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Abstract

The current research intends to apply an extended version of artificial neural networks approach for
solving a linear fractional Volterra integro-differential equation. More precisely, our main discussion in
this study is to answer this fundamental question practically: That is, would it be possible to speed up
the convergence of a given neural network structure by substituting the standard first-order derivative
with a fractional order one. It is worth mentioning that, there is no certain geometric interpretation for
fractional order derivative of a continuous function at a point in the domain. But, we strongly believe
that this derivative calculus might help us to discover an efficient iterative technique to approximate
solution of the earlier mentioned math problem. In this way, two simple but typical comparative test
problems are given, and the related salient features of this technique are also discussed.

Keywords : Fractional Volterra integro-differential equation; Fractional artificial neural network; Least
mean squares cost function; Supervised back-propagation learning algorithm.

—————————————————————————————————–

1 Introduction

A
n overview on studies in the field of mathe-

matics especially in the numerical analysis

aspects reveals the fact that even after years of

development, many available numerical packages

are still not freely responsible for solving compli-

cated mathematical problems. It is worth men-

tioning that many physical phenomena and issues

related to engineering are modeled in terms of

∗Corresponding author. jafarian5594@yahoo.com,
Tel:+98(914)1893041.

†Department of Mathematics, Urmia Branch, Islamic
Azad University, Urmia, Iran.

‡Department of Mathematics, Urmia Branch, Islamic
Azad University, Urmia, Iran.

complex non-linear equation, and it is difficult to

solve them analytically. The importance of ob-

taining solutions in modern mathematics prob-

lems has led to the fact that scientists are look-

ing for most efficient alternative schemes. The

recent developments in engineering science and

technology rise to new branches of mathematics

in which can be applied for modeling the related

issues. Fractional problems are newly research

topics in mathematical analysis, that many au-

thors have paid attention to study their solu-

tions. Recently extensive works have been done

to solve fractional differential equations, due to

their increasingly applications in engineering sci-

ences and applied physics. In the last decades, a

variety of powerful and effective methods such as
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Taylor expansion method [7], Hybrid collocation

method [12], Chebyshev collocation method [14],

CAS Wavelets method [21], differential transform

method [15], He’s variational iteration method

[8], Homotopy analysis method [4], Euler wavelet

method [18], SCW method [17], hybrid colloca-

tion method [13] and reproducing kernel method

[19] have been proposed to the numerical so-

lution of linear and non-linear fractional prob-

lems. A review of recently developed methods

shows that the inbuilt deficiencies of these tech-

niques are not letting the current conventional

approaches to be useful for modeling and solv-

ing many different types of such problems. In-

spired and motivated by the ongoing research in

this area, we use an elegant modification of the ar-

tificial neural networks (ANNs) approach coupled

with the power series method to investigate solu-

tion of a fundamental linear fractional Volterra

integro-differential equation. In general, the in-

dicated method is a non-algorithmic self-learning

iterative technique which has been designed based

on the performance of the human brain neuron

system. Until now, several structures of ANNs

have been employed to the numerical solution

of fractional problems due to the complexity of

mathematical problems derived from functional

models [9, 16, 10]. It can be described in the

frame work of the neural networks approach that

the convergence control parameters are the main

auxiliary tools which distinguish this technique

from the other existing ones. In this paper, a

three-layered feed-forward fractional type neural

network is considered to the numerical solution

of a linear fractional Volterra integro-differential

equation. The main advantage of proposed struc-

ture over conventional ones is using fractional

derivative instead of integer one in the training

steps. The designed neural structure first, com-

bine the given initial condition within the ori-

gin problem, and then the resulted neural net is

substituted with the unknown function. Employ-

ing the least mean square algorithm leads to get

a suitable criterion function. Now, the defined

cost function converts the fractional differential

equation to a non-linear optimization problem.

Updating the unknown network parameters us-

ing a learning algorithm which is based on the

fractional type gradient descent rule, reduces the

network error on the training iterations. These

iterations are repeated until the amount of net-

work error tends to zero. The following strategy

is organized below. Within this research frame-

work, an overview on neural networks and their

computational process in solving the mentioned

differential equation is stated in section 2. In

section 3, two test problems are solved through

the presented ANNs approach, and comparison is

made with the solutions obtained from the stan-

dard one. It has been shown numerically that

the proposed ANN architecture presents a desir-

able convergence of the solution in compared with

other method reported in this literature. At last,

conclusions regarding the text and recommenda-

tions for future works are also pointed out in sec-

tion 4.

2 Description of the method

The purpose of this section is to provide an

accurate approximate solution for the linear

fractional Volterra integro-differential equation

problem. It is evident from discussions here,

ANNs approach and power series method as two

fundamental parts of numerical analysis, have

relevant places in constructing algorithms for

solving so many complicated math problems.

The combination of these two famous methods

has become much more efficient tool in solving

a large part of mathematical problems. The

main reason consists in the fact that these both

have their unique advantages, which led to their

increasing application in approximating solution

of complex problems. Now, the notable details

in neural networks are summarized here.

Artificial neural networks facilitate solving the

various problems in science. In this role, one

of their major advantages is likely to be able

to manage the process of solving wide range of

problems as a simplistic model of real neural

systems. They also provide researchers with

greater access to the desired solutions. At the

same time, as the neural networks make possible

greater applications on various problems, they
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need to be trained and we are going to be familiar

with their capabilities as well. In this regard,

there are also many works that researchers

can draw on. But in majority of these works,

the elements and essential principles of these

networks are well established in details and it

should be acknowledged that they certainly seem

to be time consuming. In this part, we will

try to determine fundamentals of modeling and

analyzing fractional equation using neural net-

works. Still more, we would give brief required

mathematical equations, some implementing

tips, practical skills and techniques necessary

engaged in this process. Although there is a

breadth and depth of material available, here we

attempt to avoid addressing unnecessary details

which don’t deserve a place in this paper. These

days, of course, utilizing of intelligent systems,

namely artificial neural networks is revived to

some point that such tools can be categorized

in both basic and common tools. You may have

noticed that neural networks in most academic

majors, step forward in dealing with some tasks

such as: analyzing, decision-making, approxi-

mating, forecasting, designing and establishing.

In what above, a brief idea about artificial neural

networks has been presented, where details can

be found in many references such as [3, 5].

To illustrate the procedure, we presented Figure

1 where it is a three-layer feed-forward neural

network comprised of one input signal, I hidden

neurons and one output neuron. As can be seen,

information which moves into network through

the input neurons are meant to be combined

with the weight values corresponding to the

input layer neurons. This procedure establishes

the inputs to the hidden layer. The weights are

in fact important to the inputs in the network.

Activation function for the hidden layer is being

provided to the input data. The activation func-

tion is defined by the verity of neural network

types. The corresponding weight parameters to

the third layer are then multiplied by outputs

to the hidden layer and then do establish the

output for the network. According to the above

mentioned descriptions, input-output relations

in each network layer can be summarized as

follows:

• Input unit:

o11 = x, (2.1)

• Hidden units:

o2i = f(neti), i = 1, ..., I, (2.2)

neti = x.w1
i ,

where f and w1 are activation function and

hidden layer weight vector, respectively.

• Output unit:

N(x) =

I∑
i=1

(w2
i .o

2
i ) + b =

I∑
i=1

(w2
i .f(w

1
i .x)) + b,

(2.3)

where b and w2 are bias term and output layer

weight vector, respectively.

1

i

I

x N(x)

b

Input layer Output layer

Hidden layer

1
w

2
w

Figure 1: The designed neural network architecture

In the following parts, it will be shown that

how the mentioned fractional problem can be

solved by this simplified mathematical model of

brain-like computational system.

2.1 Implementation of the method

Fractional calculus play a dominant role in the

mathematical modeling of many phenomena re-

lated to physics and engineering sciences. There-

fore, these fractional equations have attracted

great attention, and investigation of new numeri-

cal techniques for solving these problems have be-

come a fascinating task for many experts. Thus,



202 A. Jafarian et al., /IJIM Vol. 15, No. 3 (2023) 199-208

we would like here to extend the applications of

both ANNs approach and power series method

to seek the solution of linear fractional Volterra

integro-differential equations problem. This part

of the study begins with the basic concepts of

fractional calculations. As is evident from the

references [2, 11], there are several definitions for

fractional order derivative and integration. Here,

we tend to choose the Caputo derivative defini-

tion to continue the computational procedure.

Definition 2.1. Let u(x) be continuously differ-

entiable function on finite interval [a, b] up to or-

der k. The Caputo derivative Dα
x and fractional

integral operator Iαa,x of order α > 0 are defined

by:

aD
α
x [u(x)] =


dku(x)
dxk ,α = k ∈ N

1
Γ(k−α)

∫ x
a

u(k)(τ)
(x−τ)α−k+1dτ,

x > a, 0 ≤ k − 1 < α < k

,

(2.4)

Iαa,x[u(x)] =
1

Γ(α)

∫ x

a

u(τ)

(x− τ)1−α
dτ, (2.5)

respectively. Here, Γ(.) symbolizes the Gamma

function. It must be mentioned that the deriva-

tive of a constant for the Caputo sense is zero,

and also the following practical property holds:

aD
α
x [x

k] =


0 k ∈ Z+, k < ⌈α⌉

Γ(k+1)
Γ(k+1−α)x

k−α,

x > ak ∈ Z+, k ≥ ⌈α⌉

, (2.6)

Iα0,x[t
k] =

Γ(k + 1)

Γ(k + 1 + α)
xk+α, k ∈ Z+. (2.7)

In the above relations ⌈α⌉ indicates the small-

est integer greater than or equal to constant α.

For more information, please review [1, 20]. For

the purpose of applications illustration of the de-

signed multi-layered feed-forward neural architec-

ture, we consider here the following linear frac-

tional Volterra differential equation:

P (x).aD
α1
x [u(x)] +Q(x).Iα2

a,x[x
l1tl2u(t)] = H(x),

(2.8)

0 < α1, α2 ≤ 1,

for the length interval (a, b) and subject to initial

condition

u(a) = u0.

In the above differential equation problem, the

variable coefficients P , Q and H are deemed con-

tinuous real-valued functions. In the last decade,

extensive studies have been done on the use of

power series method in solving several types of

fractional differential equations. As previously

mentioned, the designed neural architecture is

considered as an iterative method, supposedly

that the solution function u(x) on domain Ω =

[a, b], is completely represented in a power series

of degree I. Let:

uI(x) =

I∑
i=0

aix
i, (2.9)

be the referred generalized power series for con-

stant coefficients ai (for i = 0, ..., I). It should

be noted here that the solution function u(x) is

represented as the series polynomial (2.9) if and

only if it is complex differentiable in the open set

(a, b). For simplicity reasons, this differential in-

terval is replaced with the suitable domain [0, T ],

which will be used throughout the paper. The re-

lationship between designed neural network and

indicated power series will be explained further

in the following parts.

2.2 Discretization of the problems

As was seen in the previous part, the defined

fractional problem consists of an initial condition,

which must be incorporated in the framework of

methodology. We now have to replace the so-

lution function u(x) with a more simplified one,

that includes the initial condition. For the above

mentioned problem, an initial trial particular so-

lution which is used in the remaining parts of this

paper is written in the form:

ũ(x) = u0+x.N(x) = u0+x.(
I∑

i=1

w2
i .f(w

1
i .x)+b).

(2.10)

Here, ũ(x) involves the given feed-forward archi-

tecture that is satisfied in the initial condition,

simultaneously. Here, the notations w2
i = ai,
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w1
i = xi−1 and b = a0 are used for corresponding

the designed neural network within the power se-

ries (2.9). Substituting u(x) with ũ(x) leads to

the following relation:

P (x).0D
α1
x [u0 +

I∑
i=0

aix
i+1]+ (2.11)

Q(x).Iα2
0,x[u0.x

l1 + xl1 .

I∑
i=0

ait
i+l2+1)] = H(x),

0 < x < T, 0 < α1, α2 ≤ 1.

Expanding the defined fractional derivative 0D
α1
x

and fractional integration Iα2
0,x on the series in-

cluding designed neural architecture and then

making some algebraic simplification, leads to the

following relation:

P (x).

I∑
i=0

ai.Γ(i+ 2).xi+1−α1

Γ(i+ 2− α1)
+ (2.12)

Q(x).

I∑
i=0

ai.Γ(i+ l2 + 2).xi+l1+l2+1+α2

Γ(i+ l2 + 2 + α2)
)+

Q(x).
u0.x

l1+α2

Γ(1 + α2)
= H(x), 0 < x < T, 0 < α1, α2 ≤ 1.

Now, a set of acceptable node points should be

considered to complete the discretization proce-

dure. For positive integer R, let Ωr be a par-

tition of domain Ω with the nodal points xr =
rT
R , (for r = 0, ..., R). Putting x = xr and then

employing the differentiable least mean square

(LMS) function reduces the resulted equation

(2.12) into a non-linear optimization problem de-

fined by the following system of equalities:

Er =
1

2
(P (xr).

I∑
i=0

ai.Γ(i+ 2).xi+1−α1
r

Γ(i+ 2− α1)
+ (2.13)

Q(xr).

I∑
i=0

ai.Γ(i+ l2 + 2).xi+l1+l2+1+α2
r

Γ(i+ l2 + 2 + α2)
)+

Q(xr).
u0.x

l1+α2
r

Γ(1 + α2)
−H(xr))

2,

for 0 < α1, α2 ≤ 1 and r = 0, ..., R. Minimizing

this cost function by means of the ANNs approach

over the space of possible weight parameters is the

main objective of the following part. Hence, one

suitable error correction learning procedure must

be essentially employed to fulfil this goal. More

details concerning minimizing techniques can be

found in [6].

2.3 Proposed learning algorithm

As a matter of fact, artificial neural networks

are generally suitable to be employed as paral-

lel distributed computing ones. They are pro-

cessing such brain like systems to be shown that

they are successful simplified mathematical mod-

els. The most characteristic of neural networks is

that they need to be taught and trained. What it

simply means is that they are being able to learn

new compositions, new associations as well as

new functional dependencies. On the other hand,

experience shows that computers are being pro-

grammed to outperform specific issues relevant to

biological and artificial neural systems. In either

case, they are secured to keep the reliability, pre-

ciseness and speed arithmetic expressions. Along

the same lines, these networks are constructed in

a way that they appear to generate solid informa-

tion as a new brand processing networks. Learn-

ing in neural networks is not that much straight-

forward. The network ought to run the desired

computation. As such, it is required to find a

set of connection strengths (weights). Obviously,

a training set of example input-output pairs are

given to the network. Due to approximating the

function from which input-output pairs have been

drawn, connections need to be modified. Then,

the networks are invited to be examined to see

if they are capable of generalizing. In remain-

ing part of this section, we summarize the per-

formance of proposed neural architecture. Still,

the process of error correction learning is specif-

ically provided simple enough. Here is the pro-

cedure: consider network is being training: now,

input moves into the network and it is going to

be a set of values on the output units. Next,

wishing more proficient computation, actual out-

put needs to be compared with the desired tar-

get. Now, if the output and target do match, we

do not need to make any changes to the connec-

tions. No doubt, if the output differs from the
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target, we have to take a step and make some

changes. Regarding to this fact that convergence

control parameters must be updated, the super-

vised back-propagation learning algorithm is em-

ployed to adjust the initial parameter ai which

has been chosen randomly. The mentioned algo-

rithm is well presented as follows:

ai(τ + 1) = ai(τ) + ∆ai(τ), i = 0, ..., I, (2.14)

∆ai(τ) = −η.Dβ
ai [Er] + γ.∆ai(τ − 1), 0 < β ≤ 1,

where η, γ and β are the learning rate, momen-

tum term and fractional order derivative, respec-

tively. In the above relation, the indexes τ and

i in ai(τ) ascribe the iteration number and the

label of training connection weight, respectively.

Moreover, ai(τ +1) and ai(τ) depict the adjusted

and current weight parameter, respectively. It

is true that there is no certain geometric inter-

pretation for fractional derivative of a continuous

function at a given point of its domain, but we

tend to do this to increase the degree of freedom

in the neural network training. Practically, our

task is to illustrate that there could be such or-

der to the fractional derivative which by applying

it in the procedure, network training will not be

time consuming any more and there is going to be

less error as well. Here, the fractional order gen-

eralized delta learning algorithm which is based

on the gradient descent method is used to aid

this training process. To complete the derivation

of learning procedure, the above fractional order

derivative is employed as follows:

Dβ
ai [Er] =

Γ(3)

2.Γ(3− β)
(P (xr).

I∑
i=0

ai.Γ(i+ 2).xi+1−α1
r

Γ(i+ 2− α1)
−H(xr)+

Q(xr).

I∑
i=0

ai.Γ(i+ l2 + 2).xi+l1+l2+1+α2
r

Γ(i+ l2 + 2 + α2)
)+

Q(xr).
u0.x

l1+α2
r

Γ(1 + α2)
)2−β×

(P (xr).
Γ(i+ 2).xi+1−α1

r .a1−β
i

Γ(2− β).Γ(i+ 2− α1)
+

Q(xr).
Γ(i+ l2 + 2).xi+l1+l2+1+α2

r .a1−β
i

Γ(2− β).Γ(i+ l2 + 2 + α2)
),

(for r = 0, ..., R and i = 0, ..., I). With a lit-

tle care in the above computational relations, it

can easily be concluded that modifying the net-

work parameters without the use of a powerful

computational software is impossible. The sym-

bolic computation software Matlab v7.10 is a high

level one which researchers can employ it to omit

wasting time and enhance the accuracy of calcu-

lations.

3 Illustrative examples

In this section, two fractional Volterra integro-

differential equations problems are solved nu-

merically to illustrate the capability of the de-

veloped ANNS approach. Besides, compar-

isons are conducted between the results of

this iterative approach and those obtained by

other numerical techniques proposed in [11, 12].

Here, the mean absolute error criterion Emid =
1

R+1

∑R
r=0|u(xr) − ũ(xr)| is implemented as an

index to peruse the overall performance of each

method. In the following simulations that illus-

trate the method discussed in detail, we use the

specifications and standards as follows:

1. Learning rate η = 0.01,

2. Momentum constant γ = 0.02,

3. Number of hidden neurons I = 6,

4. Number of nodal points R = 11.

Example 3.1. Consider the following linear

fractional order integro-differential equation of

Volterra type:

D0.75
x [u(x)] + I0.50,x[u(t)] =

Γ(3)

Γ(72)
x

5
2 +

Γ(3)

Γ(94)
x

5
4 +

Γ(1)

Γ(32)
x

1
2 , 0 ≤ x ≤ 1,

with initial condition u(0) = 1 and the exact so-

lution u(x) = x2 + 1. The goal here is to apply

the concepts learned in the previous section to

the simulation of above fractional problem. At

first, the weight parameters are quantified with
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Table 1: Numerical results for Example 3.2

β = π
8

β = π
6

β = π
4

β = 1
x −−−−−−− −−−−−−− −−−−−−− −−−−−−−

LMS error LMS error LMS error LMS error

0.1 3.0188× 10−9 3.1278× 10−7 4.4283× 10−13 6.6602× 10−10

0.2 9.9716× 10−8 3.5484× 10−7 3.4472× 10−13 3.5518× 10−10

0.3 9.1028× 10−8 4.8918× 10−7 3.3180× 10−13 1.9684× 10−10

0.4 9.9430× 10−8 5.1376× 10−7 8.8143× 10−14 8.8308× 10−10

0.5 7.0088× 10−8 5.5627× 10−7 5.5390× 10−13 1.9479× 10−09

0.6 6.3176× 10−8 5.8328× 10−7 5.6903× 10−13 9.8321× 10−10

0.7 8.4976× 10−8 6.3275× 10−7 6.5140× 10−13 5.9641× 10−10

0.8 8.0873× 10−8 6.4822× 10−7 6.6517× 10−13 6.5577× 10−10

0.9 9.0113× 10−8 6.7391× 10−7 7.1820× 10−13 4.9429× 10−10

small real valued random constants. Then, the

given differential interval [0, 1] is partitioned with

the help of regular discretization technique for

R = 11. Now, the described learning algorithm

(2.14) is implemented on the given training pat-

terns to successively adjust the weight parameters

until a suitable solution was found. Comparison

between the LMS errors is made in Table 1, for

τ = 500. To demonstrate the accuracy of tech-

nique presented in this study, the indicated error

functions are plotted in Figure 1, for different val-

ues of β. Moreover, the performance of proposed

neural structure is perused using the Emid error

function in Figure 3, for different control elements

(τ = 100).
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Figure 2: The cost functions for Example 3.1.

Example 3.2. The following linear fractional

Volterra integro-differential is considered:

D0.5
x [u(x)]− I10,x[xtu(t)] = R(x),

u(0) = 1, 0 ≤ x ≤ 1,

where

R(x) = −
Γ(52)

Γ(2)
x− x3

2
+ (

Γ(5)

Γ(92)
+

2

7
)x

7
2 − x9

6
,
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Figure 3: Performance of proposed neural architec-
ture for Example 3.2.

with the exact solution u(x) = 1− x
3
2 + x4. Sim-

ilarly, the present iterative is employed for esti-

mating solution of this fractional problem on do-

main Ω = [0, 1]. Here, the obtained numerical

results are compare with those obtained by our

recent study proposed in [10] and the ones ob-

tained from the hybrid collocation (HC) method

[13]. The obtained least mean square errors are

presented in Table 2, for τ = 1000. We are now

allowed to claim that, increasing the number of

learning steps in the back-propagation algorithm

leads to the accurately approximation of the un-

known function.

All this makes it is easy to conclude that there

exists at least a real number β belong to the in-

terval (0, 1), such that the neural network conver-

gence speed is much more than conventional case

studies.
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Table 2: Comparison of approximate solutions for Example ??

ANNs approach Method in [10] Method in [13]
x −−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−−

β= e
3
, I=6 β=1, I=6 I=6

0.1 6.8166× 10−14 6.9482× 10−11 4.7585× 10−09

0.2 7.0081× 10−14 9.1718× 10−12 5.5395× 10−09

0.3 7.3800× 10−14 9.5028× 10−12 5.6080× 10−09

0.4 7.6423× 10−14 3.3447× 10−11 7.7917× 10−09

0.5 7.9318× 10−14 4.3875× 10−11 8.3401× 10−09

0.6 8.0207× 10−14 3.8157× 10−11 1.2991× 10−08

0.7 8.1138× 10−14 7.9555× 10−11 2.6882× 10−08

0.8 1.0083× 10−13 7.5924× 10−11 9.1939× 10−09

0.9 1.0083× 10−13 1.8682× 10−11 9.6190× 10−09

−−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−−

x β= e
3
, I=8 β=1, I=8 I=8

0.1 9.2186× 10−16 3.8975× 10−14 8.1428× 10−11

0.2 1.0067× 10−15 7.4554× 10−13 8.4352× 10−11

0.3 1.2934× 10−15 7.4632× 10−13 9.2926× 10−11

0.4 1.8533× 10−15 6.0937× 10−14 3.4998× 10−10

0.5 2.1160× 10−15 2.5468× 10−14 1.9660× 10−10

0.6 2.3784× 10−15 1.7607× 10−14 2.5108× 10−10

0.7 2.6931× 10−15 5.7975× 10−14 9.1604× 10−11

0.8 2.8890× 10−15 5.5514× 10−14 3.7329× 10−10

0.9 3.2177× 10−15 2.6262× 10−14 4.5166× 10−10

−−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−−

x β= e
3
, I=10 β=1, I=10 I=10

0.1 3.2486× 10−17 8.1908× 10−15 8.3083× 10−13

0.2 3.8941× 10−17 3.9874× 10−16 2.8526× 10−12

0.3 4.3256× 10−17 2.5972× 10−16 5.4972× 10−12

0.4 4.7233× 10−17 2.4037× 10−16 9.1719× 10−12

0.5 5.0176× 10−17 4.8525× 10−16 2.8584× 10−13

0.6 5.4923× 10−17 1.2384× 10−16 7.5720× 10−12

0.7 5.9141× 10−17 6.5123× 10−16 7.5373× 10−12

0.8 6.2137× 10−17 1.5517× 10−16 7.8045× 10−12

0.9 6.5160× 10−17 4.0595× 10−16 8.6782× 10−12

−−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−−

x β= e
3
, I=12 β=1, I=12 I=12

0.1 7.3591× 10−18 5.9904× 10−17 3.3712× 10−14

0.2 7.7083× 10−18 7.9095× 10−17 7.6218× 10−13

0.3 7.8996× 10−18 8.5927× 10−16 3.9428× 10−13

0.4 8.2760× 10−18 4.4726× 10−17 1.1122× 10−13

0.5 8.5173× 10−18 2.3868× 10−17 5.2853× 10−13

0.6 8.7916× 10−18 2.4928× 10−17 1.6565× 10−13

0.7 8.8993× 10−18 1.5756× 10−17 3.0198× 10−13

0.8 9.2170× 10−18 7.4075× 10−17 6.6297× 10−13

0.9 9.3756× 10−18 1.5424× 10−17 6.5408× 10−13

4 Conclusion

In the present work, we have applied a modifi-

cation of the artificial neural networks approach

to compute solution of a linear fractional Volterra

integro-differential equation. In this new modifi-

cation, instead of employing the usual first order

derivative, a fractional order one has been applied

in back-propagation learning process. In other

words, the remarkable property of this technique

is to use fractional displacement derivative with

conventional first order one in the gradient de-

scent rule. It has been demonstrated practically

that the presented ANNs approach can be ap-
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plied advantageously to approximate the power

series solution of the given math problem. It is

worth noting that, this method provides the so-

lution in terms of convergent power series with

easily computable components. We numerically

showed that, in the case of fractional ANNs ap-

proach when the iteration steps become increas-

ingly large, the convergence of the solution is very

fast, and also the solution however becomes even

more accurate. The two numerical examples illus-

tratively analyzed the ability of modified ANNs

approach presented in this study, and reveals the

fact that this one case is very effective. Exten-

sions of this technique can also be applied to

higher order and non-linear situations.
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