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Abstract

Kidney disease is among the leading causes of morbidity all over the world and requires early
diagnosis to prevent severe complications. Intelligent diagnostic methods, such as machine
learning, enhance the accuracy and efficiency of detection by analyzing advanced clinical and
imaging information. This research investigates a novel approach for multi-class classification
of kidney diseases in CT images. The classification includes four classes: cyst, stone, tumors,
and Normal. The proposed method first extracts the key features from multiple pretrained
convolutional neural network models. The selected features are then reduced using principal
component analysis, and eventually, the extracted features are fed to the Random Forest
classifier. The designed model achieved a high accuracy of 99.7%. The results indicate that
the proposed model is more accurate than traditional methods and can assist physicians in
making faster and more precise diagnoses. This research aids in improving the quality of
healthcare and the precision of the diagnosis of kidney diseases.
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1. Introduction

Kidney disease is a global health problem affecting millions of individuals each year .Chronic
kidney disease (CKD) is among the contributors to worldwide morbidity and mortality. It is
more and more on the increase with more related conditions being on the upswing such as
diabetes and hypertension [1]. CKD needs to be diagnosed early to prevent progression of the
disease and minimize treatment costs. Early diagnosis, however, is hard as there are no
symptoms of CKD during the initial phases.

Traditionally, diagnosis of kidney diseases from CT scans and clinical examinations relied
greatly on human interpretation by physicians and radiologists. This process was time-
consuming and prone to human error [2]. Therefore, with the enormous increase in medical
imaging data, medical professionals have been increasingly required to interpret them in a
correct and timely manner. This reality is towards creating intelligent, computerized systems
that can diagnose kidney disease in time and accurately.

Deep learning (DL) and artificial intelligence (Al) have proved to be a highly promising
technology for enhancing medical diagnosis [3-9]. Convolutional neural networks and deep
learning algorithms, for example, are very capable of learning to obtain intricate patterns from
medical images and thereby support better and accurate diagnosis [10]. They can capture the
subtle details and abnormalities that may escape observation with the human eye and give a
tremendous leap over traditional diagnostic methods. Despite these improvements, there are
drawbacks such as computational processes being computationally intensive, time to train,
and vulnerability to noisy data [11].

Traditional machine learning algorithms such as decision trees [12,13], Support Vector
Machines (SVM) [14,15], K-Nearest Neighbors (KNN) [16,17], and Random Forests (RF)
[18] were used in earlier studies to classify kidney disease. Although they produced good
accuracy, they were limited by the quality of handcrafted features and sensitivity to
imbalanced data. To surpass such limitations, deep CNNs have been used for automatic
feature extraction and classification tasks, demonstrating better performance and robustness
in handling complex visual patterns in medical images. By combining these two approaches,
researchers can benefit from both, achieving optimal diagnostic accuracy and computational
efficiency [19].

Recently, several studies have used deep learning to diagnose kidney diseases. Blau et al. [20]
employed a fully connected CNN to identify kidney cysts in abdominal CT images, achieving
a true positive rate of 84.3%. In a different study, Yildirim et al. [21] introduced a deep
learning approach for identifying kidney stones in kidney CT scans, reaching an accuracy of
96.82%. Uhm et al. [22] adjusted ResNet-101 by adding 1x1x1 convolutions for classifying
five types of kidney cancer, achieving an AUC of 0.88 and an accuracy of 72%. Wagih et al.
[23] applied PCA for feature selection from ultrasound images and trained a neural network,
reaching 97% classification accuracy in five kidney-related categories.

Pande and Agarwal [4] proposed a YOLOv8-based deep learning model for classifying kidney
abnormalities in CT images into four classes: cyst, tumor, stone, and normal. Their approach
focused on real-time detection using object localization and single-pass classification. This
method is compared with our proposed model in the results section, where our approach
demonstrates improved performance.
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In this paper, a hybrid approach is proposed for computer-aided detection of kidney disease
from CT scans. Our approach uses three strong pre-trained CNN models—ResNet50,
InceptionV3, and DenseNetl21—to exhaustive feature extraction. To avoid the risk of
overfitting and feature dimensionality, we apply Principal Component Analysis (PCA),
followed by random forest classification. The hybrid approach blends the strong feature
extraction power of deep learning with the strength and power of conventional classifiers to
produce an overwhelmingly well-balanced and effective solution.

The greatest contribution of this research is to integrate deep learning and conventional
machine learning algorithms in an overall fusion in to outsmart the inherent challenges posed
in the diagnosis of kidney disease. The integration not only improves diagnostic precision and
reduces computational load but also resolves class imbalances in the database very efficiently.
The proposed system will have an ideal and realistic solution to be implemented in clinical
settings in real life to facilitate early diagnosis and improved decision-making in the clinical
setting.

2. Proposed method

This section provides the overall methodology used to design an effective automated kidney
disease classifier system from CT scan images. The proposed framework integrates feature
extraction using different pre-trained CNNs, dimensionality reduction using PCA, elimination
of class imbalance using dynamic weighting, and ultimate classification using a RF algorithm.
Process flow is presented in Fig. 1 and discussed in the following subsections.

Deep Feature Feature Space
Extraction Dimensionally
using CNN Reduction

Kidney CT
Images
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Figure 1: The flowchart of the proposed method.

2.1. Feature Extraction

In this step of the proposed method, features are extracted from three well-established CNN
architectures pre-trained on the ImageNet dataset, containing ResNet50, InceptionV3 and
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DenseNet121. Each network is truncated at the global average pooling layer to obtain high-
level features without performing full network retraining. Specifically, ResNet50 and
InceptionV3 produce 2048-dimensional feature vectors from their avg pool and
global_average pooling2d layers, respectively, whereas DenseNet121 produces a 1024-
dimensional feature vector from its global_average pooling2d layer. The concatenated
feature vectors form a single 5120-dimensional representation for each image. The
aforementioned feature fusion process takes advantage of the complementary nature of the
selected CNN models and, in doing so, enhances the features and class discriminability.

2.2. Dimensionality Reduction by PCA

To fight the curse of dimensionality and reduce computational expense, Principal Component
Analysis was applied to the 5,120-dimensional feature vectors. PCA finds orthogonal
directions that capture the most variance of the data and projects the features onto a lower-
dimensional space. In this case, the number of principal components was selected such that it
captures 99.5% of the cumulative variance, which resulted in a final vector size of 334
dimensions. This step has the effect of eliminating redundancy while preserving the most
discriminative information.

2.3. Class Imbalance Handling

In most existing datasets for medical images, and especially for kidney diseases, the data is
imbalanced across classes, and the tumor and stone classes have significantly fewer samples.
To counteract model bias towards dominant classes, class weighting is employed during
training. The class weight w; for class i is computed as:

N

Wi = (1)

“n+k

where N is the total number of training instances, n; is the number of samples in the ith class
and k is the number of classes. The weighting causes minority classes to contribute to the
model's learning objective proportionally and increases the model’s efficiency in recognizing
data across all classes.

2.4. Classification using Random Forest

After dimensionality reduction and reweighting, the 334-dimensional feature vectors are
classified using an RF classifier. RF is an ensemble learning technique that averages the output
of many decision trees trained on random data and feature subsets. The hyperparameters used
in the RF classifier are reported in Table 1. RF is chosen because of its high interpretability,
resistance to overfitting, and good performance on multi-class and imbalanced data.

Table 1-The parameters used in the RF classifier

Hyperparameter Value
Number of trees 100
Splitting criterion Gini impurity
Maximum depth Unlimited
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Minimum samples to split an internal node 2
Minimum samples per leaf node 1
Random seed (for reproducibility) 42

3. Experiments and Results

In this section, a comprehensive analysis of the proposed kidney disease classification system
with CT scan images is presented. Details regarding the dataset, normalization process,
evaluation metrics, experimental setup, and result analysis are presented in the following
sections.

3.1. Dataset Description

We used the publicly available CT Kidney Dataset: Normal-Cyst-Tumor and Stone,
consisting of 12,446 annotated abdominal CT scans in four clinical classes. The detail of the
dataset is given in below table. As can be seen, the classes are imbalanced, with some classes,
such as Stone, having a small number of samples. Therefore, the proposed model must be
robust in handling these imbalances.

Table 2- The detail of the CT Kidney dataset.

Class Number of Images | Percentage
Normal 5,077 40.8%

Cyst 3,709 29.8%
Tumor 2,283 18.3%

Stone 1,377 11.1%

3.2. Evaluation Metric

In this subsection, the performance metrics for evaluating the performance of the model to
classify kidney images of CT-Scan into four classes (stone, cyst, tumor, and normal) are
created. Precision, Recall (Sensitivity), F1-Measure, and Accuracy are the metrics that are
used here, providing a better understanding of the strengths and weaknesses of the model.
Precision shows the ratio of correctly predicted positive samples (TP) to the total predicted
positives (i.e., TP + FP). For a specific class i:

Precision, = _R (2)
TP +FP

Recall (or sensitivity) measures the ratio of correctly predicted positive samples (TP) to the
actual positive samples (i.e., TP 4+ FN, where FN are False Negatives). For a specific class i:

Recall. __ R (3)

The F1-Measure combines precision and recall into a single metric using their harmonic mean.
It is particularly useful in cases where the class distribution is imbalanced. For a specific class
i
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Precision, -Recall,

F1—-Measure, =2- —
Precision, + Recall.

(4)

A higher F1-Score represents a good balance between sensitivity and precision, which is
particularly important when the dataset is imbalanced across the four classes. In multi-class
classification, macro-averaged value (unweighted mean across all classes) or weighted value
(weighted mean based on the number of samples in each class) can be used.

Accuracy is the simplest metric and is defined as the ratio of correctly predicted samples (both
positive and negative) to the total number of samples.

TP +TN,

Accuracy, = ———'—
% Total Samples

(5)

where k is the number of classes. The value of the above metrics is in range 0 to 1. In all of
above metrics, higher values are better, as they indicate better model performance.

3.3. Results and Discussion

This section evaluates the suggested approach by utilizing the introduced evaluation metrics.
In every experiment, the dataset is split into training and testing data. Eighty percent of the
data is allocated for training, while the other twenty percent is designated for testing. Table 3
displays the confusion matrix obtained by applying the suggested method to the test dataset.
The approach is also assessed using the evaluation metric, and the findings are presented in

Table 4.

Table 3- Confusion Matrix

Normal 741 1 0 0
o Cyst 1 1014 0 1
2 Stone 4 4 267 0
E Tumor | 2 1 0 454

Normal Cyst Stone Tumor
Predicted

Table 4- Results of model evaluation on the test dataset

Class /Metric Accuracy | Precision | Recall | F1-score
Cyst 0.997 0.994 0.998 0.996
Normal 0.997 0.991 0.999 0.995
Stone 0.997 1.000 0.971 0.985
Tumor 0.998 0.998 0.993 0.996
Weighted Average 0.997 0.994 0.994 0.994

As can be seen from the above results, the system also attains superb classification
performance with a weighted average accuracy of 99.7% in all metrics. Quite notably, even
for minority classes such as "Stone™ and "Tumor," the model achieves high accuracy, unlike
classical classifiers that underperform due to class imbalance. This stable and quality
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performance indicates the strength and capability of generalization of the designed system and
provides it with usability in real clinical applications despite inherent data imbalance.

In the next experiment the impact of dimensionality reduction is evaluated. To this aim the
PCA step was removed from introduced method. Table 5 indicates the classification
performance of the suggested approach without and with PCA usage. As shown, both
configurations achieved identical results for all main evaluation metrics, including Accuracy
(0.997), Precision (0.994), Recall (0.994), and F1-Score (0.994). The results confirm that PCA
usage retained the full discriminative power of the features but potentially reduced the
computational complexity and size. The fact that dimensionality reduction could do so without
sacrificing performance demonstrates that redundant or noisy features were effectively
removed, resulting in a compact but equally informative feature space. Therefore, PCA-
augmented pipeline is considered more efficient and scalable, particularly in the case of high-
dimensional medical imaging data.

Table 5- Evaluating the impact of the feature reduction step on the model

Method Accuracy | Precision | Recall | F1-Score
Proposed Method without PCA 0.997 0.994 0.994 0.994
Proposed Method with PCA 0.997 0.994 0.994 0.994

To further validate the efficiency of our system, A comparative analysis was performed with
the approach presented by Pande et al. [4]. As shown in Table IV, the proposed method
outperforms the baseline model in all categories, including accuracy, precision, recall, and
F1-score.

Table 6- Comparison of the proposed method with existing methods

Class Metric Year | Accuracy | Precision | Recall | F1-Score

Proposed Method 0.997 0.994 0.998 0.996

Cyst Pande et al.[4] 2024 0.972 0.984 0.922 0.960
Sowjanya et al.[24] 2023 0.980 - - -

Sharon and Anbarasi[3] 2025 - 0.98 0.98 0.98

Proposed Method 0.997 0.991 0.999 0.995

Normal | Pande etal., 2024[4] 2024 0.863 0.749 1.000 0.857
Sowjanya et al.[24] 2023 0.996 - - -

Sharon and Anbarasi[3] 2025 - 0.96 0.97 0.96

Proposed Method 0.997 1.000 0.971 0.985

Stone Pande et al., 2024[4] 2024 0.945 0.732 0.786 0.756
Sowjanya et al.[24] 2023 0.984 - - -

Sharon and Anbarasi[3] 2025 - 0.98 0.94 0.96

Proposed Method 0.998 0.998 0.993 0.996

Tumor Pande et al., 2024[4] 2024 0.870 0.965 0.304 0.463
Sowjanya et al.[24] 2023 0.993 - - -

Sharon and Anbarasi[3] 2025 - 0.97 0.98 0.97

Proposed Method 0.997 0.994 0.994 0.994

Weighted | pande et al., 2024[4] 2024 | 0.825 0858 | 0.753 | 0.757

Average | Sowjanya et al.[24] 2023 0.989 - 0.980 0.980
Sharon and Anbarasi[3] 2025 0.989 - - -
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The improved performance of our proposed method over other methods can be attributed to
three main design choices. First, instead of relying on a single deep model, we extracted
features from three complementary CNN architectures (ResNet50, InceptionV3,
DenseNet121). This fusion increased the discriminative power of the representation,
particularly for visually similar classes such as cysts and tumors. Second, by reducing the
fused 5,120-dimensional feature space to 334 dimensions while preserving 99.5% of the
variance, PCA effectively removed redundancy and noise. This not only reduced
computational cost but also stabilized classification results, as shown in Table 5 where
performance was maintained even after dimensionality reduction. Third, the dataset was
highly imbalanced (e.g., stone class only 11%). Our class-weighting approach ensured that
minority classes contributed proportionally during training, leading to consistently high
precision and recall across all four categories, unlike previous works where minority classes
were underrepresented.

Together, these strategies produced a more robust and balanced model, as evidenced by the
high accuracy (99.7%) and stable performance across all classes (Error! Reference source
not found.). While a full ablation study is beyond the current scope of this manuscript, the
provided analyses and comparisons qualitatively support the contribution of each component
to the overall performance gains.

4. Conclusion

In this paper, a hybrid method for multi-class classification of kidney disease in CT images
based on deep CNN-based feature extraction, PCA-based dimensionality reduction, and
Random Forest classification was presented. The designed model achieved a high accuracy
of 99.7% and outperformed existing methods even when the data were class-imbalanced. PCA
effectively reduced computational complexity without compromising classification
performance. The results demonstrate the efficacy of the integration of deep learning and
traditional machine learning methods in developing a balanced and efficient diagnostic tool.
With its potency and high precision in all types of kidney diseases, the proposed framework
is extremely promising to be applied in real clinical environments to assist radiologists in early
and reliable diagnosis.

Despite the promising results and superior performance compared to existing methods, some
limitations must be considered. First, the evaluation was carried out on a single publicly
available dataset due to the limited availability of other large-scale annotated kidney CT
databases. As a result, further testing on independent datasets would be necessary to confirm
generalizability across different imaging conditions and populations.
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