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Abstract: 

Computational intelligence methods, such as fuzzy logic and deep neural networks, are robust models to solve real-world 

problems. In many dynamic and complex problems, statistical attributes frequently change over the time. Recurrent neural 

networks (RNN) are suitable to model dynamic high-dimensional and non-linear state-space systems. Nevertheless, the RNN 

is incapable of modelling long-term dependencies in temporal data, and its learning using gradient descent is a complex and 

difficult task. The main objective of this research is extant a Hybrid Type-2 Fuzzy-LSTM Model (HT2FLSTM) for cope with 

uncertain and complex temporal time-series such as air pollution prediction. In this work, the proposed model aimed at 

overcoming the drawbacks of the existing methods and presenting a reliable, efficient and robust model for prediction of 

prediction of environmental temporal patterns through type-2 fuzzy systems and LSTM models. On the other hand, precise 

and reliable prediction can help reasonable strategies and assist the specialists in planning the best policies to model an event 

in uncertain circumstances. 
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1-Introduction 
 

The mathematical issue of learning long-term 

dependencies in RNNs is that gradients propagated over 

many stages have a tendency to vanish or explode [1]. One 

of available solutions to deal with this issue is to utilize a 

model that operates at several time scales. Deep learning 

approaches are major extensions of machine learning. The 

deep learning methods enables the modeling of complex 

relationships and concepts of the learning procedure using 

multiple levels of layers and their representation. On the 

other side, the Long-Short-Term-Memory (LSTM) 

networks are based on the idea of generates the paths 

through time that have derivatives that neither vanish nor 

explode. The distribution of air pollutants, such as particle 

matters, involves a complex process depends on several 

factors during a time-series. Handling such problems 

requires intelligent models to address the high-order 

uncertainty in the air pollution issue's characteristics. This 

research aims at modeling uncertainty sources associated 

with non-stationary time series features in real-world 

applications such as air quality prediction.  
 

The idea of introduce a self-loop to produce paths where  

the gradient can flow for extended times is an important  

 

 

 

influence of the original LSTM model [1]. By makes the 

weight of this self-loop gated, the time scale of integration 

can be changed dynamically. Nevertheless, one issue needs 

to be addressed in learning long-term problems; the 

uncertainty in temporal data and non-stationary problems 

[2]. The lack of inference and interpretability is that gap 

we aimed to handle with powerful tools in cope with high-

order uncertainty; type-2 fuzzy logic systems. Besides, the 

fuzzy logic systems suffer from the lack of learning and 

adaptation mechanisms for their membership function 

parameters and inference rules. The fuzzy inference rules 

make feature extraction more human interpretable under 

uncertainty. Utilize the hybrid intelligent models brings the 

advantages of both fuzzy logic and deep learning 

approaches in model the uncertainty and extract useful 

high-level features from ambiguous data. Therefore, this 

study's proposed model is a win-win game for LSTM and 

type-2 fuzzy logic systems.  

The HT2FLSTM  model benefits from computational 

intelligence models' potential for solve the long-term 

learning dependencies problems in an uncertain time-series 

prediction problem.  
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1-1- Literature Review 
 

An RNN has cycles in its graph that let it to keep 

information about historical inputs for an amount of time. 

The recurrent network transforms an input sequence into 

an output sequence while flexibly takes into account 

contextual information. Another architecture that makes it 

easy to remember information over long periods is called 

Long-Term Short-Term Memory (LSTM). The idea is that 

a network's activations are its short-term memory and its 

weights are its long-term memory. The LSTM architecture 

wants the short-term memory to last for a long time. It's 

composed of memory cells that have controllers say when 

to store or forget information. 
 

Many types of research [3]-[4] have been reported for 

model uncertainty based on fuzzy logic. During the recent 

decade, applications of type-2 fuzzy logic systems have 

been grown in handles the high-order uncertainty, 

especially for dynamic and non-stationary problems in 

control and time-series prediction [5]-[6]. Various 

intelligent models, such as neuro-fuzzy and LSTM, have 

been applied to model and predict the time series data in 

uncertain environments [7]-[11]. In addition to the general 

benefits of RNNs for time series prediction, the LSTM 

network can also automatically learn the data's temporal 

dependencies [12]. An LSTM cell's benefit compared to a 

regular recurrent unit is its cell memory [13]-[14]. The cell 

vector of an LSTM has the capability of the information 

earlier stored memory and the part of its new information 

[15]. These capabilities can be used in the prediction of 

temporal problems. LSTM networks have an excellent 

capability for handle the complex problems. Many LSTM 

networks are introduced as deep learning approaches to 

resolve many issues, such as model the multi-layered inter-

relationships between two-time series [16]-[17]. 
 

According to Table1, various hybrid fuzzy models applied 

to predict the time series data [18]-[24] have been 

reviewed. It has been proven that fuzzy systems, especially 

hybrid fuzzy models, have a great capability for solving 

complex and uncertain temporal problems, where the 

model estimates and predicts the similarity between two 

time series in uncertain conditions. [25]-[32]. 

 

 

 

 

 

 

 

 

 

 

Table 1: 

Related fuzzy models for time-series predictions 

Method Limitations 

FCM Time Series [18] No optimum parameter 

Fuzzy logic [19] No data reduction 

Fuzzy Markov [20] Complexity of model 

Fuzzy time series [23] 
High-order uncertainty is not 

modeled 

Fuzzy Neural [25] Weights are fixed 

Fuzzy-PSO [26] Limited to mid-range series 

Gustafson-Kessel Fuzzy 

Clustering [27] 

Insufficient results for long time-

series. 

PSO-fuzzy time series [28] Not reliable for long time-series 

Fuzzy-NN time series 

clustering [29] 
Time complexity is high 

Evolutionary Type-2 Fuzzy 

Rule Learning [30] 
Sensetive to initiate patameters 

Type-2 Fuzzy DTW Time 

Series [31] 
Not Reported 

DT2FTW [32] Not Reported 

 

2-Theoretical Research Background 
 

This section presents a brief overview of the RNN and the 

LSTM networks in A. It follows a review of interval type-2 

fuzzy sets (IT2FS) concepts and their mathematic 

definitions in B. 
 

 

Fig.1. The architecture of a Simple Recurrent Neural Network 

 

2-1-Recurrent Neural Networks and LSTM 
 

RNNs can represent time series, which are presented 

utilizes data sequences. One of the most important RNN 

deep learning models is LSTM. The LSTM network 

benefits several gated units to avoid RNN traditional 

issues; gradient vanishing. LSTM has been widely applied 

in many areas, especially in time series prediction. The 

LSTMs have been developed to address classic RNNs' 

limitations by enhance the network structure's gradient 

vanishing. The use of a cell state attains this      which 

stores long-term information as follows [13]:  
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Input gate: 

    (                           )     ( ) 

 

Output gate: 

    (                           )      ( ) 

 

Forget Gate: 

    (                           )             ( ) 

 

where      is the hidden state of the LSTM at time   

  and   is the weight matrices. As well as,    index is the 

time step, x is the input, and h is the output variables at 

time t, and   is the sigmoid activation function. The gates 

adjust the states and hidden cell of the LSTM based on the 

following equations [13]: 

Hidden state: 
 

     ⨀     (  ) 
     ( ) 

 

Cell state: 

     ⨀       ⨀     (                 )   
( ) 

 

where   is the element-wise product, and      as the 

activation function. 

 

 
Fig.2. The architecture of the LSTM cell [14] 

 

2.2 An Overview of Interval Type-2 Fuzzy Sets 

An IT2FS  ̃, is characterized through a type-2 MF   ̃(   ) 

where     and             as follows [20]: 

 

 ̃  ,((   )   ̃(   ))                 - ( ) 

 

where,     ̃(   )   ,   is the domain of fuzzy set and    

is the domain of the secondary MF at  .  ̃ is as [20]: 
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where   is the primary variable,    , an interval in [0,1], is 

the primary MF of x, u is the secondary variable, and 

∫  
    

is the secondary MF at x. Uncertainty about  ̃ is 

addressed by the union of all of the primary memberships, 

called the footprint of uncertainty (FOU) of  ̃ , i.e., 

    ( )̃  as follows: [21] 

 

   ( ̃)  ⋃   
   

 ( ) 

 

The membership grade of each element of an IT2FS is 

identified by an interval of   ̅ ̃( ),   ̃( )   In the IT2FLS, 

the UMF and LMF can better represent input variables' 

uncertainties than type-1 fuzzy sets. Similarly, the FOU in 

the IT2FLS provides more degrees of freedom when 

desings a fuzzy system [22]. Membership function (MF) of 

a type-2 fuzzy set (T2FS) of a given element is itself a 

type- 1 fuzzy set (T1FS) [20]. An interval type-2 fuzzy 

system (IT2FS) architecture contains four components; 

fuzzifier, fuzzy rule base, inference engine, type-reducer, 

and defuzzifier [23]. 

 

3-The Proposed Model 
 

This section presents the details of the proposed deep 

HT2FLSTM  architecture. In section A, we present the 

general structure of the HT2FLSTM  model. Then, in 

section B, the mathematical model of the HT2FLSTM  is 

described, in sections C and D include detailed description 

of inference layers and the mathematical details of fuzzy 

layers. In Section E, the cell structure of the LSTM 

(HT2FLSTM  Cell) has been proposed. 
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3-1-The Architecture of the proposed HT2FLSTM  
 

The HT2FLSTM  is fuzzified by the IT2F sets. The 

framework of the proposed HT2FLSTM  includes five 

layers; the input layer, encoder layer, hidden layers, the 

decoder layer, and the output layer. The details of each 

layer are illustrated in Figure. 3. 

Input Layer: The first layer is the input layer of 

HT2FLSTM  model in order to handles the historical time-

series data. The output of this layer feeds the inputs of the 

deep layers.  

Encoder, Hidden, and Decoder layers: The main idea is to 

map the entire input sequence to a vector and then use an 

encoder to generate the output sequence. In this layer, the 

encoder represents the whole input sequence in the hidden 

layer activities. The proposed structure can reform affords 

to the complexity of the training time-series. 

Output Layer: The final layer is considered as the 

prediction layer to make the decision and perform the 

prediction based on the input historical time-series data 

were established from the previously hidden layers.  

 

Fig.3. The architecture of the proposed model 

3-2- The Mathematical Model of the HT2FLSTM  

Time series prediction models specify future values of a 

target     for a given entity i at time t. The next step-ahead 

prediction is as follows: 

 ̂        (                   ) (  ) 

 

where  ̂      is the next step predicted value, t is the time 

step at T,          and          are observations of the target 

and observed inputs, respectively, over a look-back 

window  , and    is the prediction function, and the final 

prediction is produced by   : 

  

  (                    )      (  ) (11) 

       (                   ) (  ) 
 

where      and      denote the encoder and decoder 

functions, respectively. The mathematical model of 

different parts of the LSTM network in the proposed 

HT2FLSTM  architecture are given as follows:  

Definition 1: Let   be the number of memory units of the 

model. In time-step  , i.e., the current time, the network 

keeps in memory a set of vectors by the following 

equations: 

 

    (                        ) (  ) 

 

     (                        ) (  ) 

 

               (             )           (  ) 

 

     (                      ) (  ) 

 

       (  )                         (  ) 

 

   (        )                (  ) 
 

where   is the sigmoid function,   is the weight matrices, 

    is a matrix of fuzzy weights from the input cell to the 

output gate.   is the bias vector, and        and   are the 

input gates, the hidden (forget) gate, the output gate, and 

the cell activation function. The cell output is represented 

by   , and   is the element-wise product in Eq. (15).    is 

the activation function of the network. The hidden unit in 

this architecture is represented in memory blocks. Each 

block contains one or a large number of memory cells. 

This procedure allows these cells to preserve information 

for a specific time in an uncertain time-series and decide 

which piece of information should be stored and when to 

use it.  

3-3- Inference Layers 

The fuzzifier can be considered into two models, singleton 

and non-singleton, according to the number of non-zero 

MF values and defines the membership grade of input. In 

this research, the Takagi-Sugeno fuzzy rule type is 

considered which is more precise than the Mamdani 

inference engine in the literatures. The product and 

minimum t-norms were used in inference methods besides 

the singleton fuzzifier. The dropout layers' parameters and 
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the numbers of hidden layer is investigated in the Takagi-

Sugeno inference engine. The output process, contains the 

type-reducer and the defuzzifier, generates the crisp output, 

which used the well-known Karnik-Mendel (KM) 

algorithm [24].  
 

 

3-4- Mathematical Details of Fuzzy Layers 
 

The input variables of the HT2FLSTM  model can be 

defined as p where 𝑝 is the inputs of the proposed 

HT2FLSTM  model as follows: 

 {
  

             ̃ 
             ̃ 

  

  h      *  
       ̅ 

     +
}

 

 

 

 

(  ) 

 

where  ̃ 
   and  ̃ 

   are the interval type-2 fuzzy sets of the 

inputs xp and xp+1 in HT2FLSTM , respectively, M is the 

number of applied fuzzy rules,   
           ̅ 

      are the 

consequents of a fuzzy rule   
    . The product t-norm 

operator in Eq. (20) is applied to compute the membership 

interval as follows [25-27]: 
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         (  ) 

 

The inference part of the HT2FLSTM  model can be 

entirely characterized by 𝑀 fuzzy rules employed in the 

inference process as: 

 

 ̃            ̃
              

  Then       ̃                    (  ) 
 

The relation for each fuzzy rule is as: 

 

 ̃   ̃      
   ̃   ̃   ̃  (  ) 

 

The membership function of the rule is as, 

 

  ̃ (   )    ̃ 
 (  

 )      ̃ 
 (  

 )    ̃ ( ) (  ) 

 

wh r  ∩ signifies the product t-norm operation [26]. 

The output of each inference procedure is  ̃   ̃   ̃
 , with 

membership functions of   ̃ ( )   : 

 
 

  ̃ ( )  ⋃  

   

[   
( )    ̃  ̅(   )]   (  ) 

 

where ∘ defines the composition operation and ∪ 

represents the maximum t-conorm operation [25], and 

 ̃ ( ́) is the membership interval for the fuzzy rule, where 

   ́ and    is as 
 

 

  (  )  [  (  )  ̅  (  )]                             (  ) 
 

The firing output set  ̃  is produced through a fuzzy rule 

and the aggregation of the consequent of the HT2FLSTM  

model as: 

 

 ̃  

{
 

    ( ̃ )  *  ̃ (    )  ̅ ̃ (    )+

  ̃ (    )    (  )    ̃ ( )

 ̅ ̃ (    )   ̅  (  )   ̅ ̂( )

              

 

 

(  ) 

where   represents the product t-norm operation. The final 

output  ̃  is considered as the integration of all rule firing 

sets  ̃  on the output: 

 

 ̃  {

   ( ̃)  *  ̃(    )  ̅ ̃(    )+

  ̃(    )    ̃ (    )      ̃ (    )

 ̅ ̃(    )   ̅ ̃ (    )     ̅ ̃ (    )

                (  ) 

 

where   is the max operation. Then the type reduced 

set   ( ́)  is computed using the centroid   ́ of  ̃: 

 

  ( 
 )    ̃(  )  

 

   ̃(  )   ̃(  ) 
 

(  ) 

 

where the two points   ( ̃) and   ( ̃) are computed 

through the KM algorithm [24]. 
 

 

4-Experimental Results 
 

In this section, the evaluations and experimental results of 

the proposed model have been presented. In Section A, 

datasets description, features of the study, and correlation 

analysis of the features have been explained, respectively. 

In Section B, we presented the proposed model's accuracy 

with different cells and depths of layers to evaluate and 

compare the proposed HT2FLSTM  model's accuracy in 

the training process. In C, a ROC curve analysis and other 

metrics for performance evaluation have been described. 

Then the statistical results of the null hypothesis are 

described in D. The experimental results measuring 
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uncertainty and comparative study have been discussed in 

E, respectively. For air quality prediction the well-known 

public time-series datasets of the latest public standard 

pollutant data provided by the Environmental Protection 

Agency (EPA) were employed to evaluate the efficiency of 

the HT2FLSTM  model in real-world scenarios. This 

outdoor pollutant dataset includes NO2, SO3, PM10, PM2.5, 

and CO2 variables for one decade from June 2011 to 

October 2020 in Tehran and Beijing. The dataset is 

available on the following link:  

https://data.world/datasets/air-pollution 

 

4-1- Performance of the HT2FLSTM  Model 
 

Table 2 summarizes the information by selecting and 

reporting the main features, including the number of cells, 

depth, and accuracy during the training process. Table 2 

presents the proposed model's accuracy based on different 

datasets with different cells and depths of layers to 

compare the proposed HT2FLSTM  model's training 

process. Obtained results in Figure 4 shows different layers 

and cells configuration. The results reveal that the 

HT2FLSTM  with 20 Layers and 3000 cells is the most 

robust configuration, which reported the best performance 

during the prediction process, as depicted in the next 

section. Also, Figure.4 proves that more training steps 

obtain lower uncertainty, illustrated as the lower and upper 

bound. 

 

 
Fig.4. 10-fold cross-validation training accuracy  

 

Table 2 : 

 Training Accuracy of the Ht2flstm Model  

Cell Depth CO2 SO2 NO3 PM 2.5 PM 10 Mean 

10000 8 90 93 91 95 95 92 

7000 10 91 93 92 95 95 93 

5000 15 93 94 92 96 97 94 

3000 20 95 96 95 97 96 96 

 

4-2- ROC Curve Analysis and Statistical Evaluation 
 

A ROC curve analysis is conducted to have a reliable 

estimate of the HT2FLSTM  performance. The results 

were statistically verified. The following equations were 

used for evaluate the performance through a ROC curve 

analysis of the proposed model. Also, the standard metrics, 

such as precision and recall, were applied to evaluate the 

proposed model as follows: 
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(     )
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    r     
(     )

(           )
 

(  ) 

 

    
 

  
∑     

  

   

 
(  ) 

 

where    is the means of the ROC curve's accuracy for the 

10-fold cross-validation.  
 

 

Fig.5. Comparison of ROC curve analysis 

In order to show the robustness of the proposed model in 

comparison with counterpart models, Figure.5 shows the 

comparison of ROC curve analysis between the proposed 

https://data.world/datasets/air-pollution
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HT2FLSTM  and type-1 fuzzy, type-2 fuzzy, and LSTM 

model. 

4-3- Left Tailed T-Test and Time-Complexity Analysis 
 

In this section, a two-sample t-test (left tailed) was applied 

to show the model's efficiency compared with the LSTM 

network. The null hypothesis is defined as H0=     

    and H1:       , where    and    are the means of the 

area under the ROC curve (AUC) of HT2FLSTM  and 

LSTM for ten different runs of the cross-validation 

technique, respectively. The t-test results in Table 2 reveals 

the superiority of the proposed HT2FLSTM  model for Air 

quality time-series prediction compared to LSTM. The t-

test (according to the defined hypothesis test) failed to 

reject the defined null hypothesis. Also, time-series 

complexity is determined from the number of computation 

steps needed to run the algorithm as a function of input 

size. 

 

Table 3 : 

 t-test analysis of the ht2flstm  and lstm 

Fold Number HT2FLSTM  LSTM 

1 0.9149 0.7724 

2 0.9122 0.7111 

3 0.9734 0.6351 

4 0.9719 0.6221 

5 0.9214 0.7128 

6 0.9219 0.7815 

7 0.9250 0.7641 

8 0.9646 0.7401 

9 0.9629 0.8001 

10 0.9771 0.8111 

Mean 0.9445 0.7351 

 

 

 Table 4: 

 average complexity of proposed ht2flstm  model. 

Pseudo Code  Average Complexity 

Class Type (8*O(1) + O(N*M) + O(N2) 

Training Time (7*O(1) + O(N2)) 

Calculating the Output O(M*N) 

Calculating the Error O(1) + O(M*N) 

The Output O(1) + O(N) 
 

4-4- Error Calculation and Technical Analysis 
 

In this step, the Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), and Mean Percentage Error (MPE) 

have been applied to evaluate the performance of the 

HT2FLSTM  model as follows: 
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The details of the obtained results in the Tehran air quality 

index time-series dataset are reported in Table 5. The 

experiments reveal that the proposed HT2FLSTM  model's 

performance is better than its counterparts, such as the 

type-1 fuzzy logic system (T1FLS), type-2 fuzzy logic 

system (T2FLS), and the LSTM model with the same cell 

number and same layer. Table 5 presents a comparison of 

conventional methods and the proposed HT2FLSTM  

model. Unlike the fuzzy-inference counterparts, deep 

learning methods, such as the LSTM network, do not 

require handcrafted features. Instead, they rely on 

predefined structures and labeled data and can learn 

features on their own. 
 

 

Table 5: 

performance comparison of ht2flstm  and counterparts 

 

Figure. 6 illustrates the seasonal (long-term) comparison of 

the original observations and predicted values of the 

HT2FLSTM  model for the Tehran air quality index with 

six different compelling features. The results show that the 

proposed HT2FLSTM  model is 28% greater than T1FLS, 

8% greater than T2FLS, 7% greater than LSTM in terms of 

AUC, Recall, and Precision.  

 
Fig.6. The HT2FLSTM  applied to air quality prediction; (a) show 

uncertainty bounds, and (b) fit results of the time-series 

Method AUC% CI Recall Precision 

T1FLS 69 [66-70] % 67% 69% 

T2FLS 89 [87-89] % 89% 91% 

LSTM 90 [89-91] % 91% 92% 

HT2FLSTM * 97 [95-97] % 95% 98% 
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According to Tables 6 and 7, the results confirm that the 

proposed HT2FLSTM model achieves better performance 

and lower error rates in terms of RMSE, MAE, and MPE, 

in Tehran and Beijing datasets. 

Table 6: 

Comparison results for HT2FLSTM  in Tehran 

Method 
Tehran Dataset 

MAE RMSE MPE 

LSTM 0.068 0.041 1.81 

IT1FLS 0.051 0.022 1.72 

IT2FLS 0.032 0.039 1.61 

HT2FLSTM  (This work) 0.021 0.023 1.27 
 

 

Table 7: 

Comparison results for HT2FLSTM  in Beijing 

Method 
Beijing Dataset 

MAE RMSE MPE 

LSTM 0.062 0.059 1.37 

IT1FLS 0.041 0.51 1.26 

IT2FLS 0.029 0.041 1.23 

HT2FLSTM  (This work) 0.021 0.025 1.14 

 

5-Conclusion 

The proposed HT2FLSTM model has more design degrees 

of freedom than a type-1 or other related models because 

of the FOU parameters in type-2 fuzzy sets and its 

potential to model inequality of time intervals. The 

proficiency of Type-2 FLSs has been proved in high-order 

uncertainties such as non-stationary events in time series. 

This study takes advantage of type-2 fuzzy logic and the 

LSTM network as a deep learning approach to develop the 

HT2FLSTM  model. The experiments reveal that the 

performance of the proposed HT2FLSTM model is better 

than its counterparts. The results show that the proposed 

HT2FLSTM  model is 28% greater than IT1FLS, 8% 

greater than IT2FLS, 7% greater than LSTM in terms of 

AUC. The proposed HT2FLSTM  model has an average 

AUC of 97% with a 95% confidence interval [95-97] %. 

These results show that the proposed HT2FLSTM  model 

can achieve reliable results in the temporal data and 

learning of long-term dependencies. The proposed 

HT2FLSTM model has additional design degrees of 

freedom than a type-1 or other related representations 

because of the FOU parameters and its budding to 

archetypal variation of temporal patterns on the time 

intervals. The experiment results confirm that the proposed 

model has lower error rates than other state-of-the-art 

algorithms. Additionally, the model can easily get updated 

because of its deep architecture when new cases are 

reported. Further studies are suggested to tune the 

HT2FLSTM  cell structure parameters and apply them to 

other real-world applications associated with non-

stationary uncertainties. Optimization algorithms can be 

used to improve the performance of the HT2FLSTM  

model. 
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