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Abstract

In this paper we take A to be the category Pos-S of S-posets, for a posemigroup S, M4 to be the class
of partially ordered sequantially-dense monomorphisms and study the categorical properties, such as
limits and colimits, of this class. These properties are usually needed to study the homological notions,
such as injectivity, of S-posets. Also we show that it is actually equivalent to CP%-density resulting

from a closure operator.
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1 Introduction

Hroughout this paper S denotes a nonempty
T posemigroup and M, stands for the class
of po-s-dense monomorphisms of S-posets. To
study mathematical notions in a category A, such
as injectivity, tensor products, flatness, with re-
spect to a class M of its (mono)morphisms, one
should know some of the categorical properties of
the pair (A, M). In this paper we take A to be
the category Pos-S and M, to be a particular
interesting class of monomorphisms, to be called
partially ordered-s-dense(po-s-dense) monomor-
phisms, and investigate its categorical properties.

A study of S-posets from a category-theoretic
standpoint forms the content of [8], and extends
the results found in [6]. For more information on
various properties of S-posets, see also [5].

In the rest of this section we give some prelimi-
naries about S-acts, posets, and S-posets needed
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in the sequel.

Let S be a semigroup. Recall that a (right) S-
actis a set A equipped with amap A : AxS — A,
called its action, such that, denoting A(a,s) by
as, we have a(st) = (as)t, for all a € A, s,t € S
and, if S is a monoid with the identity element
1, al The category of all S-acts, with
action-preserving maps between them, is denoted
by Act-S. An S-act congruence  on A is an
equivalence relation with the property that afa’,
a,a’ € A, implies that asfa’s, for all s € S. A
quotient S-act is the set A/# with the natural ac-
tion, [a]s = [as]|, which makes the canonical map
v:A— A/O, a— [a], an S-act map. For more
information about S-acts, see [10].

a.

A semigroup S is said to be a posemigroup if it
is also a poset whose partial order is compatible
with the binary operation.

For a posemigroup S, a (right) S-poset is a
poset A which is also an S-act whose action is
monotone in both arguments. An S-poset map (
morphism) is an action preserving monotone map
between S-posets. Note that each poset P can be
made into an S-poset with trivial action: ps = p,
for every p € P,s € S.
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Let A be an S-poset. An S-poset congruence
on A is an S-act congruence 0 with the property
that the S-act A/0 can be made into an S-poset
in such a way that the canonical S-act map A —
A/0 is an S-poset map. For a binary relation R
on A, define the relation <p on A by

a <g d if and only if
a<aRa) <..<ayRal, <d

for some a1, d}, ..., an, al, € A. Then an S-act con-
gruence # on A is an S-poset congruence if and
only if afa’ whenever a <y a’ <y a. The S-poset
quotient is then the S-act quotient A/ with the
partial order given by [a] < [b] if and only if a <g
b. Also the S-poset congruence §(H) on A gen-
erated by H C A x A can be characterized as
follows:
af(H)a' if and only if a = d/, or there exist
$1,82, .00y Sny 1, ta, ooyt € ST such that
a < sicy,s1d1 < Sac9, Sada < s3¢3, .., Spdy < A
a' <tipr,tiqr < topa,tagqe < t3p3, .y timm < a,

where (¢;,d;), (pj,q;) € HUH! for i =
1,2,...,nand 7 =1,2,....m.

Moreover, the order relation on A/6(H) can be
defined by: [a] < [d'] if and only if a < d/, or there
exist s1, 89, ..., 5, € S! such that

!
a < s1c1,51d1 < 82¢2, S2da < 53€3, ..., Spdy <

where (¢;,d;) € H{JH ™! for i =1,2,...,n.

Recall that the product of a family of S-posets
is their cartesian product, with componentwise
action and order. The coproduct is their disjoint
union, with natural action and componentwise or-
der. As usual, we use the symbols [] and [] for
product and coproduct, respectively. Also for a
family (Aq)aer of S-posets each with a unique
fixed element 0, the direct sum @ Aq is defined
to be the sub S-poset of the product [[ A, con-
sisting of all (aq)aer such that a, = 0 for all
a € I except a finite number of indices.

The pullback of a given diagram

A

Lf
c % B

in Pos-S is the sub S-poset P = {(c,a) : ¢ €
C,a € A,g(c) = f(a)} of C x A, and pullback
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maps pc : P — C, pa : P — A are restrictions
of the projection maps. Notice that for the case
where g is an inclusion, P can be taken as f~1(C).

All colimits in Pos-S exist and are calculated
as in Set with the natural action of S on them.
In particular, () with the empty action of S on it,
is the initial object of Pos-S. Also, the coproduct
of S-posets A, B is their disjoint union AU B =
(Ax{1}) (B x{2}) with the obvious action, and
coproduct injections are defined naturally.

The pushout of a given diagram

A % C
[l
B

in Pos-S is the factor act Q = (B U C)/6 where
0 is the congruence relation on B U C generated
by all pairs (upf(a),ucg(a)), a € A, where up :
B - BUC,uc : C — B U C are the coproduct
injections. Also, the pushout maps are given as
g =muc : C — (BUC)/0, ¢g = mup : B —
(BUC)/0, where 7 : BUC — (BUC)/0 is
the canonical epimorphism. Multiple pushouts in
Pos-S are constructed analogously.

Let I be a small category and A : I — Pos-S
be a diagram in Pos-S determining the acts A,
for a € I = ObjI, and S-maps gog : Aa — Ag,
for « — 8 in Morl. Recall that the limit of this
diagram is MAa = Naer Ea, where £, = {a =
(aa)ael € Ha A : gaﬁpa(a) = pﬁ(a)} and pq, pg
are the a, fth projection maps of the product.
The limit S-maps are ¢, : éiLnAa — A,. Also
the limit has the universal property which is, if
{fa + A — A,} is a family of morphisms such
that gogfa(a) = fs(a), then there is a morphism
f:A— @Aa such that ¢, f = fa.

Remind that a directed system of S-posets
and S-maps is a family (Bgy)aer of S-posets in-
dexed by an updirected set I endowed by a fam-
ily (9o : Ba — Bg)a<per of S-maps such that
given a < 3 <« € I we have ggygag = gary, also
Joa = id. Note that the direct limit (directed col-
imit) of a directed system ((Ba)acr; (9ap)a<per)
in Pos-S is given as lim B, = 1, Ba/p where the
congruence p is given by b, pbg if and only if there
exists v > «, B such that uygay(ba) = uygs+(b3),
in which each uo : By — [[,, Ba is an injection
map of the coproduct. Notice that the family
Jo = TUq @ By — lzl;LBa of S-maps satisfies
98908 = go for a < B, where w : [, Bo — lzl}Ba
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is the natural S-map. Also directed colimit has a
dual universal property of limit.

2 ("-Closure operator

In this section, we introduce and briefly study a
closure operator, so called CP%- Closure operator.
For a sub S-poset A of B let us denote A |=
{b€ B|3Ja€ Ab<a} and Sub(B), the set of
all sub S-posets of B. First recall the following
definition of CP?-closure operator.

Definition 2.1 A family C*? = (C%)pcpos_s;,
with C%' : sub(B) — Sub(B), is defined as

CPHA)={be B:bS C Al}.

It is easy to show that CP¢ is a closure operator
on Pos-S in the sense of [7]. This means that
C’%d(A) is a sub S-poset of B and,

(i) A C CR'(A),

(i) 4; C Ay C B implies C%(A;) C C%(Ay),

(iii) for every homomorphism f : B — D
and each sub S-poset A of B, f(CH(A)) C
OBl (F(A)).

We just prove (iii). Let f : B — C be a ho-
momorphism and b € C’%d(A). For every s € S,
there exists a € A such that bs < a. Then f(b)s =
7(bs) < f(a) € f(A) and hence f(b)S C f(A) |
which deduced that f(b) € CB(f(A)).

Dikranjan and Tholen in [7] state some prop-
erties of a closure operator in general. Here we
are going to investigate the satisfaction of those
properties for the closure operator CP?.

Definition 2.2 The closure operator CP? is said
to be:
(1) idempotent( if CB(A) = CPH(CPL(A))).

(2) hereditary( if for A;
(A1) = CFl(A1) N 42).

g A2 g B;

(3) weakly hereditary( if for every A C B,
Cls (4 = CE(A).

(4) grounded( if C¥(0) = 0).

(5) additive(if
CHAUCE(C).

criAyo) =
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(6) productive( if for every family of sub
S-posets A; of B;, taking A = [[;A; and
B =11, Bi, C%(A) =[], O (A)).

(1) fully additive( if C¥(Uic; Ai) =
Uier CF'(42).

(8) discrete( if C’%d(A) = A for every S-poset
B and A C B).

(9) trivial( if C%'(A) = B for every B and
AC B).

(10) minimal( if for C C A C B one has
CR(A) = AUCH(0)).

Theorem 2.1 The closure operator CP¢ s
hereditary, weakly hereditary, grounded and pro-
ductive.

Proof. It is easy to check that the closure op-
erator CP? is hereditary, weakly hereditary and
grounded. We just prove productivity. Let b €
CP(A), b = {bi}. For every s € S,bs € A |,
then for each ¢ € I, bjs € A; | and hence
for each i € I,b; € C%‘j(Ai) which implies that
bell C’%Cil(Ai). The converse is obvious.

Theorem 2.2 The closure operator CP? is idem-
potent if and only if S C S? |.

Proof. (=) It is clear that Cg(f(S) = S! and
S C C’gﬁl(SQ). Since CP? is idempotent, S' =
CPI(S) C CPI(CPI(S?)) = CP1(S?) C S*. Thus
1e Cgcll(SQ), which implies S C 52 |.

(<) By definition of the closure operator, for
each A C B we see that ng(A) - C’%d(ng(A)).
Conversely, let b € CH(CEH(A)). So bS C
C%d(A) 1. Thus for each s € S, bs < b/, for some
b, € CPY(A). Since S C S2 |, then s < tt € S2
and hence bs < btt' < bjt', which b} € C’%d(A).
Thus bjt’ < a, for some a € A. Therefore
bs < a and hence bs C A | which implies that
b e CP(A).

Note that the condition S C S? | is equal to
S =52

In the following theorem let us denote,
DSub(B), the set of all down closed sub S-posets
of an S-poset B.
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Theorem 2.3 The closure operator CP% is addi-
tive if and only if for every element b in an S-
poset B, bS is join prime in the lattice DSub(B).

Proof. let C?? be additive. Let x € B and
xS C AJC, where A and C are down closed
sub S-posets of B. Then, by monotonicity and
additivity,

cl(x8) c el Al o) = el o).

Now, since = € C’%d(xS'), T € C'gd(A) or x €
CPHC). Thus, 25 C A = A or S C C |= C,
proving that =S is join prime in Sub(B).
Conversely, suppose that A and D are sub S-
posets of an S-poset B. By definition of the clo-
sure operator, CH/(A)|JCP(C) € CBH(AO).
Consider 2 € CP(A|JC). So 28 C (AJC) |=
(AL U(B |). Since xS is join prime, xS C A |
orzS C C . Thus, = € C]gd(A) UC’%d(C). This
shows that each C’%d, and hence CP?, is additive.

Corollary 2.1 If S is cyclic as an S-poset (in
particular,has a left identity element), then CP?
1s additive.

Proof. Let A and C be down closed sub S-posets
of Band bS C A|JC, for b € B. Then there exist
right ideals I and J of S such that b C A and
bJ C C. Since S is cyclic as an S-poset, one can
easily seen bS C A or bS C C.

Now we show that some properties of the clo-
sure operator CP? are not satisfied in general.

Lemma 2.1 The closure operator CP? is not
necessarily fully additive.

Proof. Let S = (N,min), B=N* and A =N
all endowd with ordinary relation on N as posets.
Consider A, = {m € N |m < n} for each n € N.
It is easy to check that C’I{}i (A,) = A, and hence
UCH(4n) = UAn) = N, but Cie(UAn) =
CP (N) = N,

Lemma 2.2 For every semigroup S, the closure
operator CP? is not discrete nor trivial nor mini-
mal.

Proof. Let 0 € A be a fixed element of a
nonempty S-poset A. Adjoin two elements 6, w to
A by the actions ws = w and s =0 and a < 8 <
w, for each a € A. Consider B = AJ{0,w}. Tt
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is clear that C’%d(A) = AJ{0}. This shows that
CP? is neither discrete nor trivial. Also, it is not
minimal, because of, adjoining two elements 6, w
to a nonempty S-poset C by the actions ws = 6
and orders s = 6, and ¢ < 6 < w, for each
c € C. Taking A = CU{0}, B = CU{0,w},
we get C C A C B, and C’gd(A) = B while
crie) = .

Theorem 2.4 (i) The closure CP? is discrete if
and only if S has a left identity element and every
sub S-poset is down closed.

(ii) The closure CP* is trivial if and only if S
is the emptyset.

Proof. (i) Let CP? be a discrete closure operator
and the nonempty semigroup S do not have a left
identity. Consider tg € S and adjoin an element
x to S defined by zs = tgs for each s € S. It
is clear that C’gﬁ(S) = 5% and by the hypothesis
we have Cgil(S) = S. So S§* = S which is a
contradiction. Now let A be a sub S-poset of
B. 1t is clear that Cfﬁ(A) = A | and since CP?

is discrete, C%(A) = A. So A = A |, which
completes the proof. The converse is obvious.

(ii) Let The closure operator CP? is trivial and
S # (. Consider B = {a, b} is an S-poset, whose
elements are fixed element and a < band A = {a}
is a proper sub S-poset of B. Then C]gd(A) =
A # B which is a contradiction. Thus S is the
emptyset.

Conversly, let S = (). Then it is clear that
P (A) = B.

3 Categorical properties of po-
s-dense monomorphisms

In this section we investigate the categorical and
algebraic properties of the category Pos-S with
respect to the class Mg of po-s-dense monomor-
phisms in the following three subsections.

3.1 Composition Property

In this subsection we investigate some proper-
ties of the class M4 of po-s-dense monomor-
phisms which are mostly related to the composi-
tion of po-s-dense monomorphisms. These prop-
erties and the ones given in the next two subsec-
tions are what normally used to study injectivity
with respect to a class of monomorphisms, see [2].
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The class M, is clearly isomorphism closed; that
is, contains all isomorphisms and is closed under
composition with isomorphisms.

Definition 3.1 An S-poset A is said to be par-
tially ordered-s-dense(or simply po-s-dense) sub
S-poset of B, if for every b € B,bS C A |.
In other word C%d(A) = B. A monomorphism
f: A — B is called po-s-dense if f(A) is a po-s-
dense sub S-poset of B.

The proof of the next proposition is straight-
forward and is omitted.

Proposition 3.1 Let A EN C be

two monomorphisms and gf be a po-s-dense
monomorphism. Then both f and g are po-s-
dense monomorphisms.

The class M,,q is said to be composition closed,
if the composition of two po-s-dense monomor-
phisms is also a po-s-dense monomorphism. The
following lemma shows that the class M, is not
always closed under composition.

Lemma 3.1 The class M,q is closed under com-
position if and only if the closure operator CP? is
idempotent.

Proof. Suppose that the closure operator CP?
is idempotent and f : A - Bandg: B —» C
are two po-s-dense monomorphisms. So we

have C = CEl(9(B)) = C&(g(CE(f(A)) €
CE((CE(9f(A)) = CEl(gf(4) € C. Thus
C’gd(gf(A)) = (C, means that gf is po-s-dense
monomorphism.

For the converse, let the composition of

po-s-dense  monomorphisms be po-s-dense
monomorphism. For every sub s-poset A of B, A
is po-s-dense sub S-poset of C%d(A), in view of
Theorem 2.1. Thus A — ng(A) — C]gd(ng(A))
are po-s-dense monomorphisms. So A is
po-s-dense sub S-poset of C’gd(C'%d(A)) and

d d d
hence Cgpd(cpd( ))(A) = CH(C%(A). Now
by Theorem 2.1, since CP% is hereditary,

Cg]iod(cpd(A))(A) = C%d(A). So CP? is idempo-
tent.

As a clear and important deduction of Theo-
rem 2.2 and Lemma 3.1, we have the following
corollary.

o1

Corollary 3.1 The class M,q is composition
closed if and only if S C S? |.

3.2 Limits of po-s-dense monomor-
phisms

In this subsection we will investigate the be-
haviour of po-s-dense monomorphisms with re-
spect to limits. First recall that, the class Myq
is said to be closed under products(coproduct,
direct sum), if for every family of po-s-dense
monomorphisms {f; : A; — B;}, [[fi : [[4i —
[1Bi(I] fi, ®fi) is po-s-dense monomorphism.

Proposition 3.2 (i) The class My is closed un-
der products.

(ii) Let {fa : A — Byla € I} be a family of
po-s-dense monomorphisms and A be a complete
upward directed S-poset. Then their product ho-
momorphism f : A — [[,c; Ba is also an po-s-
dense monomorphism.

Proof. (i) The proof is straightforward.

(i) Let {b;} € [[;c;Bi and s € S. For each
i € I, there exists a; € A such that b;s < fi(a;).
Since A is a complete upward directed set, there
is an element a € A, such that a; < a. So for
every i € I, bjs < fi(a) and hence {b;}s < f(a).

Proposition 3.3 The class Myq is closed under
direct sums.

Theorem 3.1 Consuder the following pullback
diagram

T

/ey = A
fi Lf
c <4 B

in which C is down closed S-poset, v is inclusion
and C C f(A) }. If C is po-s-dense in B, then f
and T are po-s-dense monomorphisms.

Proof. We have to show that Im(f) is po-s-
densein B. Let b € B and s € S. Since C' is down
closed and po-s-dense in B, there exists ¢ € C
such that bs € C' and hence there exists a’ € A
such that bs < f(a’). Thus f(a') = vf(d’)
f(a’) > bs, which it is deduced that bs € Im(f) .
Now let a € A and s € S. So f(as) = f( )s
C |= C, which implies as € f~1(C) C f~1(C) |.
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Remark 3.1 Pullbacks does not transfer po-s-
dense monomorphisms. Let S be a semigroup and
Sz be the S-poset obtained by adjoining a fized
element x to S, with x < s for each s € S. Con-
sider the coproduct ST[S as an S-poset defined
by (s1,7) < (s2,7) if and only if i = j and s1 < so
in S. The following diagram

Sx{1} <& SIS
\ b f
s 4,

, which v is an inclusion map and f is a homo-
morphism defined by f(s,1) = s and f(s,2) =z,
1s a pullback diagram. It is clear that v s po-s-
dense, but T is not po-s-dense monomorphism.

3.3 Colimits of po-s-dense monomor-
phisms

This subsection is devoted to the study of po-s-
dense monomorphisms with respect to colimits.

Proposition 3.4 M,; is closed under coprod-
ucts.

Proof. Consider the diagram

4 L B
ui | b uj
f
[Hic; A = Il Bi

in which {f; : A; — B; : i € I} is a family of
po-s-dense monomorphisms. We have to show
that f : [[,c; Ai — [lie; Bi is an po-s-dense
monomorphism. Since u; and f;, ¢ € I, are
monomorphisms, f is a monomorphism too.
Let b € [[;c;Bi, s € S. Then there exists
i € I, b; € B; such that b = u/(b;). Since f; is
po-s-dense, there exists a; € A; with b;s < fi(a;).
So bs < ufi(a;) = fui(a;) € Imf. Thus f is a

po-s-dense monomorphism.

A monomorphism f : A — B is said to be
regular monomorphisms (order-embeddings) in
the category Pos-S of S-posets, if it is action-
preserving monotone map.

Theorem 3.2 Pushouts transfers po-s-dense
monomorphisms, that 1is, for the following
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pushout diagram

A 4 B
gl L
c g

in Pos-S, if f is po-s-dense then h is so.

Proof. Recall that @ = (B U C)/6
where 6§ = p(H) and H consists of all
pairs (upf(a),ucg(a)), a € A, where
ugp : B - BUC, ug : C — BUC are
coproduct injections. And h = 7wuc : C —
(BUC)/8, W = mup : B — (BUC)/0, where
m: BUC — (BUC)/0 is the canonical epi-
morphism. By [11], pushout transfer regular
monomorphism.  So h is a monomorphism.
We show that h is po-s-dense monomorphism.
Let [z]p € (BUC(C)/0 and s € S. Then,
x = uc(c) for some ¢ € C, or x = up(b) for
some b € B. In the former case, we have
[z]ps = h(c)s = h(es) € Imh. In the latter
case, using that f is po-s-dense, we get a € A
with bs < f(a) and hence [z]gps = [up(b)lps =
h'(b)s = h'(bs) < W f(a) = hg(a) € Imh. So
[z]ps € (Imh) |.

We say that multiple pushouts transfer po-
s-dense monomorphisms if in multiple pushout
(P, Ay by P) of a family of po-s-dense monomor-
phisms {f, : A = A,|la € T}, every hy, o € 1,
is a po-s-dense monomorphism. In multiple
pushout diagram for every o, 8 € I, hgfg = ha fa
which is called diagonal map.

Theorem 3.3 Multiple pushouts transfer po-s-
dense monomorphisms.

Proof. Let (P, A, by P) be a multiple pushout
of the family {f, : A — Aq|a € I} of po-s-dense
monomorphisms. We know that P = [[ An/p(H)
where H = {(fa(a), f3(a)) | a € A,a,B € I}
(we have taken the image of each element of
A, under coproduct morphisms to be equal
to itself). By using [3, Th, 3.5], for every
a € I, hy is a monomorphism. Now let ¢ € P
and s € S. There exist 3 € I and p € Ag
such that ¢ = hg(p). Since fg is po-s-dense
then ps < fg(a), for some a € A, and hence
4s = hs(ps) < hp(f5(a)) = halfa(a)). Thus h,
is po-s-dense.
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The following corollary immediately obtained
from Corollary 3.1 and Theorem 3.3.

Corollary 3.2 If S C S? |, then in every
multiple pushout diagram of po-s-demse regular
monomorphisms the diagonal map is an po-s-
dense reqular monomorphism.

Theorem 3.4 Let {hy : Ay — Ba| a € I} be
a directed family of po-s-dense monomorphisms.
Then, the directed colimit homomorphism in-
duced by h : li_T>nAa — lim By, is po-s-dense.

Proof. Let (MAa,fa),(MBa,ga) be
directed colimits of the directed systems

((Aa), (Yap))a<per and ((Ba), (Pap))a<per and
suppose {hq : Aq — Ba| a € I} is a directed
family of po-s-dense monomorphisms such that
for every a < B,hgtbag = @apha. Then, for
every a < B, gghgtas = gppapha = gaha,
so h = lzi)@ha exists by the universal property

of colimits.  Consider lzl;LAa = [HaerAa/p

and limBo, = [l,e;Ba/p' as defined in
section 1.  Let hlad], hlagl,.  Then,

[ha(aa)]y = gahalaa) = gghslag) = [hs(ag)ly,
and so there exists v € [ with v > «,f
and @ayha(aa) = ¢@pyhg(ag) which implies
that hytay(aa) = hythgy(ag). Since hy is a
monomorphism, [a.], = [ag],, and so h is a
monomorphism. To see that f is po-s-dense,
let s € S, ¢ € lzl}Ba. So for some a € I,
r = galba).
exists a € A, with bys < ha(a).
8 = go(bas) < gahal(a) = hfa(a).

Theorem 3.5 The category Pos-S has M ,4-
directed colimits.

Since f, is po-s-dense, there
Then,

Proof. Suppose that (lzl}Ba, Jo) is the directed
colimit of the directed system ((Ba), (9ag))a<gers
and {hqa : A — B, | a € I} is a directed
family of po-s-dense monomorphisms such that
9apha = hg, for each a < 3. Let h: A — li_>mBa
be a directed colimit of {hq}aer in Pos-S, with
the colimit maps go : B, — lzl}Ba. Since
h = Mha = gohe for each a € [, similar to
the argument of Theorem 3.4, h is a monomor-
phism because of each h,. Now we show that
h is po-s-dense. Let b € lzl}Ba and s € S.
Since b € MBQ, there exists g3 € Bg such that
b = [xg], and since hg is po-s-dense, there exists
an element a, € A with 2gs < hg(as). Then bs =

[28]ps = gp(xp)s = gs(zps) < gghp(as) = h(as).
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