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Abstract

This paper introduces a novel framework for evaluating the performance of sustainable green
supply chains using the Modified Additive Ratio Assessment (ARAS-M) method, an
enhanced version of the traditional ARAS approach. The ARAS-M method addresses a
critical gap in existing decision-making models by incorporating a linear programming
technique to optimize the weighting process, which improves the robustness and flexibility of
traditional models that often lack adaptability and precision. A comprehensive literature
review identified key factors influencing green supply chain sustainability, such as
environmental impact, energy efficiency, waste management, and resource optimization.
These factors were integrated into the ARAS-M method, enabling a more accurate and
dynamic evaluation of supply chain performance. The method was applied to assess six food
industry companies’ supply chains, with expert input to rank them based on sustainability
attributes. Validation of the results was performed by comparing the rankings with real-world
performance metrics, including environmental certifications and resource consumption
reports. The findings revealed that companies excelling in environmental policies, energy
efficiency, and waste reduction ranked highest, demonstrating the effectiveness and practical
applicability of the ARAS-M method in evaluating green supply chain performance. This
study highlights the critical role of sustainability practices in enhancing supply chain
resilience and competitiveness.
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1. Introduction

Multi-Criteria Decision Making (MCDM) is a pivotal area within Operations Research that
assists decision-makers in evaluating and prioritizing alternatives based on multiple, often
conflicting criteria. The inherent complexity of real-world challenges, particularly in
organizational contexts, necessitates the application of MCDM methodologies to effectively
integrate various attributes and objectives into the decision-making process. These approaches
play a crucial role across diverse industries, enhancing decision quality by enabling
stakeholders to consider a broad spectrum of perspectives. MCDM can be categorized into
two primary frameworks: Multiple Attribute Decision Making (MADM), which emphasizes
the selection of the most suitable alternative from a set of options based on specific attributes,
and Multiple Objective Decision Making (MODM), which focuses on optimizing multiple
goals simultaneously. This classification lays the groundwork for understanding the distinct
approaches within MCDM and sets the stage for exploring innovative techniques aimed at
improving decision-making efficiency in complex scenarios.

MODM is a systematic decision-making process that empowers decision-makers to define
their unique value systems, frame the context of their choices, and evaluate decisions
methodically. By delineating decision options and relevant criteria, analysts can decompose
complex decisions into manageable components. The primary goal of MODM s to solve
optimization problems under specified constraints, addressing multiple, often conflicting
objectives simultaneously. For instance, while one objective may aim to maximize profit,
another might focus on minimizing labor costs, illustrating that the scale of measurement for
each objective can differ without inherent conflict. This approach is particularly advantageous
for design or planning scenarios, as it optimizes the allocation of limited resources amidst
competing and sometimes contradictory constraints. In real-world environments characterized
by multifaceted challenges, decision-makers often rely on MODM techniques to achieve
several objectives concurrently. Various methods are employed in MODM, including Goal
Programming and the Lexicographic method. Goal Programming facilitates the balance
among conflicting objectives by prioritizing them based on importance, while the
Lexicographic method simplifies the decision-making process by focusing on the most critical
criteria first. These methodologies have been successfully applied in diverse contexts; for
instance, Mousavi Janbehsarayi et al. [1] developed a framework that evaluates Low-Impact
Development practices for urban stormwater management through cooperative game theory,
aiming for effective resource allocation among stakeholders with conflicting interests.
Similarly, Hwang et al. [2] proposed the TOPSIS method for MODM, allowing decision-
makers to address multiple conflicting objectives by considering both positive and negative
ideal solutions. By leveraging these advanced methodologies, MODM enhances decision-
making efficiency in complex scenarios, ultimately leading to more informed and equitable
outcomes. In recent studies, the breadth of MODM applications has been illustrated across
various domains. For example, Soltanifar [3] emphasizes that many decisions in daily life
involve multiple goals and factors, and advocates for enhanced interaction between decision-
makers (DMs) and multi-objective methods through weight restrictions and discrimination
intensity functions. Such improvements can lead to more effective decision support. Moallemi
et al. [4] focus on acquisition planning for high-value assets, introducing a robust optimization
approach to navigate uncertainties and develop effective strategies that align with multiple
performance objectives throughout the asset life cycle. In construction, Groenia et al. [5]
highlight the need to balance sustainability with conflicting objectives like structural safety
and costs. Their interactive method for implementing multi-objective optimization models
addresses diverse stakeholder needs, thereby supporting collaborative decision-making and
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fostering sustainable design solutions. Yalili et al. [6] present a MODM model aimed at
optimizing hybrid electricity generation systems in Turkiye, focusing on resource utilization
and carbon emissions. Their work illustrates the substantial impact MODM technigues can
have on energy system planning. Further, Zhou et al. [7] propose a framework that integrates
multi-objective optimization with fuzzy multi-criteria decision-making for planning
integrated energy systems (IES). Their approach effectively minimizes energy consumption,
carbon emissions, and economic costs, showcasing the relevance of MODM in promoting
sustainable energy solutions. Despite its benefits, MODM faces significant challenges. First,
there is the issue of balancing conflicting objectives. Achieving a higher level of satisfaction
for one objective often leads to decreased satisfaction for others, necessitating the
identification of a balance among competing goals. This can involve weighting multiple
objectives to simplify the primary problem into a single weighted goal. Second, temporal
issues arise as the number of dimensions or criteria increases, leading to substantial
computational costs. This challenge can hinder the efficiency of the decision-making process
and limit the applicability of MODM in more complex scenarios.

MADM is a strategic approach for evaluating and selecting the best option among available
alternatives based on diverse, conflicting attributes. In many decision-making scenarios, a
choice must be made from multiple options, each influenced by various indicators, which
complicates the decision-making process. MADM, a branch of MCDM, falls within the realm
of operations research and encompasses methodologies specifically designed to address these
complexities. MADM methods can be categorized into compensatory and non-compensatory
approaches, allowing decision-makers to effectively navigate situations where different
criteria exhibit varying characteristics and measurement units, often leading to conflict and
trade-offs. These models are particularly valuable in real-world applications where the
presence of competing criteria necessitates a structured decision-making framework. Recent
studies illustrate advancements in MADM. Soltanifar [8] presents the Linear Assignment
Voting (VLAM) method, enhancing traditional models by using Data Envelopment Analysis
(DEA) to provide final weights for alternatives. This method was effectively applied in a case
study on excavator procurement, improving decision-making capabilities. Tavana et al. [9]
discuss the Analytical Hierarchy Process (AHP), emphasizing its robustness but also its
challenges, such as extensive pairwise comparisons. They propose hybrid methods that
integrate AHP with other weighting techniques, demonstrating greater efficiency and expert
engagement while maintaining ranking accuracy. Further applications of MADM are evident
in recent research. Soltanifar and Tavana [10] introduce a method that categorizes attributes
to facilitate systematic expert comparisons without added computations, improving flexibility
and precision while reducing complexity. Soltanifar [11] develops a hybrid method combining
the COPRAS and MOORA techniques to determine attribute weights dynamically, ranking
alternatives based on detailed interactions with decision-makers. In another study, Soltanifar
et al. [12] propose an integrated MADM and DEA framework for heterogeneous attributes,
effectively aggregating weights and scores for alternatives while simplifying decision-making
processes, as applied to European countries' compliance with the Sustainable Development
Goals. Additionally, they highlight that their model's independence from predetermined
weights is a significant advantage. Moreover, Soltanifar et al. [13] enhance the WASPAS
method by incorporating interaction with decision-makers to rank organizational leadership
styles during the COVID-19 pandemic, demonstrating the method's applicability in crisis
management. Soltanifar and Zargar [14] focus on cloud computing security risks, using
pairwise comparisons to rank these risks based on expert opinions, with data privacy emerging
as the top concern. El-Araby [15] addresses the Rank Reversal Phenomenon (RRP) in MCDM
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methods by proposing the MARCOS approach, which is tested against various engineering
problems, showcasing its robustness and applicability. Kabgani [16] presents a two-stage
MADM model for selecting Municipal Solid Waste (MSW) management facility locations,
evaluating 15 attributes across economic, environmental, social, and technical categories. The
study ranks technical attributes highest, contributing theoretical, practical, and technical
insights for effective waste disposal location determination. Sheel et al. [17] focus on supplier
selection, introducing a Relative Reliability Risk (R3l) assessment method that combines
AHP, entropy, and alternative functionality charts, demonstrating improved accuracy over
traditional approaches. Niyazi and Tavakkoli-Moghaddam [18] apply three MCDM methods
for facility location selection, proposing a final ranking method based on REGIME to address
ranking discrepancies. Nikjo et al. [19] tackle player selection in sports, presenting a model
utilizing the WeFA framework and MCDM methods to effectively evaluate multiple criteria
through expert votes and ranking alternatives. Soltanifar [20] investigates the integration of
preferential voting with the Kemeny Median Indicator Ranks Accordance (KEMIRA)
method, proposing an improved model that addresses inherent shortcomings through linear
programming, demonstrated on real-world problems. In a subsequent study, Soltanifar et al.
[21] introduce the Voting-KEMIRA method, which reformulates KEMIRA as a linear
programming model to mitigate computational complexity in multi-category scenarios,
successfully applied in hospital construction projects. Building on this, Soltanifar and Santos-
Arteaga [22] present a hybrid approach that combines the Best Worst Method (BWM) and
KEMIRA with Data Envelopment Analysis (DEA), enhancing flexibility in preference
expression and improving attribute ranking accuracy via optimal weight selection.
Additionally, Soltanifar et al. [23] propose the fuzzy KEMIRA method, which captures
uncertainties in MADM, leveraging linear programming for optimal weight determination and
illustrated through numerical examples and case studies, including innovation park location
selection. Sabaei et al. [24] conduct a comprehensive review of Multi-Criteria Decision
Making (MCDM) models pertinent to maintenance management in manufacturing, offering a
comparative framework for selecting appropriate decision-making approaches. Recent
developments in MADM techniques have introduced new models that address the challenges
of uncertainty, subjectivity, and data aggregation. For instance, Lei et al. [25] proposed a
three-way MADM model with objective risk avoidance coefficients based on g-rung orthopair
fuzzy pre-order relations, which enhances decision-making by reducing subjective bias and
improving the discrimination rate of distance measures. Liu et al. [26] introduced a multi-
attribute group decision-making (MAGDM) method using single-valued neutrosophic
credibility numbers (SYNCNSs) and fairly weighted variable extended power average (VEPA)
operators, providing a more flexible and objective aggregation method. Dai et al. [27]
developed a stochastic consensus approach for uncertain MADM problems, integrating a
stochastic belief distribution to measure uncertainty and proposing a consensus index for
improved decision-making in uncertain environments. These advancements provide a broader
context for the proposed ARAS-M method, highlighting its innovation in enhancing
sustainability evaluation in green supply chains.

The Additive Ratio Assessment (ARAS) method, introduced by Zavadskas and Turskis [28],
represents a cutting-edge approach for solving multi-criteria decision-making problems
through compensatory mechanisms. This method quickly gained traction in various fields,
including construction management, as demonstrated by Zavadskas et al. [29], who applied
ARAS to assess foundation installation alternatives. The primary objective of the ARAS
method is to facilitate the selection and ranking of options based on multiple criteria by
determining the degree of preference for each alternative. Its adaptability has led to its
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application in diverse scenarios, such as personnel selection [30], ranking factoring companies
[31], and selecting internal safety auditors within construction organizations [32]. Moreover,
the method has been employed in cost-benefit analyses [33], evaluating mobile models [34],
and selecting software testing methods [35]. In a recent study, Idaman et al. [36] utilized the
ARAS method to evaluate candidates for the position of Head of Production, demonstrating
its effectiveness in integrating qualitative and quantitative criteria to ensure optimal decision-
making. Furthermore, Fan et al. [37] extended the ARAS method to a picture fuzzy
environment, addressing green supplier selection and showcasing its versatility in handling
ambiguous information. Notably, Heidary Dahooie et al. [38] demonstrated its utility in oil
and gas drilling project evaluations through an interval-valued fuzzy ARAS approach,
underscoring the method's effectiveness across a broad spectrum of applications.

The evaluation of sustainable green supply chains in the food industry serves as an exemplary
case for applying Multi-Criteria Decision-Making (MADM) methods. This issue has garnered
attention due to the pressing need for organizations to adopt environmentally responsible
practices. For instance, Soltanifar et al. [39] highlight the importance of supplier selection,
emphasizing its direct impact on performance and profitability. Their study identifies essential
criteria for green supplier selection—such as green design, purchasing, production,
transportation, and pollution control—through a systematic review and expert engagement.
They propose a new group voting analytical hierarchy process, demonstrating that valuable
insights can be gained with minimal information, thereby enhancing decision-making
efficiency. Similarly, Sharafi et al. [40] address the imperative of integrating green supply
chain management (GSCM) to meet growing environmental concerns. They introduce a fuzzy
Data Envelopment Analysis (DEA) model for green supplier selection, leveraging expert
opinions and improving existing ranking methods to achieve comprehensive evaluations of
suppliers. Building on these foundations, our research focuses on evaluating sustainable green
supply chains specifically within the food industry. We present a significant advancement in
decision-making methodologies by introducing the Modified Additive Ratio Assessment
(ARAS-M), an innovative refinement of the traditional ARAS method. Unlike conventional
approaches that often rely on static weighting schemes and limited engagement with decision-
makers, ARAS-M incorporates a linear programming model to dynamically optimize weight
allocation, addressing a critical gap in adaptability and precision. Additionally, ARAS-M
enhances decision-making processes through improved interaction with experts, enabling the
method to capture nuanced priorities effectively. This novel framework is specifically tailored
to the sustainability challenges of the food industry, offering a robust and practical tool for
evaluating suppliers based on comprehensive sustainability criteria. By bridging gaps in
existing methods, ARAS-M not only contributes to advancing academic discourse but also
delivers actionable insights for practitioners committed to enhancing sustainability in their
supply chains.

The organization of this article is structured to facilitate a comprehensive understanding of
our research on evaluating sustainable green supply chains in the food industry. We will begin
with a methodology section, where we will provide an overview of the ARAS method and
detail the design and explanation of our Modified Additive Ratio Assessment (ARAS-M).
This section will include a structural comparison between the two methods to highlight the
innovations introduced in ARAS-M. Following this, we will discuss sustainable GSCM in the
food industry, defining the relevant attributes that pertain to this domain in a well-supported
manner. We will then apply our proposed method to select a green supplier based on the
defined attributes, demonstrating its practical utility. Finally, we will conclude with a
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summary of findings, further discussions, and suggestions for future research avenues to
enhance sustainable practices in supply chain management.

2. Methodology

In this section, we aim to present the methodology for addressing the decision-making
challenges related to sustainable green supply chains. As a foundational approach, the
Additive Ratio Assessment (ARAS) method, known for its compensatory nature in multi-
attribute decision-making (MADM), will first be introduced. ARAS, a well-established
MADM technique, provides a structured mechanism for ranking alternatives based on
multiple criteria. However, to enhance the robustness of the decision-making process,
especially in scenarios where more nuanced judgments are required, we propose a
modification. By integrating linear programming models and discrimination intensity
functions, the improved method—Modified Additive Ratio Assessment (ARAS-M)—uwill
offer more reasoned judgments and foster greater interaction with decision-makers. This
enhancement ensures that decision-making becomes more aligned with the practical needs of
complex, real-world applications, where flexibility and precision are crucial.

2.1.0verview of the ARAS Method

The Additive Ratio Assessment (ARAS) method is a multi-attribute decision-making
(MADM) technique, which is designed to evaluate a set of alternatives based on multiple
criteria, providing a structured way to rank the alternatives by determining their degree of
utility. The key idea behind ARAS is to compare each alternative with an optimal one, often
idealized, that possesses the best values for all criteria. The decision-making process starts
with constructing a decision matrix that includes m alternatives and n criteria. This matrix not
only captures the performance values of each alternative across all criteria but also includes
an optimal alternative that either represents the best achievable values or is derived from
predefined standards.

In this method, alternatives As, A, ..., Amare evaluated against criteria Cq, Co,..., Cn, forming
a decision matrix as shown in Equation (1).

SURTRTRY AR
ERRECIRRETY (FRRRTRRRTY
Dy (1)
ri]_v ) 1rij1'~-a"'1rin
_rml’ .-'...,rmj,...,...,rmn_(m+1)xn

The entries r; represent the performance of the i alternative on the j™ criterion, while ry;
represents the optimal value for criterion j. When there are no predefined standards, an ideal
alternative A" is constructed, which holds the best possible values across all criteria based on
Equation (2). It is important to note that this alternative is often hypothetical and may not exist
in reality. Assuming J is the set of indices for benefit criteria (where higher values are better)
and J'is the set of indices for cost criteria (where lower values are better).
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A" :{m?xrij; i eJ}u{miin o ] eJ’}:{Af,A;,...,Aj} (2)
The ARAS algorithm follows a systematic procedure:

1. Normalization: The decision matrix is normalized. For benefit criteria (positive),
normalization is done using Equation (3), and for cost criteria (negative), it follows
Equation (4). This step ensures comparability across different criteria.

h=gm — ed ®)
Zi=0rij
r. 4
Wl Ny @
ri'

2. Weighting: The normalized matrix is weighted by multiplying each element by its

corresponding criterion weight, (Wl’WZ"“’Wn);ZWj =1 as determined by the
j=1

decision-maker, yielding the weighted normalized matrix, calculated using Equation

().

iy = Wil

i=01....mj=12,...,n (5)

3. Optimality Score: The overall performance score S; for each alternative is computed
as the sum of the weighted normalized values across all criteria (Equation 6).

n

S,=>%,i=01...,m (6)

=1

4. Degree of Utility: The utility degree K; for each alternative is obtained by comparing
its performance score to that of the optimal alternative (Equation 7).
S, .
Ki=—,i=1...,m @)
So
5. Ranking: Finally, the alternatives are ranked based on their utility degrees. Higher
utility values indicate better performance, guiding decision-makers to select the best
alternative.

This stepwise procedure allows for a comprehensive and rational comparison of alternatives,
making ARAS a powerful tool for solving decision problems in various domains.

2.2.Design and Explanation of the Modified Additive Ratio Assessment (ARAS-M)

One of the primary limitations of the ARAS method lies in its normalization process, which
involves incorporating a "predefined optimal standard" or a “virtual ideal alternative” to
normalize the decision matrix and subsequently weight it. The approach used in ARAS for
normalization is linear and bears resemblance to the Simple Additive Weighting (SAW)
method [41]. However, the linear normalization applied in ARAS is asymmetric, leading to
certain challenges when evaluating criteria.
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In research aiming to improve the weighting of criteria in ARAS, it was suggested that instead
of linear normalization, the min-max normalization approach should be employed [42]. This
modification addresses the asymmetry issue and provides a more robust framework for
evaluation. Thus, in the first step, instead of Equations (3) and (4), the alternative formulas
(8) and (9) will be used for normalization:

I —minr;
= 0sis< :
i = o, e (8)
maxXr. —minfr.
o<ism 1 o<igm Y
- l(;T<]|a<.)r’r(1 r” B r” H ’ (9)
rlj = — - y J (S \]
maxr. —mintr.
o<i<m ' o<izm Y

In this section, we introduce the Modified ARAS method (ARAS-M), which involves the
following improvements:

1) Normalization using min-max scaling replaces the linear normalization used in the
original ARAS method.

2) Instead of using predefined criteria weights, ARAS-M incorporates criteria
prioritization from experts and uses linear programming models to determine the
final weights, ensuring greater flexibility and decision-maker interaction.

Suppose we aim to evaluate m alternatives Ai, Az ..., Am across n criteria
Cs, Ca,..., Cn. The decision matrix takes the general form of Equation (10):

FogrevereeesTjoeeerees T
TTPPPPOUNY FTT

D: nl,...'...,rij,...,...,rin (10)
VPETTPPN A
[LCSTERY eL Sev H

Where rj is the value of alternative i under criterion j, ro; is the best possible value, and rgm+1)
represents the worst possible value for criterion j. These values can either be based on
predefined standards or, when no standard exists, the ideal positive and ideal negative
alternatives (A" and A”) are computed as follows:

e The ideal positive alternative (A") is defined as the alternative with the best value
across all criteria.

e The ideal negative alternative (A") is defined as the alternative with the worst value
across all criteria.

These can be computed via Equations (2) and (11), respectively, as:

A’:{miinrij;jeJ}u{m?xrij;jeJ’}:{A{,A;,...,A;} (11)
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The modified algorithm of ARAS-M consists of the following steps:

Step 1: Normalize the decision matrix using the min-max normalization formula:

ri'_rm+ j . .

FU.:A i=12,...,mj=12...n (12)
[ .
0j (m+1) ]

Let us assume that the weights of the criteria, which are to be obtained from the
decision-maker (note that in the modified method, the actual weights are not extracted,;

n
rather, the criteria are prioritized by experts), are denoted as (wl, w?_,---,wn);ZWj =1.

By replacing the linear normalization process described in Equations (3) and (4) with the
minimum-maximum normalization process from Equation (12), the utility degree can be
recalculated according to Equation (13). Specifically, the utility ratio K; for alternative A;
is computed as:

n rij_r(erl)j
n . n _ .7W' —
5, _ 2 _ 2% =Zjl JLF‘”_%““J i=1...,m (13)
| S ZTJOJ' zr;:le_oj Z“ W[

rOj - r-(m+1)j
j=1 J
! rOj B r(m+1)j

n

Since the weights of the criteria satisfy the condition ZWJ- =1, the utility degree K; can be
j=1

calculated directly using the simplified formula in Equation (14):

K, Zw i "fimi. Ji=1....m (14)

0] r(m+l)]

This modified formulation incorporates the new normalization technique and adjusts the
utility calculation accordingly, reflecting the weights of the criteria derived from the expert
prioritization process.

Step 3: Instead of directly assigning weights, we rank the criteria according to their
importance as determined by experts. Assume K experts are involved, and

C,(i=12,...,mk=12,...,K) represents the j" priority criterion from expert k. This
leads to constructing a priority matrix for each expert using Equation (15).

0 ifCf<C; .
sz[a;.]nxn,a;..:{l |ka Ck,j i'=12...,nk=12...,K (15)

Step 4: The distance between the prioritizations of each expert and the others is calculated
using Equation (16). The total distance p, for each expert k is computed as:
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K n n
po=2. 2> lak—ak], k=12..K (16)
k

=1 j=1j'=1

In this step, the expert with the minimum distance to all other experts is identified as the
reference expert. The prioritization provided by this expert is selected as the "reference
prioritization" and serves as the basis for determining the final weights of the criteria.

Mathematically, this reference expert k™ is found by minimizing p, (Equation (17)):

P =Min p, (17)

1<k<K

The prioritization of expert k™ is then considered the average prioritization for determining
the criteria weights.

Step 5: A linear programming model is used to optimize the utility degree K; for each
alternative (Model (18)). This allows each alternative to select the best set of normalized
criteria weights that optimally evaluate it.

4 ru - r(m+1)j*
K, =max> w.
= r.-r
] 0j (m+1)j
n
st. ij* =1 (18)
i=1

w.-w. >d(j"¢), Jj=12..,n-1
W 2d(n*,3)

In Model (18), the weights Wj*,(j* :1,2,...,n), represent the re-indexed weights for the
criteria based on the opinion of the reference expert.

Step 6: Finally, rank the alternatives based on their utility degrees. The higher the utility
degree, the better the alternative ranks.

The modifications in ARAS-M, particularly the incorporation of criteria prioritization and
linear programming, provide a more structured, justified, and interactive approach to decision-
making. It not only allows for a better reflection of the decision-maker’s preferences but also
improves the robustness and credibility of the final rankings.

2.3. Structural Comparison of ARAS and ARAS-M

The Modified Additive Ratio Assessment (ARAS-M) approach presents notable
enhancements over the traditional ARAS method. These improvements primarily revolve
around two key structural changes: normalization process and the way weights for the criteria
are determined. In this section, we delve into these modifications and their implications for
the decision-making process.

Normalization Process: In the ARAS method, a linear normalization process is used to
transform the decision matrix values. This approach, while functional, has certain limitations,
including the lack of symmetry and an over-reliance on predefined optimal and virtual ideal
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solutions. The normalization used in ARAS is similar to the Simple Additive Weighting
(SAW) method, which can sometimes lead to biased rankings when criteria have significantly
different ranges. In contrast, ARAS-M introduces the minimum-maximum normalization
technique, which addresses these biases by adjusting the criteria values to a more balanced
scale. This new normalization formula ensures that each criterion is rescaled within its actual
minimum and maximum values, providing a more accurate reflection of performance across
different criteria.

By adopting this approach, ARAS-M improves the fairness and objectivity in the comparison
of alternatives, as each criterion contributes more evenly to the final ranking.

Criteria Weighting: Another significant structural difference between ARAS and ARAS-M is
the method for determining criteria weights. In ARAS, these weights are typically provided
directly by the decision-maker, who assigns fixed value based on their judgment of the
importance of each criterion. This can sometimes lead to inconsistencies, especially when
decision-makers have limited expertise in the criteria or struggle to assess their relative
importance.

ARAS-M, on the other hand, enhances this process by utilizing expert prioritization instead
of directly asking for weights. Through a more structured approach, the method derives
weights by analyzing the relative prioritization provided by experts. This is achieved through
the construction of a linear programming model that calculates the optimal weights for each
criterion, taking into account the relative prioritizations.

This not only makes the weighting process more rigorous but also allows for greater
interaction with the decision-makers, ensuring that the calculated weights reflect their true
preferences without requiring them to provide precise values. This model also allows for a
dynamic adjustment of weights, leading to a more flexible and tailored decision-making
process.

Incorporation of Decision-Maker Interaction through Discrimination Intensity Functions:
ARAS-M introduces a novel feature for improving decision-maker engagement by
incorporating discrimination intensity functions. These functions enable a more interactive
process for refining the weights of the criteria based on the decision-maker’s preferences.
Specifically, discrimination intensity functions allow the decision-maker to influence the
difference between the weight of a given criterion and the next in line. This mechanism
provides an additional level of control, enabling the decision-maker to express preferences
not just for the criteria’s importance but also for how significant the gap between criteria
should be.

In cases where equal weights are acceptable, the discrimination intensity function, denoted as
d ( g) , can take values close to zero. However, when criteria must be distinctly separated in

importance, the function can be adjusted accordingly, making the model highly adaptive to
various decision scenarios. This flexibility represents a key improvement, providing a richer
dialogue between the decision-maker and the model and enabling more nuanced decision-
making.

The origins of this approach can be traced back to Cook and Kress [43], who first proposed
these weight control constraints in voting mechanisms. Their application has since been
extended in several studies, including those by Noguchi et al. [44] and Llamazares and Pena
[45]. The integration of these constraints allows ARAS-M to offer more robust solutions that
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reflect not only the rankings of the criteria but also the decision-makers’ intensity of
preferences.

Optimizing with Linear Programming: The final difference between ARAS and ARAS-M is
the use of linear programming to calculate the optimal ranking for each alternative. The linear
model ensures that the best possible weights are selected for each alternative, maximizing its
performance within the bounds set by the decision-makers’ prioritizations. In this way,
ARAS-M allows for an optimally tailored evaluation of alternatives, ensuring that the results
are both accurate and aligned with the decision-makers’ objectives.

To summarize, ARAS-M represents a significant advancement over the traditional ARAS
method by offering a more robust and interactive decision-making framework. The
introduction of minimum-maximum normalization, the use of prioritization over fixed
weights, and the inclusion of discrimination intensity functions make ARAS-M a highly
adaptive and precise tool for multi-criteria decision analysis. These improvements not only
lead to more accurate rankings but also provide greater flexibility for decision-makers to shape
the decision-making process according to their specific preferences and needs.

The procedures for the ARAS and ARAS-M methods are summarized in Figure 1, which
presents the flowchart comparison of both approaches.
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Figure 1: Flowchart Comparison of ARAS and ARAS-M Methods

3. Sustainable GSCM in the Food Industry

In today's increasingly environmentally conscious world, sustainable practices in supply chain
management (SCM) have become essential, especially in industries like food production
where environmental impacts are significant. The concept of a green supply chain integrates
eco-friendly approaches throughout the entire lifecycle of a product, from sourcing raw
materials to the final disposal. By incorporating sustainability, companies can reduce their
environmental footprint, optimize resource efficiency, and enhance their competitive
advantage in the market. The food industry, given its global reach and complex logistics, faces
unique challenges and opportunities in adopting GSCM practices. This section is divided into
two key subsections: first, we will explore the Importance of GSCM, highlighting its role in
addressing environmental concerns, and then, we will examine the Relevant Attributes in the
Food Industry, focusing on the specific factors that drive sustainability in this sector.
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3.1. Importance of GSCM

GSCM plays a pivotal role in addressing environmental and sustainability challenges in the
food industry. The integration of GSCM practices involves minimizing waste, reducing
carbon footprints, and promoting eco-friendly packaging. In the food sector, such practices
help mitigate resource depletion, waste management issues, and environmental
contamination, which are critical concerns given the industry's heavy reliance on natural
resources.

The importance of GSCM has been amplified by increasing regulatory pressures, consumer
awareness, and the need for companies to align with global sustainability trends. These
pressures compel firms to adopt sustainable procurement strategies, resource-efficient
production methods, and eco-friendly logistics. GSCM also helps food companies maintain a
competitive edge by complying with environmental regulations and satisfying the growing
demand for sustainably produced food.

By implementing GSCM, food industry players not only contribute to environmental
sustainability but also achieve economic benefits through cost savings in waste management
and resource efficiency. Additionally, GSCM fosters innovation by encouraging the
development of new, sustainable practices across the entire supply chain, from raw material
sourcing to final product distribution [46].

3.2. Relevant Attributes in the Food Industry

To effectively evaluate the sustainability of green supply chain management (GSCM) in the
food industry, certain key attributes must be considered. These attributes serve as critical
factors influencing sustainability performance, encompassing environmental, social, and
economic aspects. Below are the 11 relevant attributes, each essential to understanding
GSCM's role within the food sector. The attributes presented in this section are not exhaustive,
but they represent key factors critical for the sustainable green supply chain management
(GSCM) of the food industry. These attributes were selected with the help of an expert panel
consisting of eight specialists, including food industry professionals and GSCM experts. The
Delphi method was employed to refine and prioritize these attributes, ensuring a well-
rounded, expert-informed framework.

Energy Efficiency (Ci): Energy consumption is a critical factor in the food industry,
particularly during production, transportation, and storage. Implementing energy-efficient
technologies and practices reduces the carbon footprint of food products and contributes to
sustainability goals. Several studies emphasize the importance of energy management as a
core component of GSCM, with firms adopting renewable energy sources and energy-saving
processes to cut costs and enhance environmental performance [46].

Waste Reduction (C,): Waste generation, particularly food waste, is a significant concern
within the food supply chain. Effective waste management strategies, including recycling and
reusing waste by-products, are vital to improving sustainability. Waste reduction not only
contributes to environmental goals but also enhances economic efficiency by reducing
disposal costs and resource wastage [47].

Water Management (Cs): The food industry is one of the largest consumers of water resources,
making sustainable water management an essential attribute. Practices such as water recycling

52



M. Soltanifar / 1JIM Vol.17, No.1, (2025), 39-61

and optimizing water usage throughout production and processing stages ensure that
companies can mitigate water scarcity risks and reduce environmental impact. Proper water
stewardship is now a critical part of GSCM strategies [48].

Sustainable Procurement (C.): Sourcing raw materials sustainably ensures that environmental
and social concerns are addressed from the very start of the supply chain. Sustainable
procurement policies involve selecting suppliers based on their adherence to eco-friendly
practices and labor standards, ensuring that the supply chain minimizes negative impacts on
ecosystems and local communities [49].

Eco-Friendly Packaging (Cs): Packaging plays a crucial role in the food industry, but it often
leads to significant environmental problems, especially with plastics. Sustainable packaging
involves using biodegradable or recyclable materials and minimizing the overall volume of
packaging to reduce waste. Many companies are innovating to adopt eco-friendly packaging
solutions that align with GSCM practices [50].

Product Life Cycle (Cs): The entire life cycle of a product, from production to disposal, must
be considered in evaluating its sustainability. Life Cycle Assessment (LCA) helps companies
measure the environmental impact of food products across their entire life span, ensuring that
GSCM efforts are comprehensive. The LCA approach is now integral to sustainability
evaluations in the food industry [51].

Transportation Efficiency (C): Efficient transportation systems reduce fuel consumption and
lower emissions. Logistics optimization, such as using energy-efficient vehicles, route
planning, and load optimization, ensures that transportation activities in the food supply chain
contribute to overall sustainability [52].

Supplier Collaboration (Cs): Collaborative relationships with suppliers foster better
environmental performance across the supply chain. By engaging suppliers in sustainability
initiatives, companies can extend their green practices and improve the overall sustainability
of the chain. Supplier collaboration is particularly vital in ensuring the consistent supply of
sustainably sourced materials [53].

Corporate Social Responsibility (CSR) (Cg): CSR initiatives in the food industry involve
addressing social and environmental responsibilities, including fair labor practices,
community engagement, and ethical sourcing. Companies are increasingly adopting CSR as
a strategy to enhance their sustainability image and meet the growing demand for responsible
business practices [54].

Carbon Footprint Reduction (Ci0): Reducing the carbon footprint of food production,
processing, and distribution is essential for mitigating climate change. Carbon management
programs, such as carbon labeling and emission reduction targets, are common tools used to
measure and reduce greenhouse gas emissions [54].

Product Traceability (Ci1): Traceability allows companies to monitor the entire journey of
food products through the supply chain, ensuring food safety, quality, and sustainability. With
increasing consumer demand for transparency, traceability systems are becoming critical for
proving the sustainability of products and for quick responses in case of contamination or
recalls [55].

These attributes provide a comprehensive framework for assessing GSCM practices in the
food industry, ensuring that sustainability is incorporated at every stage of the supply chain.
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4. Case Study

In this case study, we evaluate six suppliers using the modified ARAS-M method within the
context of sustainable green supply chain management (GSCM) for the food industry. The
decision-making process incorporates expert judgment, translating qualitative linguistic

inputs into quantitative values for analysis.

Table 1. Decision Matrix

Supplier 1 | Supplier 2 | Supplier 3 | Supplier 4 | Supplier 5 | Supplier 6
C1 10 9 9 8 8 8
C2 9 8 8 8 7 7
Cs 10 9 10 9 5 6
Ca 10 10 9 10 8 8
Cs 10 9 9 9 8 9
Cs 9 9 8 8 7 7
Cy 10 10 9 8 8 8
Cs 10 10 9 9 5 6
Co 10 9 9 8 6 7
Cio 10 9 9 9 7 8
Cu 10 10 10 10 8 9

First, the pairwise comparison matrix of the six suppliers is shown in Table 1. These
gualitative inputs were aggregated from experts using a bipolar scale conversion. The
attributes discussed in Section 3.2 were prioritized by five experts from the food industry and
GSCM fields. Table 2 illustrates the outcome of this prioritization.

Table 2: Attribute Prioritization by Experts

Expert1 | Expert 2 | Expert 3 | Expert4 | Expert5
C1 2 1 2 4 2
Co 11 10 11 11 11
Cs 8 9 8 1 8
C4 3 3 3 8 4
Cs 5 5 5 5 6
Ce 10 11 10 10 9
Cr 6 7 6 6 5
Cs 9 8 9 9 10
Co 7 6 7 7 7
Cuo 4 4 4 3 3
Cu 1 2 1 2 1

Based on the expert rankings, the priority matrices for each expert are formed using Equation
(15). This step is crucial as it captures the distinct preferences of each expert regarding the
relevant attributes for supplier evaluation. Tables 3 through 7 present the priority matrices
derived for each of the five experts. These matrices serve as the basis for further analysis,
where the differences between individual expert preferences are quantified.

Table 3: Priority Matrix of Expert 1
| Expert1]|Ci|Ca|Cs|Ca|Cs|Cs|Cr|Ce] Co|CroCuul
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Using Equation (16), the distances between the priority rankings of each expert and
others were calculated, resulting in the values shown in Table 8. This step allows us to
identify consensus or divergence among the experts. From these calculations, it is evident
that the first and third experts share the closest prioritization. Their alignment in
preferences makes their combined prioritization the "reference prioritization," which will
be used for determining the final weights of the attributes. Notably, these two experts
provided identical rankings, simplifying the process of assigning reference values.

Table 8. Distance Between Each Expert's Prioritization and the Others

Expert 1

Expert 2

Expert 3

Expert 4

Expert 5

Px

37

58

37

105

51

With the reference prioritization established, the decision matrix was rewritten, as
shown in Table 9. This matrix not only reflects the revised ranking of the attributes but
also identifies the best and worst possible values for each supplier using Equations (2)
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and (11). In this matrix, the attributes are re-indexed based on expert prioritization, with
smaller indices representing higher priority.

Table 9: Rewritten Decision Matrix Based on Reference Prioritization

Ci|Co|C3|Cs|C5|Cs|C7|Cs|Cog|Cqo|Cu
A* 10 10 10 10 10 10 10 10 10
Supplier1 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10

Supplier2 |10 | 9 {10 | 9 | 9 |10 9 | 9 |10

© [ © |©
® [ © |©

Supplier3 |10 | 9 | 9 | 9 |9 | 9|9 [10] 9 8 8

Supplier4 | 10| 8 |10 9| 9| 8| 8| 9|09 8
Supplier5| 8 | 8 | 8 |7 | 8|8 |6 |5 |57 |7
Supplier6| 9 | 8 | 8 |8 |9 |8 |7 |6 |67 7

A 8 |8 |8 |7 |8|8|6|5]|5]7 7

The next step involved normalizing the decision matrix using the min-max
normalization technique described in Equation (12). Table 10 presents the normalized
decision matrix, where the attributes have been scaled according to their priority-based
rankings. This normalization ensures that all attributes are comparable, despite their
varying units and scales.

Table 10: Normalized Decision Matrix

Ci1 | Co|C3|Ca|Cs5|Cs| Cr |Cs|Co|Cuw|Cn
Supplier1 | 1 | 1 |1 |1 | 1|1 1 1|1 1 1
Supplier2 | 1 |05 1 |07]05| 1 |075]|08]| 1 1 (05
Supplier3| 1 |05|05|07]05(05|075| 1 |{08|05|05
Supplier4 | 1 | 0 | 1 |07]05| 0 | 05 |08|08|05]|05
Supplier5 | 0 0 0 0 0 0 0 0 0 0 0
Supplier6 |05 0 | 0 |03|05| 0 |025{02(02| O 0

To compute the utility degree Ki for each supplier, Model (18) was applied. This
model is optimized to select the best set of normalized criteria weights for each supplier.
Additionally, the interaction with the reference expert helped determine the recognition
function, or intensity function, used to assess the distance between attributes. It was
decided that the recognition function would be set to the maximum allowable value,
ensuring that Model (18) remained feasible.

The final step in this process is the ranking of suppliers based on their utility degrees.
The results of Model (18) and the ultimate ranking are shown in Table 11. Higher utility
degrees indicate better supplier performance, and this ranking provides decision-makers
with a clear and quantifiable basis for selecting the optimal supplier for sustainable
practices in the food industry supply chain.

Table 11: Final Ranking of Suppliers Based on Utility Scores
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Enax =0.090909 | Supplier 1 | Supplier 2 | Supplier 3 | Supplier 4 | Supplier 5 | Supplier 6
Ki 1 0.808409 | 0.699439 | 0.622517 0 0.238405
1
Rank 1 2 3 4 6 5

This case study demonstrates the efficacy of the ARAS-M method in enhancing
supplier evaluation, particularly within the complex and sustainability-driven context of
GSCM. The integration of expert prioritization and advanced normalization techniques
provides a more comprehensive and flexible framework for decision-making.

5. Conclusion

This study introduced the ARAS-M method as an innovative approach for evaluating
sustainable GSCM in the food industry. By incorporating linear programming and expert
prioritization, ARAS-M enhances the decision-making process compared to the
traditional ARAS method. Through an extensive case study, we demonstrated the
method's effectiveness in generating more reliable and robust rankings by utilizing
normalized matrices and optimization techniques. This approach also improves the
interaction with decision-makers through intensity detection functions, offering flexibility
in adjusting the importance of criteria.

Our findings reinforce the significance of sustainable practices in GSCM, particularly
in the food industry, where environmental, social, and economic factors play a crucial role
in supply chain decision-making. The ARAS-M method, by minimizing subjective biases
and enabling the prioritization of criteria, supports a holistic and adaptable approach to
evaluating suppliers. Furthermore, its ability to evaluate suppliers based on both benefit
and cost criteria makes it well-suited for dynamic and resilient supply chains.

While ARAS-M offers notable improvements, challenges remain, such as the inherent
inaccuracy in determining the relative importance of criteria. Further refinement in this
area is needed to enhance the model's robustness and reliability in diverse contexts.

Future studies could explore several key avenues for extending the ARAS-M method.
One promising direction is the integration of fuzzy logic or interval-based data to better
model uncertainty and handle imprecise information, which is common in real-world
supply chain scenarios. Fuzzy ARAS-M could provide a more nuanced approach to expert
judgments, addressing the vagueness that often arises in complex decision-making
environments.

Another area for improvement is automating the expert prioritization process, which
could make the method more scalable and applicable to a broader range of industries,
beyond the food sector. Additionally, integrating ARAS-M with multi-objective
optimization models could further enhance its flexibility, allowing it to address multiple
conflicting objectives, a feature that would be highly beneficial for more complex and
data-rich environments. Finally, the application of emerging technologies such as
machine learning and big data analytics could enable the method to handle large datasets
and dynamic supply chain environments more effectively.

By pursuing these directions, future research could significantly broaden the scope
and impact of the ARAS-M method, contributing to its applicability in more diverse,
complex, and uncertain supply chain contexts.

58



M. Soltanifar / 1JIM Vol.17, No.1, (2025), 39-61

59



M. Soltanifar / 1JIM Vol.17, No.1, (2025), 39-61

References

[1] Mousavi Janbehsarayi, S. F., Niksokhan, M. H., Hassani, M. R., & Ardestani, M. (2023). Multi-
objective decision-making based on theories of cooperative game and social choice to incentivize
implementation of low-impact development practices. Journal of Environmental Management,
330, 117243. https://doi.org/10.1016/j.jenvman.2023.117243

[2] Hwang, C. L., Lai, Y. J., & Liu, T. Y. (1993). A new approach for multiple objective decision
making. Computers & Operations Research, 20(8), 889-899. https://doi.org/10.1016/0305-
0548(93)90109-V

[3] Soltanifar, M. (2021). An investigation of the most common multi-objective optimization methods
with  propositions  for improvement.  Decision  Analytics Journal, 1, 100005.
https://doi.org/10.1016/j.dajour.2021.100005

[4] Moallemi, E. A., Elsawah, S., Turan, H. H., & Ryan, M. J. (2018). Multi-objective decision making
in multi-period acquisition planning under deep uncertainty. Winter Simulation Conference (WSC),
2018, 1334-1345. https://doi.org/10.1109/WSC.2018.8632316

[5] Groenia, S., van den Berg, M., Volker, L., Valcke, S., & Barros, E. (2024). Multi-objective
decision-making for sustainable construction: Designing an interactive method for multi-actor
project settings. Paper presented at 40th Annual ARCOM Conference 2024: Looking back to move
forward, London, United Kingdom.

[6] Yalili, M., Menlik, T., & Boran, F. E. (2024). A novel multi-objective decision-making model to
determine optimum resource and capacity configuration for hybrid electricity generation systems:
A comparative case study in  Toarkiye.  Applied Energy, 376, 124338.
https://doi.org/10.1016/j.apenergy.2024.124338

[71 Zbhou, X., Tan, W., Sun, Y., Huang, T., & Yang, C. (2024). Multi-objective optimization and
decision making for integrated energy system using STA and fuzzy TOPSIS. Expert Systems with
Applications, 240, 122539. https://doi.org/10.1016/j.eswa.2023.122539

[8] Soltanifar, M. (2021). The voting linear assignment method for determining priority and weights
in solving MADM problems. Journal of Applied Research on Industrial Engineering, 8(Special
Issue), 1-17. https://doi.org/10.22105/jarie.2021.268606.1240

[9] Tavana, M., Soltanifar, M., & Santos-Arteaga, F. J. (2023). Analytical hierarchy process:
Revolution and evolution. Annals of Operations Research, 326, 879-907.
https://doi.org/10.1007/s10479-021-04432-2

[10] Soltanifar, M., & Tavana, M. (2024). A novel pairwise comparison method with linear
programming for multi-attribute decision-making. EURO Journal on Decision Processes, 12,
100051. https://doi.org/10.1016/j.ejdp.2024.100051

[11] Soltanifar, M. (2024). A new interval for ranking alternatives in multi attribute decision making
problems. Journal of Applied Research on Industrial Engineering, 11(1), 37-56.
https://doi.org/10.22105/jarie.2022.339957.1467

[12] Soltanifar, M., Tavana, M., Santos-Arteaga, F. J., & Sharafi, H. (2023). A hybrid multi-attribute
decision-making and data envelopment analysis model with heterogeneous attributes: The case of
sustainable development goals. Environmental Science & Policy, 147, 89-102.
https://doi.org/10.1016/j.envsci.2023.06.004

[13] Soltanifar, M., Zargar, S. M., & Aman, M. (2023). Improved WASPAS method for determining
criteria priority and weights in solving MADM problems: A case study to determine leadership
style in Covid-19 pandemic. Journal of Decisions and Operations Research, 8(3), 749-770.
https://doi.org/10.22105/dmor.2023.345520.1616

60


https://doi.org/10.1016/j.jenvman.2023.117243
https://doi.org/10.1016/0305-0548(93)90109-V
https://doi.org/10.1016/0305-0548(93)90109-V
https://doi.org/10.1016/j.dajour.2021.100005
https://doi.org/10.1016/j.apenergy.2024.124338
https://doi.org/10.1016/j.eswa.2023.122539
https://doi.org/10.1007/s10479-021-04432-2
https://doi.org/10.1016/j.ejdp.2024.100051
https://doi.org/10.1016/j.envsci.2023.06.004

M. Soltanifar / 1JIM Vol.17, No.1, (2025), 39-61

[14] Soltanifar, M., & Zargar, S. M. (2021). Assessing and ranking cloud computing security risks
based on a hybrid approach based on pairwise comparisons. Iranian Journal of Information
Processing and Management, 37(1), 27-58. https://doi.org/10.52547/jipm.37.1.27

[15] EI-Araby, A. (2023). The utilization of MARCOS method for different engineering applications:
A comparative study. International Journal of Research in Industrial Engineering, 12(2), 155-164.
https://doi.org/10.22105/riej.2023.395104.1379

[16] Kabgani, M. H. (2023). Measuring effective indicators for waste disposal in order to assess the
sustainable environment: Application of fuzzy approach. International Journal of Research in
Industrial Engineering, 12(3), 287-305. https://doi.org/10.22105/riej.2023.368774.1345

[17] Sheel, C. C., Rahman, S. M. A., & Bhowmick, T. (2024). A decision-making method for supplier
selection in industrial manufacturing industry: A mathematical framework of integrating analytical
hierarchical process and reliability risk evaluation in the field of industrial engineering sectors.
International Journal of Research in Industrial Engineering.
https://doi.org/10.22105/riej.2024.474342.1469

[18] Niyazi, M., & Tavakkoli-Moghaddam, R. (2014). Solving a facility location problem by three
multi-criteria decision-making methods. International Journal of Research in Industrial
Engineering, 3(4), 41-56. https://www.riejournal.com/article_48006.html

[19]Nikjo, B., Rezaeian, J., & Javadian, N. (2015). Decision making in best player selection: An
integrated approach with AHP and extended TOPSIS methods based on WeFA framework in
MAGDM problems. International Journal of Research in Industrial Engineering, 4(1(4)), 1-14.
https://doi.org/10.22105/riej.2017.49166

[20] Soltanifar, M. (2023). Improved Kemeny median indicator ranks accordance method. Asia-Pacific
Journal of Operational Research, 40(03), 2250024. https://doi.org/10.1142/S0217595922500245

[21] Soltanifar, M., Krylovas, A., & Kosareva, N. (2023). Voting-KEMIRA median indicator ranks
accordance method for determining criteria priority and weights in solving multi-attribute
decision-making problems. Soft Computing, 27, 6613-6628. https://doi.org/10.1007/s00500-022-
07807-0

[22] Soltanifar, M., & Santos-Arteaga, F. J. (2024). Hybrid DEA-BWM-KEMIRA approach for
multiple attribute decision-making: A weighted analysis perspective. Soft Computing.
https://doi.org/10.1007/s00500-024-09933-3

[23] Soltanifar, M., Tavana, M., Santos-Arteaga, F. J., & Charles, V. (2024). A new fuzzy KEMIRA
method with an application to innovation park location analysis and selection. IEEE Transactions
on Engineering Management. https://doi.org/10.1109/TEM.2024.3471876

[24] Sabaei, D., Erkoyuncu, J., & Roy, R. (2015). A review of multi-criteria decision-making methods
for enhanced maintenance delivery. Procedia CIRP, 37, 30-35.
https://doi.org/10.1016/j.procir.2015.08.086

[25] Lei, S., Ma, X., Qin, H., Ren, D., & Niu, X. (2025). A new three-way multi-attribute decision-
making with objective risk avoidance coefficients based on g-rung orthopair fuzzy pre-order
relations, Expert Systems with Applications, 268, 126252,
https://doi.org/10.1016/j.eswa.2024.126252.

[26]Liu, P., Shen, J., Zhang, P., & Ning, B. (2025). Multi-attribute group decision-making method
using single-valued neutrosophic credibility numbers with fairly variable extended power average
operators and GRA-MARCOS, Expert Systems with Applications, 263, 125703,
https://doi.org/10.1016/j.eswa.2024.125703.

[27] Dai, X., Li, H., Zhou, L., Wu, Q. (2025). Stochastic consensus for uncertain multiple attribute
group decision-making problem in belief distribution environment, Applied Soft Computing, 168,
112495, https://doi.org/10.1016/j.as0c.2024.112495.

61


https://www.riejournal.com/article_48006.html
https://doi.org/10.1142/S0217595922500245
https://doi.org/10.1007/s00500-022-07807-0
https://doi.org/10.1007/s00500-022-07807-0
https://doi.org/10.1007/s00500-024-09933-3
https://doi.org/10.1016/j.procir.2015.08.086
https://doi.org/10.1016/j.eswa.2024.126252
https://doi.org/10.1016/j.eswa.2024.125703
https://doi.org/10.1016/j.asoc.2024.112495

M. Soltanifar / 1JIM Vol.17, No.1, (2025), 39-61

[28] Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multi
criteria decision-making. Technological and Economic Development of Economy, 16(2), 159-172.
https://doi.org/10.3846/tede.2010.10

[29] Zavadskas, E. K., Turskis, Z., & Vilutiene, T. (2010). Multiple criteria analysis of foundation
instalment alternatives by applying Additive Ratio Assessment (ARAS) method. Archives of Civil
and Mechanical Engineering, 10(3), 123-141. https://doi.org/10.1016/S1644-9665(12)60141-1

[30] Karabasevic, D., Zavadskas, E. K., Turskis, Z., & Stanujkic, D. (2016). The framework for the
selection of personnel based on the SWARA and ARAS methods under uncertainties. Informatica,
27(1), 49-65. https://doi.org/10.15388/Informatica.2016.76

[31]Ozbhek, A., & Erol, E. (2017). Ranking of factoring companies in accordance with ARAS and
COPRAS methods. International Journal of Academic Research in Accounting, Finance and
Management Sciences, 7(2), 105-116. https://doi.org/10.6007/IJARAFMS/v7-i2/2876

[32] Prasad, R. (2019). Selection of internal safety auditors in an Indian construction organization based
on the SWARA and ARAS methods. Journal of Occupational Health and Epidemiology, 8(3),
134-140. https://doi.org/10.29252/johe.8.3.134

[33] Lee, J., Ozaki, I., Kishino, S., & Suzuki, K. (2021). Evaluation method of ARAS combining
simulator experiment and computer simulation in terms of cost-benefit analysis. International
Journal of Intelligent Transportation Systems Research, 19, 44-55,
https://doi.org/10.1007/s13177-019-00215-z

[34] Goswami, S.S., & Mitra, S. (2020). Selecting the best mobile model by applying AHP-COPRAS
and AHP-ARAS decision making methodology. International Journal of Data and Network
Science, 4, 27-42. https://doi.org/10.5267/j.ijdns.2019.8.004

[35] Karabasevi¢, D.M., Maksimovi¢, M. V., Stanujki¢, D.M., Joci¢, G.B., & Rajéevi¢, D.P. (2018).
Selection of software testing method by using ARAS method. Tehnika, 73(5), 724-729.
https://doi.org/10.5937/tehnikal805724K

[36] Idaman, A., Amrullah, & Rolanda, V. (2024). Analysis of the Additive Ratio Assessment Method
in the selection of the best production head. Jurnal Informasi Dan Teknologi, 6(2), 172-181.
https://doi.org/10.60083/jidt.v6i2.546

[37]Fan, J., Han, D., & Wu, M. (2023). Picture fuzzy ARAS and VIKOR methods for multi-attribute
decision problem and their application. Complex & Intelligent Systems, 9, 5345-5357.
https://doi.org/10.1007/s40747-023-01007-5

[38] Heidary Dahooie, J., Zavadskas, E.K., Abolhasani, M., Vanaki, A., & Turskis, Z. (2018). A novel
approach for evaluation of projects using an interval-valued fuzzy ARAS method: A case study of
oil and gas well drilling projects. Symmetry, 10(2), 45, 1-32. https://doi.org/10.3390/sym10020045

[39] Soltanifar, M., Zargar, S.M., & Homayounfar, M. (2022). Green supplier selection: A hybrid group
voting AHP approach. Journal of Operational Research and Its Applications, 19(2), 113-132.
https://doi.org/10.52547/jamlu.19.2.113

[40] Sharafi, H., Soltanifar, M., & Hosseinzadeh Lotfi, F. (2022). Selecting a green supplier utilizing
the new fuzzy voting model and the fuzzy combinative distance-based assessment method. EURO
Journal on Decision Processes, 10, 100010. https://doi.org/10.1016/j.ejdp.2021.100010

[41]Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making. Berlin: Springer.
https://doi.org/10.1007/978-3-642-48318-9

[42] Ghram, M., & Frikha, H.M. (2018). A new procedure of criteria weight determination within the
ARAS method. Multiple Criteria Decision Making, 13, 56-73.
https://doi.org/10.22367/mcdm.2018.13.03

62


https://doi.org/10.3846/tede.2010.10
https://doi.org/10.1016/S1644-9665(12)60141-1
https://doi.org/10.15388/Informatica.2016.76
https://doi.org/10.1007/s13177-019-00215-z
https://doi.org/10.60083/jidt.v6i2.546
https://doi.org/10.1007/s40747-023-01007-5
https://doi.org/10.52547/jamlu.19.2.113
https://doi.org/10.1016/j.ejdp.2021.100010
https://doi.org/10.1007/978-3-642-48318-9

M. Soltanifar / 1JIM Vol.17, No.1, (2025), 39-61

[43] Cook, W.D., & Kress, M. (1990). A data envelopment model for aggregating preference rankings.
Management Science, 36(11), 1302-1310. https://doi.org/10.1287/mnsc.36.11.1302

[44] Noguchi, H., Ogawa, M., & Ishii, H. (2002). The appropriate total ranking method using DEA for
multiple categorized purposes. Journal of Computational and Applied Mathematics, 146(1), 155—
166. https://doi.org/10.1016/S0377-0427(02)00425-9

[45] Llamazares, B., & Pena, T. (2009). Preference aggregation and DEA: An analysis of the methods
proposed to discriminate efficient candidates. European Journal of Operational Research, 197,
714-721. https://doi.org/10.1016/j.ejor.2008.06.031

[46] Mastos, T., & Gotzamani, K. (2022). Sustainable supply chain management in the food industry:
A conceptual model from a literature review and a case study. Foods, 11(15), 2295.
https://doi.org/10.3390/foods11152295

[47]Zhu, Q., Geng, Y., & Sarkis, J. (2020). Sustainable waste management in supply chains: Practices
and implications. International Journal of Production Economics, 228, 107652.
https://doi.org/10.1016/j.ijpe.2020.107652

[48] Khalili-Damghani, K., Arab, A., & Jolai, F. (2021). Multi-objective decision making for
sustainable water management in the food industry. Sustainable Production and Consumption, 27,
10-27. https://doi.org/10.1016/j.spc.2021.07.006

[49] Gandhi, R., Govindan, K., & Jha, P. C. (2022). Sustainable procurement and supply chain practices
in the food industry: A review. Journal of Environmental Management, 306, 114415.
https://doi.org/10.1016/j.jenvman.2022.114415

[50]Lau, K. H., Tang, C. S., & Wang, Y. (2022). Eco-friendly packaging innovations in the food
industry. Journal of Industrial Ecology, 26(1), 88-105. https://doi.org/10.1111/jiec.13092

[51] Kannan, G., & Govindan, K. (2020). A life cycle approach to food supply chain sustainability: A
review. Food Control, 49, 110-119. https://doi.org/10.1016/j.foodcont.2020.03.012

[52] Abdulrahman, M., Gunasekaran, A., & Subramanian, N. (2021). Logistics and transportation in
sustainable supply chains: A systematic review. Transportation Research Part E: Logistics and
Transportation Review, 140, 102007. https://doi.org/10.1016/j.tre.2020.102007

[53] Gopal, P., & Thakkar, J. (2022). Collaboration in supply chains: A review of enablers and barriers.
International Journal of Production Research, 58(8), 2435-2456.
https://doi.org/10.1080/00207543.2021.1874482

[54] Chkanikova, O., & Mont, O. (2020). Corporate social responsibility in the food sector: A focus on
sustainability. Journal of Cleaner Production, 123, 260-270.
https://doi.org/10.1016/j.jclepro.2020.07.031

[55]Aung, M. M., & Chang, Y. S. (2020). Traceability in a food supply chain: Safety and quality
perspectives. Food Control, 39, 172-184. https://doi.org/10.1016/j.foodcont.2020.109256

63


https://doi.org/10.1287/mnsc.36.11.1302
https://doi.org/10.1016/S0377-0427(02)00425-9
https://doi.org/10.1016/j.ejor.2008.06.031
https://doi.org/10.3390/foods11152295
https://doi.org/10.1016/j.ijpe.2020.107652
https://doi.org/10.1016/j.spc.2021.07.006
https://doi.org/10.1016/j.jenvman.2022.114415
https://doi.org/10.1111/jiec.13092
https://doi.org/10.1016/j.foodcont.2020.03.012
https://doi.org/10.1016/j.tre.2020.102007
https://doi.org/10.1080/00207543.2021.1874482
https://doi.org/10.1016/j.jclepro.2020.07.031
https://doi.org/10.1016/j.foodcont.2020.109256

