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Abstract 

Kidney disease is among the leading causes of morbidity all over the world and requires early 

diagnosis to prevent severe complications. Intelligent diagnostic methods, such as machine 

learning, enhance the accuracy and efficiency of detection by analyzing advanced clinical and 

imaging information. This research investigates a novel approach for multi-class classification 

of kidney diseases in CT images. The classification includes four classes: cyst, stone, tumors, 

and Normal. The proposed method first extracts the key features from multiple pretrained 

convolutional neural network models. The selected features are then reduced using principal 

component analysis, and eventually, the extracted features are fed to the Random Forest 

classifier. The designed model achieved a high accuracy of 99.7%. The results indicate that 

the proposed model is more accurate than traditional methods and can assist physicians in 

making faster and more precise diagnoses. This research aids in improving the quality of 

healthcare and the precision of the diagnosis of kidney diseases. 

 

 

Keywords: Convolutional neural network, Kidney disease, Image Processing, Multi-class 

Classification, Machine Learning. 

 

 

 

 

  

 
* Corresponding author: Email: zahra.amiri@mazust.ac.ir 

 

http://sanad.iau.ir/journal/ijim/
mailto:zahra.amiri@mazust.ac.ir


Z. Amiri, et al./ IJIM Vol.17, No.4, (2025), 14-23 

 

15 

 

1. Introduction 

Kidney disease is a global health problem affecting millions of individuals each year  .Chronic 

kidney disease (CKD) is among the contributors to worldwide morbidity and mortality. It is 

more and more on the increase with more related conditions being on the upswing such as 

diabetes and hypertension [1]. CKD needs to be diagnosed early to prevent progression of the 

disease and minimize treatment costs. Early diagnosis, however, is hard as there are no 

symptoms of CKD during the initial phases. 

Traditionally, diagnosis of kidney diseases from CT scans and clinical examinations relied 

greatly on human interpretation by physicians and radiologists. This process was time-

consuming and prone to human error [2]. Therefore, with the enormous increase in medical 

imaging data, medical professionals have been increasingly required to interpret them in a 

correct and timely manner. This reality is towards creating intelligent, computerized systems 

that can diagnose kidney disease in time and accurately. 

Deep learning (DL) and artificial intelligence (AI) have proved to be a highly promising 

technology for enhancing medical diagnosis [3-9]. Convolutional neural networks and deep 

learning algorithms, for example, are very capable of learning to obtain intricate patterns from 

medical images and thereby support better and accurate diagnosis [10]. They can capture the 

subtle details and abnormalities that may escape observation with the human eye and give a 

tremendous leap over traditional diagnostic methods. Despite these improvements, there are 

drawbacks such as computational processes being computationally intensive, time to train, 

and vulnerability to noisy data [11]. 

Traditional machine learning algorithms such as decision trees [12,13], Support Vector 

Machines (SVM) [14,15], K-Nearest Neighbors (KNN) [16,17], and Random Forests (RF) 

[18] were used in earlier studies to classify kidney disease. Although they produced good 

accuracy, they were limited by the quality of handcrafted features and sensitivity to 

imbalanced data. To surpass such limitations, deep CNNs have been used for automatic 

feature extraction and classification tasks, demonstrating better performance and robustness 

in handling complex visual patterns in medical images. By combining these two approaches, 

researchers can benefit from both, achieving optimal diagnostic accuracy and computational 

efficiency [19]. 

Recently, several studies have used deep learning to diagnose kidney diseases. Blau et al. [20] 

employed a fully connected CNN to identify kidney cysts in abdominal CT images, achieving 

a true positive rate of 84.3%. In a different study, Yildirim et al. [21] introduced a deep 

learning approach for identifying kidney stones in kidney CT scans, reaching an accuracy of 

96.82%. Uhm et al. [22] adjusted ResNet-101 by adding 1×1×1 convolutions for classifying 

five types of kidney cancer, achieving an AUC of 0.88 and an accuracy of 72%. Wagih et al. 

[23] applied PCA for feature selection from ultrasound images and trained a neural network, 

reaching 97% classification accuracy in five kidney-related categories. 

Pande and Agarwal [4] proposed a YOLOv8-based deep learning model for classifying kidney 

abnormalities in CT images into four classes: cyst, tumor, stone, and normal. Their approach 

focused on real-time detection using object localization and single-pass classification. This 

method is compared with our proposed model in the results section, where our approach 

demonstrates improved performance. 
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In this paper, a hybrid approach is proposed for computer-aided detection of kidney disease 

from CT scans. Our approach uses three strong pre-trained CNN models—ResNet50, 

InceptionV3, and DenseNet121—to exhaustive feature extraction. To avoid the risk of 

overfitting and feature dimensionality, we apply Principal Component Analysis (PCA), 

followed by random forest classification. The hybrid approach blends the strong feature 

extraction power of deep learning with the strength and power of conventional classifiers to 

produce an overwhelmingly well-balanced and effective solution. 

The greatest contribution of this research is to integrate deep learning and conventional 

machine learning algorithms in an overall fusion in to outsmart the inherent challenges posed 

in the diagnosis of kidney disease. The integration not only improves diagnostic precision and 

reduces computational load but also resolves class imbalances in the database very efficiently. 

The proposed system will have an ideal and realistic solution to be implemented in clinical 

settings in real life to facilitate early diagnosis and improved decision-making in the clinical 

setting.  

 

2. Proposed method 

This section provides the overall methodology used to design an effective automated kidney 

disease classifier system from CT scan images. The proposed framework integrates feature 

extraction using different pre-trained CNNs, dimensionality reduction using PCA, elimination 

of class imbalance using dynamic weighting, and ultimate classification using a RF algorithm. 

Process flow is presented in Fig. 1 and discussed in the following subsections. 

 

Figure 1: The flowchart of the proposed method. 

 

2.1. Feature Extraction 

In this step of the proposed method, features are extracted from three well-established CNN 
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DenseNet121. Each network is truncated at the global average pooling layer to obtain high-

level features without performing full network retraining. Specifically, ResNet50 and 

InceptionV3 produce 2048-dimensional feature vectors from their avg_pool and 

global_average_pooling2d layers, respectively, whereas DenseNet121 produces a 1024-

dimensional feature vector from its global_average_pooling2d layer. The concatenated 

feature vectors form a single 5120-dimensional representation for each image. The 

aforementioned feature fusion process takes advantage of the complementary nature of the 

selected CNN models and, in doing so, enhances the features and class discriminability. 

 

2.2. Dimensionality Reduction by PCA 

To fight the curse of dimensionality and reduce computational expense, Principal Component 

Analysis was applied to the 5,120-dimensional feature vectors. PCA finds orthogonal 

directions that capture the most variance of the data and projects the features onto a lower-

dimensional space. In this case, the number of principal components was selected such that it 

captures 99.5% of the cumulative variance, which resulted in a final vector size of 334 

dimensions. This step has the effect of eliminating redundancy while preserving the most 

discriminative information. 

 

2.3. Class Imbalance Handling 

In most existing datasets for medical images, and especially for kidney diseases, the data is 

imbalanced across classes, and the tumor and stone classes have significantly fewer samples. 

To counteract model bias towards dominant classes, class weighting is employed during 

training. The class weight 𝑤𝑖 for class i is computed as: 

( )1i

i

N
W

n k
=

+
 

where N is the total number of training instances, 𝑛𝑖 is the number of samples in the ith class 

and k is the number of classes. The weighting causes minority classes to contribute to the 

model's learning objective proportionally  and increases the model’s efficiency in recognizing 

data across all classes. 

 

2.4. Classification using Random Forest 

After dimensionality reduction and reweighting, the 334-dimensional feature vectors are 

classified using an RF classifier. RF is an ensemble learning technique that averages the output 

of many decision trees trained on random data and feature subsets. The hyperparameters used 

in the RF classifier are reported in Table 1. RF is chosen because of its high interpretability, 

resistance to overfitting, and good performance on multi-class and imbalanced data. 

Table 1-The parameters used in the RF classifier 

Hyperparameter Value 

Number of trees 100 

Splitting criterion Gini impurity 

Maximum depth Unlimited 
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Minimum samples to split an internal node 2 

Minimum samples per leaf node 1 

Random seed (for reproducibility) 42 

 

3. Experiments and Results 

In this section, a comprehensive analysis of the proposed kidney disease classification system 

with CT scan images is presented. Details regarding the dataset, normalization process, 

evaluation metrics, experimental setup, and result analysis are presented in the following 

sections . 

 

3.1. Dataset Description  

We used the publicly available CT Kidney Dataset: Normal-Cyst-Tumor and Stone, 

consisting of 12,446 annotated abdominal CT scans in four clinical classes. The detail of the 

dataset is given in below table. As can be seen, the classes are imbalanced, with some classes, 

such as Stone, having a small number of samples. Therefore, the proposed model must be 

robust in handling these imbalances. 

Table 2- The detail of the CT Kidney dataset. 

Class Number of Images Percentage 

Normal 5,077 40.8% 

Cyst 3,709 29.8% 

Tumor 2,283 18.3% 

Stone 1,377 11.1% 

 

3.2. Evaluation Metric 

In this subsection, the performance metrics for evaluating the performance of the model to 

classify kidney images of CT-Scan into four classes (stone, cyst, tumor, and normal) are 

created. Precision, Recall (Sensitivity), F1-Measure, and Accuracy are the metrics that are 

used here, providing a better understanding of the strengths and weaknesses of the model. 

Precision shows the ratio of correctly predicted positive samples (TP) to the total predicted 

positives (i.e., TP + FP). For a specific class 𝑖: 

( )Pr 2i
i

i i

TP
ecision

TP FP
=

+
 

Recall (or sensitivity) measures the ratio of correctly predicted positive samples (TP) to the 

actual positive samples (i.e., TP + FN, where FN are False Negatives). For a specific class 𝑖: 

( )Re 3i
i

i i

TP
call

TP FN
=

+
 

The F1-Measure combines precision and recall into a single metric using their harmonic mean. 

It is particularly useful in cases where the class distribution is imbalanced. For a specific class 

𝒊: 
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A higher F1-Score represents a good balance between sensitivity and precision, which is 

particularly important when the dataset is imbalanced across the four classes. In multi-class 

classification, macro-averaged value (unweighted mean across all classes) or weighted value 

(weighted mean based on the number of samples in each class) can be used.  

Accuracy is the simplest metric and is defined as the ratio of correctly predicted samples (both 

positive and negative) to the total number of samples.  

( )5i i
i

TP TN
Accuracy

Total Samples

+
=  

where 𝑘 is the number of classes. The value of the above metrics is in range 0 to 1. In all of 

above metrics, higher values are better, as they indicate better model performance.  

3.3. Results and Discussion 

This section evaluates the suggested approach by utilizing the introduced evaluation metrics. 

In every experiment, the dataset is split into training and testing data. Eighty percent of the 

data is allocated for training, while the other twenty percent is designated for testing. Table 3 

displays the confusion matrix obtained by applying the suggested method to the test dataset. 

The approach is also assessed using the evaluation metric, and the findings are presented in  

Table 4. 

Table 3- Confusion Matrix 

T
ru

e 

Normal 741 1 0 0 

Cyst 1 1014 0 1 

Stone 4 4 267 0 

Tumor 2 1 0 454 

 Normal Cyst Stone Tumor 

 Predicted 

 
Table 4- Results of model evaluation on the test dataset 

Class /  Metric Accuracy Precision Recall F1-score 

Cyst 0.997 0.994 0.998 0.996 

Normal 0.997 0.991 0.999 0.995 

Stone 0.997 1.000 0.971 0.985 

Tumor 0.998 0.998 0.993 0.996 

Weighted Average 0.997 0.994 0.994 0.994 

As can be seen from the above results, the system also attains superb classification 

performance with a weighted average accuracy of 99.7% in all metrics. Quite notably, even 

for minority classes such as "Stone" and "Tumor," the model achieves high accuracy, unlike 

classical classifiers that underperform due to class imbalance. This stable and quality 
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performance indicates the strength and capability of generalization of the designed system and 

provides it with usability in real clinical applications despite inherent data imbalance.   

In the next experiment the impact of dimensionality reduction is evaluated. To this aim the 

PCA step was removed from introduced method. Table 5 indicates the classification 

performance of the suggested approach without and with PCA usage. As shown, both 

configurations achieved identical results for all main evaluation metrics, including Accuracy 

(0.997), Precision (0.994), Recall (0.994), and F1-Score (0.994). The results confirm that PCA 

usage retained the full discriminative power of the features but potentially reduced the 

computational complexity and size. The fact that dimensionality reduction could do so without 

sacrificing performance demonstrates that redundant or noisy features were effectively 

removed, resulting in a compact but equally informative feature space. Therefore, PCA-

augmented pipeline is considered more efficient and scalable, particularly in the case of high-

dimensional medical imaging data. 

Table 5- Evaluating the impact of the feature reduction step on the model 

Method Accuracy Precision Recall F1-Score 

Proposed Method without PCA 0.997 0.994 0.994 0.994 

Proposed Method with PCA 0.997 0.994 0.994 0.994 

To further validate the efficiency of our system, A comparative analysis was performed with 

the approach presented by Pande et al. [4]. As shown in Table IV, the proposed method 

outperforms the baseline model in all categories, including accuracy, precision, recall, and 

F1-score. 

Table 6- Comparison of the proposed method with existing methods 

Class Metric Year Accuracy Precision Recall F1-Score 

Cyst 

Proposed Method  0.997 0.994 0.998 0.996 

Pande et al.[4] 2024 0.972 0.984 0.922 0.960 

Sowjanya et al.[24] 2023 0.980 - - - 

Sharon and Anbarasi[3] 2025 - 0.98 0.98 0.98 

Normal 

Proposed Method  0.997 0.991 0.999 0.995 

Pande et al., 2024[4] 2024 0.863 0.749 1.000 0.857 

Sowjanya et al.[24] 2023 0.996 - - - 

Sharon and Anbarasi[3] 2025 - 0.96 0.97 0.96 

Stone 

Proposed Method  0.997 1.000 0.971 0.985 

Pande et al., 2024[4] 2024 0.945 0.732 0.786 0.756 

Sowjanya et al.[24] 2023 0.984 - - - 

Sharon and Anbarasi[3] 2025 - 0.98 0.94 0.96 

Tumor 

Proposed Method  0.998 0.998 0.993 0.996 

Pande et al., 2024[4] 2024 0.870 0.965 0.304 0.463 

Sowjanya et al.[24] 2023 0.993 - - - 

Sharon and Anbarasi[3] 2025 - 0.97 0.98 0.97 

Weighted 

Average 

Proposed Method  0.997 0.994 0.994 0.994 

Pande et al., 2024[4] 2024 0.825 0.858 0.753 0.757 

Sowjanya et al.[24] 2023 0.989 - 0.980 0.980 

Sharon and Anbarasi[3] 2025 0.989 - - - 
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The improved performance of our proposed method over other methods can be attributed to 

three main design choices. First, instead of relying on a single deep model, we extracted 

features from three complementary CNN architectures (ResNet50, InceptionV3, 

DenseNet121). This fusion increased the discriminative power of the representation, 

particularly for visually similar classes such as cysts and tumors. Second, by reducing the 

fused 5,120-dimensional feature space to 334 dimensions while preserving 99.5% of the 

variance, PCA effectively removed redundancy and noise. This not only reduced 

computational cost but also stabilized classification results, as shown in Table 5 where 

performance was maintained even after dimensionality reduction. Third, the dataset was 

highly imbalanced (e.g., stone class only 11%). Our class-weighting approach ensured that 

minority classes contributed proportionally during training, leading to consistently high 

precision and recall across all four categories, unlike previous works where minority classes 

were underrepresented. 

Together, these strategies produced a more robust and balanced model, as evidenced by the 

high accuracy (99.7%) and stable performance across all classes (Error! Reference source 

not found.). While a full ablation study is beyond the current scope of this manuscript, the 

provided analyses and comparisons qualitatively support the contribution of each component 

to the overall performance gains. 

 

4. Conclusion 

In this paper, a hybrid method for multi-class classification of kidney disease in CT images 

based on deep CNN-based feature extraction, PCA-based dimensionality reduction, and 

Random Forest classification was presented. The designed model achieved a high accuracy 

of 99.7% and outperformed existing methods even when the data were class-imbalanced. PCA 

effectively reduced computational complexity without compromising classification 

performance. The results demonstrate the efficacy of the integration of deep learning and 

traditional machine learning methods in developing a balanced and efficient diagnostic tool. 

With its potency and high precision in all types of kidney diseases, the proposed framework 

is extremely promising to be applied in real clinical environments to assist radiologists in early 

and reliable diagnosis. 

Despite the promising results and superior performance compared to existing methods, some 

limitations must be considered. First, the evaluation was carried out on a single publicly 

available dataset due to the limited availability of other large-scale annotated kidney CT 

databases. As a result, further testing on independent datasets would be necessary to confirm 

generalizability across different imaging conditions and populations. 
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