AGF (R) has finite degree,
by Proposition 2.4, R is a Noetherian ring
and hence AG(R) ∼= Pn, where n ⩾ 3. Since
diam(AG(R)) ⩽ 3 (see [11, Theorem 2.1]),
n ∈ {3, 4}. □

Now we are in position to characterize rings for
which finitely generated annihilating-ideal graph
is a path.

Corollary 2.2 Let R be a ring such that
AGF (R) ∼= Pn, where n ≤ 4, then R is one of
the following three types of rings.

(1) R ∼= F1 ⊕ F2, where F1, F2 are two
fields.

(2) R ∼= F ⊕ S, where F is a field and S
is a ring with exactly one non trivial ideal.

(3) R is a local ring.

Proof. It is clear with Proposition 2.5 and [3,
Theorem 11]. □

Lemma 2.1 Let R be a ring. If AGF (R) is a
regular graph of finite degree, then AGF (R) is a
complete graph.

Proof. Assume that AGF (R) is a regular graph
of finite degree. By Proposition 2.4, R is a
Noethrian ring and hence AG(R) is a regular
graph of finite degree, by [3, Theorem 8], AG(R)
is a complete graph and so Proposition 2.4,
implise that AGF (R) is a complete graph. □

Proposition 2.6 Let R be a non-domain ring.
Then AGF (R) can not be a cycle.

Proof. Assume that AGF (R) ∼= Cn, where
n ⩾ 3. By Lemma 2.1, AGF (R) ∼= K3, a
contradiction (see Proposition 2.5 (3)). □

For every Noetherian ring R, it is clear that
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AGF (R) = AG(R), the following example shows
a non-Noetherian ring R for which, AGF (R) is a
proper subgraph of the annihilating-ideal graph.

Example 2.1 Let F be a field. We consider the
ring

R = F [[X,Y, Z1, Z2, . . . ]]⧸ < XY,XZi, Zi

Y, Z2
i | i = 1, 2, · · · > . Let I =<

XY,XZi, ZiY, Z
2
i | i = 1, 2, · · · >. Then R is

a non-Noetherian ring. Set P1 = Rx +
∑

Rzi,
P2 = Ry +

∑
Rzi where i = 1, 2, . . . , x =

X + I, y = Y + I and zi = Zi + I. It is
clear that P1P2 = (0), so P1, P2 ∈ A∗(R), but
P1, P2 /∈ AF (R), so AGF (R) is a proper subgraph
of AG(R).

Let R be a Noetherian ring. Then it is clear
that AGs(R) is a subgraph of AGF (R). Now
by note to Cohen’s theorem a natural question is
posed: If for every P ∈ As(R), P is finitely gener-
ated (i.e, AGs(R) is a subgraph of AGF (R)), is R
a Noetherian ring? The following example shows
that the answer of this question is negative.

Example 2.2 Let R = {{an}n∈N | an ∈
Z2 such that {an} is eventually constant}. Then
with pointwise addition and multiplication, R is
a Boolean ring. Let Pi = {{an} ∈ R | ai =
0} and P∞ = {{an} ∈ R | there exists m ∈
N such that an = 0 for n ≥ m}. Then P∞ is not
finitely generated, so R is a non-Noetherian ring.
One can easily see Pi ∈ (R), As(R) = {Pi | i ≥ 1},
AGs(R) ∼= N∞. Since each Pi is a principal
ideal, Pi ∈ AF (R) and hence As(R) ⊆ AF (R),
so AGs(R) is a subgraph of AGF (R) but R is not
Noetherian.

Let R be a ring. In [11, Theorem 2.10], it is
shown that AGs(R) = AG(R) if and only if either
R = F1 ⊕ F2 for a pair of fields F1 and F2 or R
has only one non-zero proper ideal. Therefore if
AGs(R) = AG(R), then AGF (R) = AG(R). The
following example shows that the converse is not
hold.

Example 2.3 Let F be a field. We consider the
ring

R = F [[X,Y, Z]]/< XY,XZ,ZY,Z2 >.

Then R is a local ring with the maxi-
mal ideal M = Rx + Ry + Rz (where
x = X+ < XY,XZ,ZY, Z2 >, y =
Y+ < XY,XZ,ZY, Z2 > and z = Z+ <
XY,XZ,ZY,Z2 >). Set P1 = Rx + Rz and
P2 = Ry + Rz, and since P1P2 = (0), we con-
clude that Min(R) = {P1, P2}. One can easily
see that Spec(R) = {M, P1, P2} and P1M ̸= (0),
P2M ̸= (0). Also, since zM = (0), M is also an
annihilating-ideal. Thus AGs(R) ∼= K2 ∪ N1, so
AGs(R) ̸= AG(R), but AGF (R) = AG(R) (since
R is a Noetherian ring).

3 Diameter and girth of finitely
generated annihilating-ideal
graph

In this section, we express some properties
of diameter and girth of finitely generated
annihilating-ideal graph. Let H be a subgraph
of G. In general there is no any relation between
diam(H) and diam(G). We note that for each
non-domain ring R, the annihilating-ideal graph
AG(R) is connected and 0 ≤ diam(AG(R)) ≤ 3
(see [11, Theorem 2.1]). The following proposi-
tion more or less summarizes the over all situ-
ation for the diameter of the finitely generated
annihilating-ideal graph of a ring. We begin with
the following lemma.

Lemma 3.1 For every non-domain ring R, 0 ⩽
diam(AGF (R)) ⩽ 3.

Proof. It is clear by Proposition 2.1. □

Proposition 3.1 Let R be a non-domain ring.
Then
(1) diam(AG(R)) = 0 if and only if
diam(AGF (R)) = 0.
(2) diam(AG(R)) = 1 if and only if
diam(AGF (R)) = 1.
(3) If diam(AG(R)) = 2, then diam(AGF (R)) =
2.
(4) If diam(AG(R)) = 3, then diam(AGF (R)) =
2 or 3.

Proof. (1) By Proposition 2.5, it is clear that
AG(R) ∼= K1 if and only if AGF (R) ∼= K1, so
there is nothing to prove.

(2) It is clear by Proposition 2.4.
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(3) Assume that diam(AG(R)) = 2. By be-
fore section, diam(AGF (R)) ̸= 0, 1 and hence
2 ⩽ diam(AGF (R)) ⩽ 3. Let I, J ∈ AF (R)
such that IJ ̸= (0). Since I, J ∈ A∗(R) and
diam(AG(R)) = 2, there is K ∈ A∗(R) such that
I−−−K−−−J is a path in AG(R). Now let 0 ̸= a ∈ K,
so I −−−Ra−−− J is a path in AGF (R). Therefore
diam(AG(R)) = 2 = diam(AGF (R)).
(4) Suppose that diam(AG(R)) = 3, so
diam(AGF (R)) ̸= 0, 1. By Lemma 3.1,
diam(AGF (R)) = 2 or 3. □

Corollary 3.1 For every non-domain ring R,
diam(AGF (R)) ⩽ diam(AG(R)).

Proof. Immediate from Proposition 3.1. □

Corollary 3.2 Let R be a ring. If
diam(AGF (R)) = 2 or 3, then (Z(R))2 ̸= (0).
The converse is also true if AG(R) ≇ K2.

Proof. Suppose that diam(AGF (R)) = 2 or
3, then there exist I, J ∈ AF (R) such that
IJ ̸= (0), so for some a, b ∈ Z(R), ab ̸= (0), thus
(Z(R))2 ̸= (0). Now assume that AG(R) ≇ K2,
by [11, Theorem 2.7] and Proposition 3.1,
diam(AGF (R)) ̸= 0, 1 and so by Lemma 3.1
diam(AGF (R)) = 2 or 3. □

Let H be a subgraph of G. Then it is clear
that gr(G) ≤ gr(H). In the following lemma we
show that the converse is also hold for finitely
generated annihilating-ideal graph.

Proposition 3.2 Let R be a ring. Then
gr(AGF (R)) = gr(AG(R)).

Proof. It is sufficient to prove that
gr(AGF (R)) ≤ gr(AG(R)) . We know that
gr(AG(R)) = ∞, 3 or 4 (see [11, Theorem
2.1]). If gr(AG(R)) = ∞, then it is trivial that
gr(AGF (R)) = ∞. Assume that gr(AG(R)) = 3
and I1 −−− I2 −−− I3 −−− I1 is a cycle in AG(R).
We claim that AGF (R) contains a triangle. We
consider the following cases:

case 1: If I1, I2 and I3 are finitely gener-
ated, then gr(AGF (R)) = 3.

case 2: Suppose that I1 is not finitely gen-
erated and I2, I3 are finitely generated. Let

a1 ∈ I1 and J1 = Ra1. If J1 ̸= I2, I3, then
J1 −−− I2 −−− I3 −−− J1 is a triangle in AGF (R)
and hence gr(AGF (R)) = 3. Let J1 = I2, since
I2 = J1 ⫋ I1, there exists a2 ∈ I1 such that
a2 /∈ I2, so I2 = J1 ⫋ Ra1 + Ra2 = J2. Now if
J2 ̸= I3, then J2 −−− I2 −−− I3 −−− J2 is a cycle in
AGF (R). If J2 = I3, then there exists a3 ∈ I1
such that I3 = J2 ⫋ Ra1 + Ra2 + Ra3 = J3,
in this case J3 −−− I1 −−− I2 −−− J3 is a cycle
in AGF (R). Therefore in every cases we have
a triangle in AGF (R) and hence gr(AGF (R)) = 3.

case 3: Assume that I1 and I2 are not
finitely generated and I3 is a finitely generated
ideal of R. Let a1 ∈ I1 and J1 = Ra1. If J1 ̸= I3,
then J1 −−− I3 −−− I2 −−− J1 is a triangle in AG(R),
where J1, I3 ∈ AF (R) and I2 /∈ AF (R). By same
argument in case 2, the proof is complete. Now
assume that Ra1 = J1 = I3. Since I1 /∈ F(R),
there is a2 ∈ I1 such that a2 /∈ J1 = Ra1,
so I3 = J1 ⫋ Ra1 + Ra2 = J2. Therefore
J2 −−− I2 −−− I3 −−− J2 is a cycle in AGF (R) such
that J2, I3 ∈ AF (R) and I2 /∈ AF (R). By same
argument in case 2, we have gr(AGF (R)) = 3.

case 4: Assume that I1, I2 and I3 are not
finitely generated. Let a ∈ I1, J = Ra, by
using of same argument in case 2 for triangle
J −−− I2 −−− I3 −−− J where J ∈ AF (R) and
I2, I3 /∈ AF (R), we have gr(AGF (R)) = 3.
For case gr(AG(R)) = 4, we have a similar argu-
ment and conclude that gr(AGF (R)) ≤ 4. There-
fore in every cases, gr(AGF (R)) = gr(AG(R)).
□

Corollary 3.3 For every non-domain ring R, if
AGF (R) contains a cycle, then gr(AGF (R)) ⩽ 4.

Proof. It is clear with Proposition 3.2 and [11,
Theorem 2.1]. □

In [2], the authors studied rings for which
annihilating-ideal graph is bipartite and star
graph, the following two proposition shows that
finitely generated annihilating-ideal graph is bi-
partite (star) if and only if annihilating-ideal
graph is bipartite (star). We need the following
two lemmas.

Lemma 3.2 ([8, Theorem 3.4]) Let G be a
graph. Then G is a bipartite graph if and only
if contains no odd cycles.
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Lemma 3.3 ([2, Corollary 25]) Let R be a ring.
Then AG(R) is a bipartite graph if and only if
AG(R) is triangle-free.

Proposition 3.3 Let R be a ring. Then
AGF (R) is a bipartite graph if and only if AG(R)
is a bipartite graph.

Proof. (⇒) Assume that AGF (R) is a bipartite
graph. By contrary suppose that AG(R) is not bi-
partite. By Lemma 3.3, gr(AG(R)) = 3. Thus by
Proposition 3.2, gr(AGF (R)) = 3, which implise
that AGF (R) contains an odd cycles, so AGF (R)
is not bipartite (see Lemma 3.2), a contradiction.

(⇐) It is trivial. □

Proposition 3.4 Let R be a ring. Then AG(R)
is a star graph if and only if AGF (R) is a star
graph.

Proof. (⇒) Assume that AG(R) is a star graph.
Since AGF (R) is an induced subgraph of AG(R),
AGF (R) is also a star graph.

(⇐) Suppose that AGF (R) is a star graph and
I is a vertex of AGF (R) which is adjacent to every
other vertex in AGF (R). Let J ∈ A∗(R)⧹{I}.
We claim that J is only adjacent to I. By same
argument in Proposition 2.5, IJ = (0). Now
assume that there is K ∈ A∗(R)⧹{I} such that
KJ = (0). Therefore I−−−J−−−K−−− I is a triangle
in AG(R) and so gr(AG(R)) = 3. By Proposi-
tion 3.5, gr(AGF (R)) = 3, a contradiction (since
AGF (R) is a star graph). □

Corollary 3.4 Let R be a reduced ring. Then
the following statements are equivalent.
(1) There is a vertex of AGF (R) which is adjacent
to every other vertex.
(2) There is a vertex of AG(R) which is adjacent
to every other vertex.
(3) R ∼= F ⊕ D, where F is a field and D is an
integral domain.
(4) AG(R) is a star graph.
(5) AGF (R) is a star graph.

Proof. Immediate from Proposition 2.5, Propo-
sition 3.4 and [11, Corollary 2.3]. □

Theorem 3.1 Let R be a ring such that
gr(AGF (R)) = 4. Then AG(R) is a complete bi-
partite graph if and only if AGF (R) is a complete
bipartite graph.

Proof. (⇒) It is trivial (since AGF (R) is an
induced subgraph of AG(R)).

(⇐) Assume that AGF (R) is a complete
bipartite graph with two section X, Y. We
claim that AG(R) is a complete bipartite graph.
If AGF (R) = AG(R), then there is nothing
to prove. Assume I ∈ A∗(R)⧹AF (R). We
claim that, either for each J ∈ X, IJ = (0)
or for each K ∈ Y, IK = (0). Since AG(R)
is a connected graph with diam(AG(R)) ≤ 3
and gr(AG(R)) = 4 (see [11, Theorem 2.1] and
Lemma 3.2), we have only one of the following
cases:

case 1: For some J ∈ X, IJ = (0). In this case
we claim that for each J ∈ X, IJ = (0). By
contrary, suppose that for J1 ∈ X, IJ1 ̸= (0). So
there is 0 ̸= x ∈ I such that (Rx)J1 ̸= (0). Since
Rx ∈ AF (R), Rx ∈ X and hence (Rx)J ̸= (0), a
contradiction (since Rx ⊆ I and JI = (0)).

case 2: For some K ∈ Y, IK = (0), By
similar argument in case 1, for each K ∈ Y,
IK = (0).

case 3: There exists K ∈ A∗(R) such that
IK = (0), where either for each J ∈ X,
KJ = (0), or for each L ∈ Y, KL = (0) and
for each J ∈ X, L ∈ Y, IJ ̸= (0), IL ̸= (0).
Without loss of generality suppose that for every
J ∈ X, KJ = (0). We claim that for each
L ∈ Y, IL = (0), by contrary suppose that for
L0 ∈ Y, IL0 ̸= (0), so for some 0 ̸= x ∈ I,
(Rx)L0 ̸= (0), since (Rx) ∈ AF (R), Rx ∈ Y and
K −−− J −−− Rx −−− K form a triangle in AG(R),
a contradiction. Therefore for each L ∈ Y,
IL = (0), a contradiction. So this case implise a
contradiction in general.

Therefore for every I ∈ A∗(R)⧹AF (R), ei-
ther IJ = (0) for each J ∈ X, or IK = (0)
for each K ∈ Y. Let X = X ∪ {I ∈
A∗(R) : for each J ∈ Y, IJ = (0)} and
Y = Y∪{J ∈ A∗(R) : for each I ∈ X, IJ = (0)}.
Suppose I ∈ X⧹X and J ∈ Y⧹Y. By contrary
suppose that IJ ̸= (0), so there exists x ∈ I such
that (Rx)J ̸= (0). Since Rx ∈ AF (R), Rx ∈ Y
and (Rx)I = (0), but for each L ∈ Y, IL = (0).
Since Rx ⊆ I, for each L ∈ Y, (Rx)L = (0), a
contradiction. Therefore AG(R) is a complete
bipartite graph with two section X and Y . □



382 R. Taheri et al., /IJIM Vol. 10, No. 4 (2018) 375-383

Corollary 3.5 Let R be a reduced ring such that
gr(AGF (R)) = 4 and AGF (R) is a complete bi-
partite graph. Then |Min(R)|= 2.

Proof. It is clear with [12, Corollary 2.5] and
Theorem 3.1. □

Let R be a ring. Then the spectrum graph is
tree in every cases, i.e, gr(AGs(R)) = ∞ (see [11,
Corollary 2.4]). The following proposition shows
that, if I, J ∈ AF (R) and IJ = (0), where I and
J are not principal ideal, then AGF (R) is not a
tree.

Proposition 3.5 Let R be a ring and G ∼= K2

is a subgraph of AGF (R), with V (G) = {I, J},
where I and J are not principal ideal. Then
gr(AGF (R)) ̸= ∞.

Proof. Assume that V (G) = {I, J} ⊆ AF (R)
such that IJ = (0) and I, J are not principal
ideal. Thus there exist 0 ̸= x ∈ I and 0 ̸= y ∈ J
such that Rx ⫋ I and Ry ⫋ J . If Rx = Ry, then
I −−− J −−− Rx −−− I is a triangle in AGF (R). If
Rx ̸= Ry, I−−−Rx−−−Ry−−−J is a cycle in AG(R),
so in every cases, gr(AGF (R)) ∈ {3, 4}. □

We conclude this paper with the following
corollary.

Corollary 3.6 Let R be a reduced ring and G ∼=
K2 is a subgraph of AGF (R), with V (G) = {I, J},
where I and J are not principal ideals, then R ≇
F ⊕ D, where F is a field and D is an integral
domain.

Proof. Immediate from Proposition 3.5, Propo-
sition 3.2 and [11, Corollary 3.11]. □
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