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Abstract 

This paper introduces a novel framework for evaluating the performance of sustainable green 

supply chains using the Modified Additive Ratio Assessment (ARAS-M) method, an 

enhanced version of the traditional ARAS approach. The ARAS-M method addresses a 

critical gap in existing decision-making models by incorporating a linear programming 

technique to optimize the weighting process, which improves the robustness and flexibility of 

traditional models that often lack adaptability and precision. A comprehensive literature 

review identified key factors influencing green supply chain sustainability, such as 

environmental impact, energy efficiency, waste management, and resource optimization. 

These factors were integrated into the ARAS-M method, enabling a more accurate and 

dynamic evaluation of supply chain performance. The method was applied to assess six food 

industry companies’ supply chains, with expert input to rank them based on sustainability 

attributes. Validation of the results was performed by comparing the rankings with real-world 

performance metrics, including environmental certifications and resource consumption 

reports. The findings revealed that companies excelling in environmental policies, energy 

efficiency, and waste reduction ranked highest, demonstrating the effectiveness and practical 

applicability of the ARAS-M method in evaluating green supply chain performance. This 

study highlights the critical role of sustainability practices in enhancing supply chain 

resilience and competitiveness. 
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1. Introduction 

Multi-Criteria Decision Making (MCDM) is a pivotal area within Operations Research that 

assists decision-makers in evaluating and prioritizing alternatives based on multiple, often 

conflicting criteria. The inherent complexity of real-world challenges, particularly in 

organizational contexts, necessitates the application of MCDM methodologies to effectively 

integrate various attributes and objectives into the decision-making process. These approaches 

play a crucial role across diverse industries, enhancing decision quality by enabling 

stakeholders to consider a broad spectrum of perspectives. MCDM can be categorized into 

two primary frameworks: Multiple Attribute Decision Making (MADM), which emphasizes 

the selection of the most suitable alternative from a set of options based on specific attributes, 

and Multiple Objective Decision Making (MODM), which focuses on optimizing multiple 

goals simultaneously. This classification lays the groundwork for understanding the distinct 

approaches within MCDM and sets the stage for exploring innovative techniques aimed at 

improving decision-making efficiency in complex scenarios. 

MODM is a systematic decision-making process that empowers decision-makers to define 

their unique value systems, frame the context of their choices, and evaluate decisions 

methodically. By delineating decision options and relevant criteria, analysts can decompose 

complex decisions into manageable components. The primary goal of MODM is to solve 

optimization problems under specified constraints, addressing multiple, often conflicting 

objectives simultaneously. For instance, while one objective may aim to maximize profit, 

another might focus on minimizing labor costs, illustrating that the scale of measurement for 

each objective can differ without inherent conflict. This approach is particularly advantageous 

for design or planning scenarios, as it optimizes the allocation of limited resources amidst 

competing and sometimes contradictory constraints. In real-world environments characterized 

by multifaceted challenges, decision-makers often rely on MODM techniques to achieve 

several objectives concurrently. Various methods are employed in MODM, including Goal 

Programming and the Lexicographic method. Goal Programming facilitates the balance 

among conflicting objectives by prioritizing them based on importance, while the 

Lexicographic method simplifies the decision-making process by focusing on the most critical 

criteria first. These methodologies have been successfully applied in diverse contexts; for 

instance, Mousavi Janbehsarayi et al. [1] developed a framework that evaluates Low-Impact 

Development practices for urban stormwater management through cooperative game theory, 

aiming for effective resource allocation among stakeholders with conflicting interests. 

Similarly, Hwang et al. [2] proposed the TOPSIS method for MODM, allowing decision-

makers to address multiple conflicting objectives by considering both positive and negative 

ideal solutions. By leveraging these advanced methodologies, MODM enhances decision-

making efficiency in complex scenarios, ultimately leading to more informed and equitable 

outcomes. In recent studies, the breadth of MODM applications has been illustrated across 

various domains. For example, Soltanifar [3] emphasizes that many decisions in daily life 

involve multiple goals and factors, and advocates for enhanced interaction between decision-

makers (DMs) and multi-objective methods through weight restrictions and discrimination 

intensity functions. Such improvements can lead to more effective decision support. Moallemi 

et al. [4] focus on acquisition planning for high-value assets, introducing a robust optimization 

approach to navigate uncertainties and develop effective strategies that align with multiple 

performance objectives throughout the asset life cycle. In construction, Groenia et al. [5] 

highlight the need to balance sustainability with conflicting objectives like structural safety 

and costs. Their interactive method for implementing multi-objective optimization models 

addresses diverse stakeholder needs, thereby supporting collaborative decision-making and 
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fostering sustainable design solutions. Yalılı et al. [6] present a MODM model aimed at 

optimizing hybrid electricity generation systems in Türkiye, focusing on resource utilization 

and carbon emissions. Their work illustrates the substantial impact MODM techniques can 

have on energy system planning. Further, Zhou et al. [7] propose a framework that integrates 

multi-objective optimization with fuzzy multi-criteria decision-making for planning 

integrated energy systems (IES). Their approach effectively minimizes energy consumption, 

carbon emissions, and economic costs, showcasing the relevance of MODM in promoting 

sustainable energy solutions. Despite its benefits, MODM faces significant challenges. First, 

there is the issue of balancing conflicting objectives. Achieving a higher level of satisfaction 

for one objective often leads to decreased satisfaction for others, necessitating the 

identification of a balance among competing goals. This can involve weighting multiple 

objectives to simplify the primary problem into a single weighted goal. Second, temporal 

issues arise as the number of dimensions or criteria increases, leading to substantial 

computational costs. This challenge can hinder the efficiency of the decision-making process 

and limit the applicability of MODM in more complex scenarios. 

MADM is a strategic approach for evaluating and selecting the best option among available 

alternatives based on diverse, conflicting attributes. In many decision-making scenarios, a 

choice must be made from multiple options, each influenced by various indicators, which 

complicates the decision-making process. MADM, a branch of MCDM, falls within the realm 

of operations research and encompasses methodologies specifically designed to address these 

complexities. MADM methods can be categorized into compensatory and non-compensatory 

approaches, allowing decision-makers to effectively navigate situations where different 

criteria exhibit varying characteristics and measurement units, often leading to conflict and 

trade-offs. These models are particularly valuable in real-world applications where the 

presence of competing criteria necessitates a structured decision-making framework. Recent 

studies illustrate advancements in MADM. Soltanifar [8] presents the Linear Assignment 

Voting (VLAM) method, enhancing traditional models by using Data Envelopment Analysis 

(DEA) to provide final weights for alternatives. This method was effectively applied in a case 

study on excavator procurement, improving decision-making capabilities. Tavana et al. [9] 

discuss the Analytical Hierarchy Process (AHP), emphasizing its robustness but also its 

challenges, such as extensive pairwise comparisons. They propose hybrid methods that 

integrate AHP with other weighting techniques, demonstrating greater efficiency and expert 

engagement while maintaining ranking accuracy. Further applications of MADM are evident 

in recent research. Soltanifar and Tavana [10] introduce a method that categorizes attributes 

to facilitate systematic expert comparisons without added computations, improving flexibility 

and precision while reducing complexity. Soltanifar [11] develops a hybrid method combining 

the COPRAS and MOORA techniques to determine attribute weights dynamically, ranking 

alternatives based on detailed interactions with decision-makers. In another study, Soltanifar 

et al. [12] propose an integrated MADM and DEA framework for heterogeneous attributes, 

effectively aggregating weights and scores for alternatives while simplifying decision-making 

processes, as applied to European countries' compliance with the Sustainable Development 

Goals. Additionally, they highlight that their model's independence from predetermined 

weights is a significant advantage. Moreover, Soltanifar et al. [13] enhance the WASPAS 

method by incorporating interaction with decision-makers to rank organizational leadership 

styles during the COVID-19 pandemic, demonstrating the method's applicability in crisis 

management. Soltanifar and Zargar [14] focus on cloud computing security risks, using 

pairwise comparisons to rank these risks based on expert opinions, with data privacy emerging 

as the top concern. El-Araby [15] addresses the Rank Reversal Phenomenon (RRP) in MCDM 
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methods by proposing the MARCOS approach, which is tested against various engineering 

problems, showcasing its robustness and applicability. Kabgani [16] presents a two-stage 

MADM model for selecting Municipal Solid Waste (MSW) management facility locations, 

evaluating 15 attributes across economic, environmental, social, and technical categories. The 

study ranks technical attributes highest, contributing theoretical, practical, and technical 

insights for effective waste disposal location determination. Sheel et al. [17] focus on supplier 

selection, introducing a Relative Reliability Risk (R3I) assessment method that combines 

AHP, entropy, and alternative functionality charts, demonstrating improved accuracy over 

traditional approaches. Niyazi and Tavakkoli-Moghaddam [18] apply three MCDM methods 

for facility location selection, proposing a final ranking method based on REGIME to address 

ranking discrepancies. Nikjo et al. [19] tackle player selection in sports, presenting a model 

utilizing the WeFA framework and MCDM methods to effectively evaluate multiple criteria 

through expert votes and ranking alternatives. Soltanifar [20] investigates the integration of 

preferential voting with the Kemeny Median Indicator Ranks Accordance (KEMIRA) 

method, proposing an improved model that addresses inherent shortcomings through linear 

programming, demonstrated on real-world problems. In a subsequent study, Soltanifar et al. 

[21] introduce the Voting-KEMIRA method, which reformulates KEMIRA as a linear 

programming model to mitigate computational complexity in multi-category scenarios, 

successfully applied in hospital construction projects. Building on this, Soltanifar and Santos-

Arteaga [22] present a hybrid approach that combines the Best Worst Method (BWM) and 

KEMIRA with Data Envelopment Analysis (DEA), enhancing flexibility in preference 

expression and improving attribute ranking accuracy via optimal weight selection. 

Additionally, Soltanifar et al. [23] propose the fuzzy KEMIRA method, which captures 

uncertainties in MADM, leveraging linear programming for optimal weight determination and 

illustrated through numerical examples and case studies, including innovation park location 

selection. Sabaei et al. [24] conduct a comprehensive review of Multi-Criteria Decision 

Making (MCDM) models pertinent to maintenance management in manufacturing, offering a 

comparative framework for selecting appropriate decision-making approaches. Recent 

developments in MADM techniques have introduced new models that address the challenges 

of uncertainty, subjectivity, and data aggregation. For instance, Lei et al. [25] proposed a 

three-way MADM model with objective risk avoidance coefficients based on q-rung orthopair 

fuzzy pre-order relations, which enhances decision-making by reducing subjective bias and 

improving the discrimination rate of distance measures. Liu et al. [26] introduced a multi-

attribute group decision-making (MAGDM) method using single-valued neutrosophic 

credibility numbers (SvNCNs) and fairly weighted variable extended power average (VEPA) 

operators, providing a more flexible and objective aggregation method. Dai et al. [27] 

developed a stochastic consensus approach for uncertain MADM problems, integrating a 

stochastic belief distribution to measure uncertainty and proposing a consensus index for 

improved decision-making in uncertain environments. These advancements provide a broader 

context for the proposed ARAS-M method, highlighting its innovation in enhancing 

sustainability evaluation in green supply chains. 

The Additive Ratio Assessment (ARAS) method, introduced by Zavadskas and Turskis [28], 

represents a cutting-edge approach for solving multi-criteria decision-making problems 

through compensatory mechanisms. This method quickly gained traction in various fields, 

including construction management, as demonstrated by Zavadskas et al. [29], who applied 

ARAS to assess foundation installation alternatives. The primary objective of the ARAS 

method is to facilitate the selection and ranking of options based on multiple criteria by 

determining the degree of preference for each alternative. Its adaptability has led to its 
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application in diverse scenarios, such as personnel selection [30], ranking factoring companies 

[31], and selecting internal safety auditors within construction organizations [32]. Moreover, 

the method has been employed in cost-benefit analyses [33], evaluating mobile models [34], 

and selecting software testing methods [35]. In a recent study, Idaman et al. [36] utilized the 

ARAS method to evaluate candidates for the position of Head of Production, demonstrating 

its effectiveness in integrating qualitative and quantitative criteria to ensure optimal decision-

making. Furthermore, Fan et al. [37] extended the ARAS method to a picture fuzzy 

environment, addressing green supplier selection and showcasing its versatility in handling 

ambiguous information. Notably, Heidary Dahooie et al. [38] demonstrated its utility in oil 

and gas drilling project evaluations through an interval-valued fuzzy ARAS approach, 

underscoring the method's effectiveness across a broad spectrum of applications. 

The evaluation of sustainable green supply chains in the food industry serves as an exemplary 

case for applying Multi-Criteria Decision-Making (MADM) methods. This issue has garnered 

attention due to the pressing need for organizations to adopt environmentally responsible 

practices. For instance, Soltanifar et al. [39] highlight the importance of supplier selection, 

emphasizing its direct impact on performance and profitability. Their study identifies essential 

criteria for green supplier selection—such as green design, purchasing, production, 

transportation, and pollution control—through a systematic review and expert engagement. 

They propose a new group voting analytical hierarchy process, demonstrating that valuable 

insights can be gained with minimal information, thereby enhancing decision-making 

efficiency. Similarly, Sharafi et al. [40] address the imperative of integrating green supply 

chain management (GSCM) to meet growing environmental concerns. They introduce a fuzzy 

Data Envelopment Analysis (DEA) model for green supplier selection, leveraging expert 

opinions and improving existing ranking methods to achieve comprehensive evaluations of 

suppliers. Building on these foundations, our research focuses on evaluating sustainable green 

supply chains specifically within the food industry. We present a significant advancement in 

decision-making methodologies by introducing the Modified Additive Ratio Assessment 

(ARAS-M), an innovative refinement of the traditional ARAS method. Unlike conventional 

approaches that often rely on static weighting schemes and limited engagement with decision-

makers, ARAS-M incorporates a linear programming model to dynamically optimize weight 

allocation, addressing a critical gap in adaptability and precision. Additionally, ARAS-M 

enhances decision-making processes through improved interaction with experts, enabling the 

method to capture nuanced priorities effectively. This novel framework is specifically tailored 

to the sustainability challenges of the food industry, offering a robust and practical tool for 

evaluating suppliers based on comprehensive sustainability criteria. By bridging gaps in 

existing methods, ARAS-M not only contributes to advancing academic discourse but also 

delivers actionable insights for practitioners committed to enhancing sustainability in their 

supply chains. 

The organization of this article is structured to facilitate a comprehensive understanding of 

our research on evaluating sustainable green supply chains in the food industry. We will begin 

with a methodology section, where we will provide an overview of the ARAS method and 

detail the design and explanation of our Modified Additive Ratio Assessment (ARAS-M). 

This section will include a structural comparison between the two methods to highlight the 

innovations introduced in ARAS-M. Following this, we will discuss sustainable GSCM in the 

food industry, defining the relevant attributes that pertain to this domain in a well-supported 

manner. We will then apply our proposed method to select a green supplier based on the 

defined attributes, demonstrating its practical utility. Finally, we will conclude with a 
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summary of findings, further discussions, and suggestions for future research avenues to 

enhance sustainable practices in supply chain management. 

 

2. Methodology 

In this section, we aim to present the methodology for addressing the decision-making 

challenges related to sustainable green supply chains. As a foundational approach, the 

Additive Ratio Assessment (ARAS) method, known for its compensatory nature in multi-

attribute decision-making (MADM), will first be introduced. ARAS, a well-established 

MADM technique, provides a structured mechanism for ranking alternatives based on 

multiple criteria. However, to enhance the robustness of the decision-making process, 

especially in scenarios where more nuanced judgments are required, we propose a 

modification. By integrating linear programming models and discrimination intensity 

functions, the improved method—Modified Additive Ratio Assessment (ARAS-M)—will 

offer more reasoned judgments and foster greater interaction with decision-makers. This 

enhancement ensures that decision-making becomes more aligned with the practical needs of 

complex, real-world applications, where flexibility and precision are crucial. 

 

2.1.Overview of the ARAS Method 

The Additive Ratio Assessment (ARAS) method is a multi-attribute decision-making 

(MADM) technique, which is designed to evaluate a set of alternatives based on multiple 

criteria, providing a structured way to rank the alternatives by determining their degree of 

utility. The key idea behind ARAS is to compare each alternative with an optimal one, often 

idealized, that possesses the best values for all criteria. The decision-making process starts 

with constructing a decision matrix that includes m alternatives and n criteria. This matrix not 

only captures the performance values of each alternative across all criteria but also includes 

an optimal alternative that either represents the best achievable values or is derived from 

predefined standards. 

In this method, alternatives A1, A2, …, Am are evaluated against criteria C1, C2 ,…, Cn, forming 

a decision matrix as shown in Equation (1).  
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The entries rij represent the performance of the ith alternative on the jth criterion, while r0j 

represents the optimal value for criterion j. When there are no predefined standards, an ideal 

alternative A+ is constructed, which holds the best possible values across all criteria based on 

Equation (2). It is important to note that this alternative is often hypothetical and may not exist 

in reality. Assuming J is the set of indices for benefit criteria (where higher values are better) 

and J′ is the set of indices for cost criteria (where lower values are better). 
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     1 2max ; min ; , , ,ij ij n
ii

A r j J r j J A A A+ + + +==      (2) 

The ARAS algorithm follows a systematic procedure: 

1. Normalization: The decision matrix is normalized. For benefit criteria (positive), 

normalization is done using Equation (3), and for cost criteria (negative), it follows 

Equation (4). This step ensures comparability across different criteria. 
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2. Weighting: The normalized matrix is weighted by multiplying each element by its 

corresponding criterion weight, ( )1 2

1

1;, , ,
n

n j

j

w w w w
=

=  as determined by the 

decision-maker, yielding the weighted normalized matrix, calculated using Equation 

(5). 
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3. Optimality Score: The overall performance score Si for each alternative is computed 

as the sum of the weighted normalized values across all criteria (Equation 6). 
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4. Degree of Utility: The utility degree Ki for each alternative is obtained by comparing 

its performance score to that of the optimal alternative (Equation 7). 
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5. Ranking: Finally, the alternatives are ranked based on their utility degrees. Higher 

utility values indicate better performance, guiding decision-makers to select the best 

alternative. 

This stepwise procedure allows for a comprehensive and rational comparison of alternatives, 

making ARAS a powerful tool for solving decision problems in various domains. 

 
2.2. Design and Explanation of the Modified Additive Ratio Assessment (ARAS-M) 

One of the primary limitations of the ARAS method lies in its normalization process, which 

involves incorporating a "predefined optimal standard" or a “virtual ideal alternative” to 

normalize the decision matrix and subsequently weight it. The approach used in ARAS for 

normalization is linear and bears resemblance to the Simple Additive Weighting (SAW) 

method [41]. However, the linear normalization applied in ARAS is asymmetric, leading to 

certain challenges when evaluating criteria. 
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In research aiming to improve the weighting of criteria in ARAS, it was suggested that instead 

of linear normalization, the min-max normalization approach should be employed [42]. This 

modification addresses the asymmetry issue and provides a more robust framework for 

evaluation. Thus, in the first step, instead of Equations (3) and (4), the alternative formulas 

(8) and (9) will be used for normalization: 
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In this section, we introduce the Modified ARAS method (ARAS-M), which involves the 

following improvements: 

1) Normalization using min-max scaling replaces the linear normalization used in the 

original ARAS method. 

2) Instead of using predefined criteria weights, ARAS-M incorporates criteria 

prioritization from experts and uses linear programming models to determine the 

final weights, ensuring greater flexibility and decision-maker interaction. 

Suppose we aim to evaluate m alternatives A1, A2, …, Am across n criteria 

 C1, C2 ,…, Cn. The decision matrix takes the general form of Equation (10): 
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Where rij is the value of alternative i under criterion j, r0j is the best possible value, and r(m+1)j 

represents the worst possible value for criterion j. These values can either be based on 

predefined standards or, when no standard exists, the ideal positive and ideal negative 

alternatives (A+ and A−) are computed as follows: 

• The ideal positive alternative (A+) is defined as the alternative with the best value 

across all criteria. 

• The ideal negative alternative (A−) is defined as the alternative with the worst value 

across all criteria. 

These can be computed via Equations (2) and (11), respectively, as: 

     1 2min ; max ; , , ,ij ij n
i i
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The modified algorithm of ARAS-M consists of the following steps: 

Step 1: Normalize the decision matrix using the min-max normalization formula: 
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Let us assume that the weights of the criteria, which are to be obtained from the 

decision-maker (note that in the modified method, the actual weights are not extracted; 

rather, the criteria are prioritized by experts), are denoted as ( )1 2
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By replacing the linear normalization process described in Equations (3) and (4) with the 

minimum-maximum normalization process from Equation (12), the utility degree can be 

recalculated according to Equation (13). Specifically, the utility ratio Ki for alternative Ai 

is computed as: 
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Since the weights of the criteria satisfy the condition 
1

1
n

j

j

w
=

= , the utility degree Ki can be 

calculated directly using the simplified formula in Equation (14): 
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This modified formulation incorporates the new normalization technique and adjusts the 

utility calculation accordingly, reflecting the weights of the criteria derived from the expert 

prioritization process. 

Step 3: Instead of directly assigning weights, we rank the criteria according to their 

importance as determined by experts. Assume K experts are involved, and 

( ), 1,2, , ; 1,2, ,k

jC j n k K=  =   represents the jth priority criterion from expert k. This 

leads to constructing a priority matrix for each expert using Equation (15). 

'

' '

'

0      
,  ; , 1, 2, , ,  1, 2, ,

1      
'

k k

jk k

k j j k kn

j

j j

j
n

j

if C C
R a a j n k K

f C
j

i C


 = = =  =  



 (15) 

Step 4: The distance between the prioritizations of each expert and the others is calculated 

using Equation (16). The total distance k  for each expert k is computed as: 
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In this step, the expert with the minimum distance to all other experts is identified as the 

reference expert. The prioritization provided by this expert is selected as the "reference 

prioritization" and serves as the basis for determining the final weights of the criteria. 

Mathematically, this reference expert 
*k  is found by minimizing k  (Equation (17)): 

*
1
min kk k K

 
 

=  (17) 

The prioritization of expert 
*k  is then considered the average prioritization for determining 

the criteria weights. 

Step 5: A linear programming model is used to optimize the utility degree Ki for each 

alternative (Model (18)). This allows each alternative to select the best set of normalized 

criteria weights that optimally evaluate it. 
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In Model (18), the weights ( )*

*,  1,2, ,
j

w j n=  , represent the re-indexed weights for the 

criteria based on the opinion of the reference expert. 

Step 6: Finally, rank the alternatives based on their utility degrees. The higher the utility 

degree, the better the alternative ranks. 

The modifications in ARAS-M, particularly the incorporation of criteria prioritization and 

linear programming, provide a more structured, justified, and interactive approach to decision-

making. It not only allows for a better reflection of the decision-maker’s preferences but also 

improves the robustness and credibility of the final rankings. 

 

2.3. Structural Comparison of ARAS and ARAS-M 

The Modified Additive Ratio Assessment (ARAS-M) approach presents notable 

enhancements over the traditional ARAS method. These improvements primarily revolve 

around two key structural changes: normalization process and the way weights for the criteria 

are determined. In this section, we delve into these modifications and their implications for 

the decision-making process. 

Normalization Process: In the ARAS method, a linear normalization process is used to 

transform the decision matrix values. This approach, while functional, has certain limitations, 

including the lack of symmetry and an over-reliance on predefined optimal and virtual ideal 
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solutions. The normalization used in ARAS is similar to the Simple Additive Weighting 

(SAW) method, which can sometimes lead to biased rankings when criteria have significantly 

different ranges. In contrast, ARAS-M introduces the minimum-maximum normalization 

technique, which addresses these biases by adjusting the criteria values to a more balanced 

scale. This new normalization formula ensures that each criterion is rescaled within its actual 

minimum and maximum values, providing a more accurate reflection of performance across 

different criteria. 

By adopting this approach, ARAS-M improves the fairness and objectivity in the comparison 

of alternatives, as each criterion contributes more evenly to the final ranking. 

Criteria Weighting: Another significant structural difference between ARAS and ARAS-M is 

the method for determining criteria weights. In ARAS, these weights are typically provided 

directly by the decision-maker, who assigns fixed value based on their judgment of the 

importance of each criterion. This can sometimes lead to inconsistencies, especially when 

decision-makers have limited expertise in the criteria or struggle to assess their relative 

importance. 

ARAS-M, on the other hand, enhances this process by utilizing expert prioritization instead 

of directly asking for weights. Through a more structured approach, the method derives 

weights by analyzing the relative prioritization provided by experts. This is achieved through 

the construction of a linear programming model that calculates the optimal weights for each 

criterion, taking into account the relative prioritizations. 

This not only makes the weighting process more rigorous but also allows for greater 

interaction with the decision-makers, ensuring that the calculated weights reflect their true 

preferences without requiring them to provide precise values. This model also allows for a 

dynamic adjustment of weights, leading to a more flexible and tailored decision-making 

process. 

Incorporation of Decision-Maker Interaction through Discrimination Intensity Functions: 

ARAS-M introduces a novel feature for improving decision-maker engagement by 

incorporating discrimination intensity functions. These functions enable a more interactive 

process for refining the weights of the criteria based on the decision-maker’s preferences. 

Specifically, discrimination intensity functions allow the decision-maker to influence the 

difference between the weight of a given criterion and the next in line. This mechanism 

provides an additional level of control, enabling the decision-maker to express preferences 

not just for the criteria’s importance but also for how significant the gap between criteria 

should be. 

In cases where equal weights are acceptable, the discrimination intensity function, denoted as 

( ).,d  , can take values close to zero. However, when criteria must be distinctly separated in 

importance, the function can be adjusted accordingly, making the model highly adaptive to 

various decision scenarios. This flexibility represents a key improvement, providing a richer 

dialogue between the decision-maker and the model and enabling more nuanced decision-

making. 

The origins of this approach can be traced back to Cook and Kress [43], who first proposed 

these weight control constraints in voting mechanisms. Their application has since been 

extended in several studies, including those by Noguchi et al. [44] and Llamazares and Pena 

[45]. The integration of these constraints allows ARAS-M to offer more robust solutions that 
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reflect not only the rankings of the criteria but also the decision-makers’ intensity of 

preferences. 

Optimizing with Linear Programming: The final difference between ARAS and ARAS-M is 

the use of linear programming to calculate the optimal ranking for each alternative. The linear 

model ensures that the best possible weights are selected for each alternative, maximizing its 

performance within the bounds set by the decision-makers’ prioritizations. In this way, 

ARAS-M allows for an optimally tailored evaluation of alternatives, ensuring that the results 

are both accurate and aligned with the decision-makers’ objectives. 

To summarize, ARAS-M represents a significant advancement over the traditional ARAS 

method by offering a more robust and interactive decision-making framework. The 

introduction of minimum-maximum normalization, the use of prioritization over fixed 

weights, and the inclusion of discrimination intensity functions make ARAS-M a highly 

adaptive and precise tool for multi-criteria decision analysis. These improvements not only 

lead to more accurate rankings but also provide greater flexibility for decision-makers to shape 

the decision-making process according to their specific preferences and needs. 

The procedures for the ARAS and ARAS-M methods are summarized in Figure 1, which 

presents the flowchart comparison of both approaches. 
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(4))

Weight Normalized 
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Weights from Decision 
Maker; Equation (5))

Overall 
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(Equation (6)) 

Utility Degree
(Equation (7)) 

Rank Alternatives
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Decision Matrix

Normalize Decision 
Matrix

(Use Minimum-Maximum 
Normalization; Equation 

(12))

Criterion 
Prioritization from 

Experts 
(No Direct Weight 

Assignment)

Calculate Distance 
Between Expert 
Prioritizations

(Equation (16))

Identify Reference 
Expert

(Minimum Distance: 
Equation (17))

Rank Alternatives
(Select Best Alternative)

Optimize Utility 
Degree using Linear 

Programming
(Model (18))

ARAS Method ARAS-M Method

 
Figure 1: Flowchart Comparison of ARAS and ARAS-M Methods 

 

3. Sustainable GSCM in the Food Industry 

In today's increasingly environmentally conscious world, sustainable practices in supply chain 

management (SCM) have become essential, especially in industries like food production 

where environmental impacts are significant. The concept of a green supply chain integrates 

eco-friendly approaches throughout the entire lifecycle of a product, from sourcing raw 

materials to the final disposal. By incorporating sustainability, companies can reduce their 

environmental footprint, optimize resource efficiency, and enhance their competitive 

advantage in the market. The food industry, given its global reach and complex logistics, faces 

unique challenges and opportunities in adopting GSCM practices. This section is divided into 

two key subsections: first, we will explore the Importance of GSCM, highlighting its role in 

addressing environmental concerns, and then, we will examine the Relevant Attributes in the 

Food Industry, focusing on the specific factors that drive sustainability in this sector. 
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3.1. Importance of GSCM 

GSCM plays a pivotal role in addressing environmental and sustainability challenges in the 

food industry. The integration of GSCM practices involves minimizing waste, reducing 

carbon footprints, and promoting eco-friendly packaging. In the food sector, such practices 

help mitigate resource depletion, waste management issues, and environmental 

contamination, which are critical concerns given the industry's heavy reliance on natural 

resources. 

The importance of GSCM has been amplified by increasing regulatory pressures, consumer 

awareness, and the need for companies to align with global sustainability trends. These 

pressures compel firms to adopt sustainable procurement strategies, resource-efficient 

production methods, and eco-friendly logistics. GSCM also helps food companies maintain a 

competitive edge by complying with environmental regulations and satisfying the growing 

demand for sustainably produced food. 

By implementing GSCM, food industry players not only contribute to environmental 

sustainability but also achieve economic benefits through cost savings in waste management 

and resource efficiency. Additionally, GSCM fosters innovation by encouraging the 

development of new, sustainable practices across the entire supply chain, from raw material 

sourcing to final product distribution [46]. 

 

3.2. Relevant Attributes in the Food Industry 

To effectively evaluate the sustainability of green supply chain management (GSCM) in the 

food industry, certain key attributes must be considered. These attributes serve as critical 

factors influencing sustainability performance, encompassing environmental, social, and 

economic aspects. Below are the 11 relevant attributes, each essential to understanding 

GSCM's role within the food sector. The attributes presented in this section are not exhaustive, 

but they represent key factors critical for the sustainable green supply chain management 

(GSCM) of the food industry. These attributes were selected with the help of an expert panel 

consisting of eight specialists, including food industry professionals and GSCM experts. The 

Delphi method was employed to refine and prioritize these attributes, ensuring a well-

rounded, expert-informed framework. 

Energy Efficiency (C1): Energy consumption is a critical factor in the food industry, 

particularly during production, transportation, and storage. Implementing energy-efficient 

technologies and practices reduces the carbon footprint of food products and contributes to 

sustainability goals. Several studies emphasize the importance of energy management as a 

core component of GSCM, with firms adopting renewable energy sources and energy-saving 

processes to cut costs and enhance environmental performance [46]. 

Waste Reduction (C2): Waste generation, particularly food waste, is a significant concern 

within the food supply chain. Effective waste management strategies, including recycling and 

reusing waste by-products, are vital to improving sustainability. Waste reduction not only 

contributes to environmental goals but also enhances economic efficiency by reducing 

disposal costs and resource wastage [47]. 

Water Management (C3): The food industry is one of the largest consumers of water resources, 

making sustainable water management an essential attribute. Practices such as water recycling 
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and optimizing water usage throughout production and processing stages ensure that 

companies can mitigate water scarcity risks and reduce environmental impact. Proper water 

stewardship is now a critical part of GSCM strategies [48]. 

Sustainable Procurement (C4): Sourcing raw materials sustainably ensures that environmental 

and social concerns are addressed from the very start of the supply chain. Sustainable 

procurement policies involve selecting suppliers based on their adherence to eco-friendly 

practices and labor standards, ensuring that the supply chain minimizes negative impacts on 

ecosystems and local communities [49].  

Eco-Friendly Packaging (C5): Packaging plays a crucial role in the food industry, but it often 

leads to significant environmental problems, especially with plastics. Sustainable packaging 

involves using biodegradable or recyclable materials and minimizing the overall volume of 

packaging to reduce waste. Many companies are innovating to adopt eco-friendly packaging 

solutions that align with GSCM practices [50]. 

Product Life Cycle (C6): The entire life cycle of a product, from production to disposal, must 

be considered in evaluating its sustainability. Life Cycle Assessment (LCA) helps companies 

measure the environmental impact of food products across their entire life span, ensuring that 

GSCM efforts are comprehensive. The LCA approach is now integral to sustainability 

evaluations in the food industry [51]. 

Transportation Efficiency (C7): Efficient transportation systems reduce fuel consumption and 

lower emissions. Logistics optimization, such as using energy-efficient vehicles, route 

planning, and load optimization, ensures that transportation activities in the food supply chain 

contribute to overall sustainability [52]. 

Supplier Collaboration (C8): Collaborative relationships with suppliers foster better 

environmental performance across the supply chain. By engaging suppliers in sustainability 

initiatives, companies can extend their green practices and improve the overall sustainability 

of the chain. Supplier collaboration is particularly vital in ensuring the consistent supply of 

sustainably sourced materials [53]. 

Corporate Social Responsibility (CSR) (C9): CSR initiatives in the food industry involve 

addressing social and environmental responsibilities, including fair labor practices, 

community engagement, and ethical sourcing. Companies are increasingly adopting CSR as 

a strategy to enhance their sustainability image and meet the growing demand for responsible 

business practices [54]. 

Carbon Footprint Reduction (C10): Reducing the carbon footprint of food production, 

processing, and distribution is essential for mitigating climate change. Carbon management 

programs, such as carbon labeling and emission reduction targets, are common tools used to 

measure and reduce greenhouse gas emissions [54]. 

Product Traceability (C11): Traceability allows companies to monitor the entire journey of 

food products through the supply chain, ensuring food safety, quality, and sustainability. With 

increasing consumer demand for transparency, traceability systems are becoming critical for 

proving the sustainability of products and for quick responses in case of contamination or 

recalls [55]. 

These attributes provide a comprehensive framework for assessing GSCM practices in the 

food industry, ensuring that sustainability is incorporated at every stage of the supply chain. 
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4. Case Study 

In this case study, we evaluate six suppliers using the modified ARAS-M method within the 

context of sustainable green supply chain management (GSCM) for the food industry. The 

decision-making process incorporates expert judgment, translating qualitative linguistic 

inputs into quantitative values for analysis. 

 

 

Table 1. Decision Matrix 

 Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5 Supplier 6 

C1 10 9 9 8 8 8 

C2 9 8 8 8 7 7 

C3 10 9 10 9 5 6 

C4 10 10 9 10 8 8 

C5 10 9 9 9 8 9 

C6 9 9 8 8 7 7 

C7 10 10 9 8 8 8 

C8 10 10 9 9 5 6 

C9 10 9 9 8 6 7 

C10 10 9 9 9 7 8 

C11 10 10 10 10 8 9 

First, the pairwise comparison matrix of the six suppliers is shown in Table 1. These 

qualitative inputs were aggregated from experts using a bipolar scale conversion. The 

attributes discussed in Section 3.2 were prioritized by five experts from the food industry and 

GSCM fields. Table 2 illustrates the outcome of this prioritization. 

Table 2: Attribute Prioritization by Experts 

 Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 

C1 2 1 2 4 2 

C2 11 10 11 11 11 

C3 8 9 8 1 8 

C4 3 3 3 8 4 

C5 5 5 5 5 6 

C6 10 11 10 10 9 

C7 6 7 6 6 5 

C8 9 8 9 9 10 

C9 7 6 7 7 7 

C10 4 4 4 3 3 

C11 1 2 1 2 1 

Based on the expert rankings, the priority matrices for each expert are formed using Equation 

(15). This step is crucial as it captures the distinct preferences of each expert regarding the 

relevant attributes for supplier evaluation. Tables 3 through 7 present the priority matrices 

derived for each of the five experts. These matrices serve as the basis for further analysis, 

where the differences between individual expert preferences are quantified. 

Table 3: Priority Matrix of Expert 1 

Expert 1 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 
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C1 0 1 1 1 1 1 1 1 1 1 0 

C2 0 0 0 0 0 0 0 0 0 0 0 

C3 0 1 0 0 0 1 0 1 0 0 0 

C4 0 1 1 0 1 1 1 1 1 1 0 

C5 0 1 1 0 0 1 1 1 1 0 0 

C6 0 1 0 0 0 0 0 0 0 0 0 

C7 0 1 1 0 0 1 0 1 1 0 0 

C8 0 1 0 0 0 1 0 0 0 0 0 

C9 0 1 1 0 0 1 0 1 0 0 0 

C10 0 1 1 0 1 1 1 1 1 0 0 

C11 1 1 1 1 1 1 1 1 1 1 0 

Table 4: Priority Matrix of Expert 2 

Expert 2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

C1 0 1 1 1 1 1 1 1 1 1 1 

C2 0 0 0 0 0 1 0 0 0 0 0 

C3 0 1 0 0 0 1 0 1 0 0 0 

C4 0 1 1 0 1 1 1 1 1 1 0 

C5 0 1 1 0 0 1 1 1 1 0 0 

C6 0 0 0 0 0 0 0 0 0 0 0 

C7 0 1 1 0 0 1 0 1 0 0 0 

C8 0 1 1 0 0 1 0 0 0 0 0 

C9 0 1 1 0 0 1 1 1 0 0 0 

C10 0 1 1 0 1 1 1 1 1 0 0 

C11 0 1 1 1 1 1 1 1 1 1 0 
 

Table 5: Priority Matrix of Expert 3 

Expert 3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

C1 0 1 1 1 1 1 1 1 1 1 0 

C2 0 0 0 0 0 0 0 0 0 0 0 

C3 0 1 0 0 0 1 0 1 0 0 0 

C4 0 1 1 0 1 1 1 1 1 1 0 

C5 0 1 1 0 0 1 1 1 1 0 0 

C6 0 1 0 0 0 0 0 0 0 0 0 

C7 0 1 1 0 0 1 0 1 1 0 0 

C8 0 1 0 0 0 1 0 0 0 0 0 

C9 0 1 1 0 0 1 0 1 0 0 0 

C10 0 1 1 0 1 1 1 1 1 0 0 

C11 1 1 1 1 1 1 1 1 1 1 0 

Table 6: Priority Matrix of Expert 4 

Expert 4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

C1 0 1 0 1 1 1 1 1 1 0 0 

C2 0 0 0 0 0 0 0 0 0 0 0 

C3 1 1 0 1 1 1 1 1 1 1 1 

C4 0 1 0 0 0 1 0 1 0 0 0 
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C5 0 1 0 1 0 1 1 1 1 0 0 

C6 0 1 0 0 0 0 0 0 0 0 0 

C7 0 1 0 1 0 1 0 1 1 0 0 

C8 0 1 0 0 0 1 0 0 0 0 0 

C9 0 1 0 1 0 1 0 1 0 0 0 

C10 1 1 0 1 1 1 1 1 1 0 0 

C11 1 1 1 0 1 1 1 1 1 1 0 

 

 

 

 

Table 7: Priority Matrix of Expert 5 

Expert 5 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

C1 0 1 1 1 1 1 1 1 1 1 0 

C2 0 0 0 0 0 0 0 0 0 0 0 

C3 0 1 0 0 0 1 0 1 0 0 0 

C4 0 1 1 0 1 1 1 1 1 0 0 

C5 0 1 1 0 0 1 0 1 1 0 0 

C6 0 1 0 0 0 0 0 1 0 0 0 

C7 0 1 1 0 1 1 0 1 1 0 0 

C8 0 1 0 0 0 0 0 0 0 0 0 

C9 0 1 1 0 0 1 0 1 0 0 0 

C10 0 1 1 1 1 1 1 1 1 0 0 

C11 1 1 1 1 1 1 1 1 1 1 0 

Using Equation (16), the distances between the priority rankings of each expert and 

others were calculated, resulting in the values shown in Table 8. This step allows us to 

identify consensus or divergence among the experts. From these calculations, it is evident 

that the first and third experts share the closest prioritization. Their alignment in 

preferences makes their combined prioritization the "reference prioritization," which will 

be used for determining the final weights of the attributes. Notably, these two experts 

provided identical rankings, simplifying the process of assigning reference values. 

Table 8. Distance Between Each Expert's Prioritization and the Others 

 Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 

k  37 58 37 105 51 

With the reference prioritization established, the decision matrix was rewritten, as 

shown in Table 9. This matrix not only reflects the revised ranking of the attributes but 

also identifies the best and worst possible values for each supplier using Equations (2) 
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and (11). In this matrix, the attributes are re-indexed based on expert prioritization, with 

smaller indices representing higher priority. 

Table 9: Rewritten Decision Matrix Based on Reference Prioritization 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A+
 10 10 10 10 10 10 10 10 10 9 9 

Supplier 1 10 10 10 10 10 10 10 10 10 9 9 

Supplier 2 10 9 10 9 9 10 9 9 10 9 8 

Supplier 3 10 9 9 9 9 9 9 10 9 8 8 

Supplier 4 10 8 10 9 9 8 8 9 9 8 8 

Supplier 5 8 8 8 7 8 8 6 5 5 7 7 

Supplier 6 9 8 8 8 9 8 7 6 6 7 7 

A-
 8 8 8 7 8 8 6 5 5 7 7 

 
The next step involved normalizing the decision matrix using the min-max 

normalization technique described in Equation (12). Table 10 presents the normalized 

decision matrix, where the attributes have been scaled according to their priority-based 

rankings. This normalization ensures that all attributes are comparable, despite their 

varying units and scales. 

Table 10: Normalized Decision Matrix 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

Supplier 1 1 1 1 1 1 1 1 1 1 1 1 

Supplier 2 1 0.5 1 0.7 0.5 1 0.75 0.8 1 1 0.5 

Supplier 3 1 0.5 0.5 0.7 0.5 0.5 0.75 1 0.8 0.5 0.5 

Supplier 4 1 0 1 0.7 0.5 0 0.5 0.8 0.8 0.5 0.5 

Supplier 5 0 0 0 0 0 0 0 0 0 0 0 

Supplier 6 0.5 0 0 0.3 0.5 0 0.25 0.2 0.2 0 0 

 
To compute the utility degree Ki for each supplier, Model (18) was applied. This 

model is optimized to select the best set of normalized criteria weights for each supplier. 

Additionally, the interaction with the reference expert helped determine the recognition 

function, or intensity function, used to assess the distance between attributes. It was 

decided that the recognition function would be set to the maximum allowable value, 

ensuring that Model (18) remained feasible. 

The final step in this process is the ranking of suppliers based on their utility degrees. 

The results of Model (18) and the ultimate ranking are shown in Table 11. Higher utility 

degrees indicate better supplier performance, and this ranking provides decision-makers 

with a clear and quantifiable basis for selecting the optimal supplier for sustainable 

practices in the food industry supply chain. 

Table 11: Final Ranking of Suppliers Based on Utility Scores 
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max =0.090909 

 

Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5 Supplier 6 

Ki 
1 0.808409 0.699439 0.622517 0 0.238405 

Rank 1 2 3 4 6 5 

This case study demonstrates the efficacy of the ARAS-M method in enhancing 

supplier evaluation, particularly within the complex and sustainability-driven context of 

GSCM. The integration of expert prioritization and advanced normalization techniques 

provides a more comprehensive and flexible framework for decision-making. 

 

5. Conclusion 
This study introduced the ARAS-M method as an innovative approach for evaluating 

sustainable GSCM in the food industry. By incorporating linear programming and expert 

prioritization, ARAS-M enhances the decision-making process compared to the 

traditional ARAS method. Through an extensive case study, we demonstrated the 

method's effectiveness in generating more reliable and robust rankings by utilizing 

normalized matrices and optimization techniques. This approach also improves the 

interaction with decision-makers through intensity detection functions, offering flexibility 

in adjusting the importance of criteria. 

Our findings reinforce the significance of sustainable practices in GSCM, particularly 

in the food industry, where environmental, social, and economic factors play a crucial role 

in supply chain decision-making. The ARAS-M method, by minimizing subjective biases 

and enabling the prioritization of criteria, supports a holistic and adaptable approach to 

evaluating suppliers. Furthermore, its ability to evaluate suppliers based on both benefit 

and cost criteria makes it well-suited for dynamic and resilient supply chains. 

While ARAS-M offers notable improvements, challenges remain, such as the inherent 

inaccuracy in determining the relative importance of criteria. Further refinement in this 

area is needed to enhance the model's robustness and reliability in diverse contexts. 

Future studies could explore several key avenues for extending the ARAS-M method. 

One promising direction is the integration of fuzzy logic or interval-based data to better 

model uncertainty and handle imprecise information, which is common in real-world 

supply chain scenarios. Fuzzy ARAS-M could provide a more nuanced approach to expert 

judgments, addressing the vagueness that often arises in complex decision-making 

environments. 

Another area for improvement is automating the expert prioritization process, which 

could make the method more scalable and applicable to a broader range of industries, 

beyond the food sector. Additionally, integrating ARAS-M with multi-objective 

optimization models could further enhance its flexibility, allowing it to address multiple 

conflicting objectives, a feature that would be highly beneficial for more complex and 

data-rich environments. Finally, the application of emerging technologies such as 

machine learning and big data analytics could enable the method to handle large datasets 

and dynamic supply chain environments more effectively. 

By pursuing these directions, future research could significantly broaden the scope 

and impact of the ARAS-M method, contributing to its applicability in more diverse, 

complex, and uncertain supply chain contexts. 
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