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Abstract 

Parkinson's disease is a widespread neurodegenerative condition necessitating early diagnosis for effective intervention. This 

paper introduces an innovative method for diagnosing Parkinson's disease through the analysis of  EEG signals, employing a 

Support Vector Machine (SVM) classification model. this research presents novel contributions to enhance diagnostic 

accuracy and reliability. Our approach incorporates a comprehensive review of EEG signal analysis techniques and machine 

learning methods. Drawing from recent studies, we have engineered an advanced SVM-based model optimized for 

Parkinson's disease diagnosis. Utilizing cutting-edge feature engineering, extensive hyperparameter tuning, and kernel 

selection, our method achieves not only heightened diagnostic accuracy but also emphasizes model interpretability, catering 

to both clinicians and researchers. our method's performance is evaluated through experiments on a diverse dataset of EEG 

recordings from Parkinson's patients and healthy controls, showing enhanced diagnostic accuracy over conventional methods. 

In conclusion, this paper introduces an innovative SVM-based approach for diagnosing Parkinson's disease from EEG 

signals. Building upon the IEEE framework and previous research, its novelty lies in the capacity to enhance diagnostic 

accuracy while upholding interpretability and ethical considerations for practical healthcare applications. These advances in 

early Parkinson's disease detection and management revolutionize care, improving patient outcomes and quality of life. 

Keyword: Parkinson's Disease(PD), Electroencephalogram (EEG) Signals, Machine Learning(ML), Support Vector Machine 

(SVM), Classification.

1. INTRODUCTION 

Parkinson's disease (PD) is a debilitating neurodegenerative 

disorder that affects millions of individuals worldwide. It is 

characterized by a wide range of motor and non-motor 

symptoms, with motor symptoms such as tremors, 

bradykinesia, and rigidity being THE MOST 

RECOGNIZABLE.Early and accurate diagnosis of PD is 

essential for timely medical intervention and to improve the 

patient's quality of life. This paper addresses the challenging 

task of diagnosing Parkinson's disease based on human EEG 

(Electroencephalography) signals by utilizing advanced 

machine learning methods. The significance of early 

diagnosis, combined with the potential of EEG signals, has 

motivated a growing body of research to develop accurate 

and efficient diagnostic systems[8]. 
The foundation of this work is built upon a comprehensive 
review of existing research encompassing 25 referenced 
studies, which have explored a multitude of methodologies, 
ranging from machine learning techniques to novel signal 
processing strategies. 
The contributions of these studies have formed the basis for 
our research, and we have aimed to advance the state of the 
art by incorporating novel elements into the diagnostic 
process[5]. 

Machine learning, particularly within the domain of EEG 
signal analysis, has shown remarkable promise in the 
diagnosis of Parkinson's disease. The potential to uncover 
patterns, features, and biomarkers in EEG signals associated 
with PD has attracted researchers from various fields, 
including neuroscience, computer science, and biomedical 
engineering. A deep understanding of how EEG signals 
correlate with the underlying neural processes in Parkinson's 
disease has allowed for the development of powerful 
diagnostic tools [2]. 
Several studies have emphasized novel approaches for EEG-
based diagnosis. These include partial directed coherence 
(PDC) [1], deep hybrid networks [6], and the use of discrete 
wavelet transform combined with different entropy measures 
[14], each offering unique insights and valuable 
contributions to the field. Moreover, approaches like the use 
of Common Spatial Pattern (CSP) and high-order spectra for 
emotion classification [15] illustrate the breadth of 
applications for EEG-based diagnosis, extending beyond 
traditional motor symptom detection. 
Recent research on assessing gender fairness in EEG-based 
machine learning detection [10] highlights the growing 
concern for ethical considerations in machine learning 
models, especially when applied to healthcare. It is vital to 
ensure that diagnostic models are not biased and provide 
accurate results for all individuals, regardless of gender or 
other demographic factors. 
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This paper also explores practical applications, such as a 
randomized controlled trial of high-frequency repetitive 
Transcranial Magnetic Stimulation (rTMS) to improve gait 
freezing [8]. This illustrates the potential for not only 
diagnosis but also therapeutic interventions based on EEG 
signals in PD. 
In light of these advancements, our research aims to 
contribute to this growing body of knowledge by proposing a 
novel diagnostic system that integrates the state-of-the-art 
Non-Linear Support Vector Machine (SVM) classification 
method. The SVM model, combined with customized 
kernels, feature engineering strategies, and ethical 
considerations, enhances the accuracy, interpretability, and 
fairness of Parkinson's disease diagnosis. Our contributions 
will extend the existing framework for Parkinson's disease 
diagnosis and are expected to yield more reliable and 
accurate results in a real-world clinical context. 
In light of these advancements our research aims to 
significantly contribute to the growing body of knowledge 
surrounding Parkinson's disease diagnosis. By proposing a 
novel diagnostic system that integrates the state-of-the-art 
Non-Linear Support Vector Machine (SVM) classification 
method, we aim to enhance the accuracy, interpretability, and 
fairness of this critical process.  
The SVM model, when combined with carefully crafted 
kernels, innovative feature engineering strategies, and 
rigorous ethical considerations, has the potential to 
revolutionize how Parkinson's disease is diagnosed. Our 
research will delve into the development of customized 
kernels that can effectively capture the complex nonlinear 
relationships inherent in Parkinson's disease data. 
Additionally, we will explore feature engineering techniques 
that can extract the most informative and discriminatory 
features from diverse data sources, including physiological 
signals, neuroimaging data, and genetic markers. 
By addressing ethical concerns such as data privacy, bias, 
and fairness throughout the development process, we aim to 
ensure that our diagnostic system is not only accurate but 
also equitable and trustworthy. Our contributions will extend 
the existing framework for Parkinson's disease diagnosis, 
providing a more reliable and accurate tool for clinicians to 
identify and manage this debilitating condition. Ultimately, 
our research seeks to improve the quality of life for 
individuals living with Parkinson's disease by enabling 
earlier diagnosis and more effective treatment. 
This paper is structured as follows: In the methodology 
section, we detail our novel approach, the SVM-based 
diagnostic system, discussing the unique elements of our 
framework. Subsequently, we present the experimental setup 
and results, demonstrating the superiority of our approach 
compared to traditional methods. Finally, we conclude by 
discussing the implications of our findings, including the 
potential for early diagnosis, ethical considerations, and 
future research directions. 

2. BACKGORUND 

arkinson's disease affects millions of people globally. It is 
characterized by a wide range of motor and non-motor 
symptoms, with motor symptoms such as bradykinesia, 
tremors, and rigidity being the most recognizable. Timely 

and accurate diagnosis of PD is crucial for facilitating early 
intervention and personalized treatment strategies, which can 
significantly improve the quality of life for affected 
individuals. 
Parkinson's disease (PD) is a neurodegenerative disorder that 
affects millions of people worldwide, causing a significant 
burden on individuals, families, and healthcare systems. 
Characterized by a wide range of motor and non-motor 
symptoms, PD can significantly impair a person's quality of 
life.  
Motor symptoms, such as bradykinesia (slowed movement), 
tremors, and rigidity, are often the most recognizable 
manifestations of PD. However, the disease also 
encompasses a spectrum of non-motor symptoms, including 
cognitive impairment, sleep disturbances, depression, and 
gastrointestinal problems.  
Timely and accurate diagnosis of PD is essential for 
facilitating early intervention and personalized treatment 
strategies. Early diagnosis allows for the implementation of 
therapeutic interventions that can slow the progression of the 
disease and alleviate symptoms. Additionally, personalized 
treatment plans tailored to individual needs can help 
optimize patient outcomes and improve overall well-being. 
Traditional methods of diagnosing PD often rely on clinical 
assessments and observations, which can be subjective and 
may not provide an early diagnosis when the disease is in its 
incipient stages. Therefore, there is a growing interest in 
developing objective, quantifiable, and non-invasive 
diagnostic methods. In recent years, the use of 
Electroencephalography (EEG) and machine learning 
techniques has emerged as a promising avenue for the early 
and accurate diagnosis of PD. 
EEG is a well-established neuroimaging technique that 
records electrical activity in the brain by measuring the 
voltage fluctuations resulting from the ionic current within 
neurons. This non-invasive and cost-effective method offers 
unique insights into brain function and dynamics. In the 
context of PD diagnosis, EEG has garnered considerable 
attention for several reasons: 
- Electrophysiological Biomarkers: EEG can capture 
electrophysiological biomarkers associated with PD. These 
biomarkers include changes in brain oscillatory activity, 
connectivity patterns, and event-related potentials (ERPs), 
which can be indicative of the disease's presence and 
progression [1] [18] [23]. 
PD is not only characterized by motor symptoms but also by 
a wide range of non-motor symptoms, including cognitive 
impairment, depression, and sleep disturbances. EEG can 
potentially detect these non-motor symptoms and contribute 
to a comprehensive diagnosis [5] [13] [19]. 
Early Detection: EEG may offer the potential for early 
detection of PD, even before motor symptoms become 
apparent. The ability to identify PD in its early stages is 
critical for timely intervention and disease management [1] 
[3] [11]. 
Objective and Quantifiable: EEG provides objective and 
quantifiable data, reducing the subjectivity associated with 
clinical assessments [10] [16]. 
The integration of machine learning techniques with EEG 
data has unlocked new possibilities for PD diagnosis. These 
techniques have demonstrated the ability to identify complex 
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patterns and features in EEG signals that are associated with 
PD, thereby enhancing diagnostic accuracy. Key 
advancements include: 
A variety of features can be extracted from EEG signals, 
including spectral power, coherence measures, entropy, and 
event-related potentials, enabling the creation of 
discriminative features for machine learning models [1] [4] 
[14]. 
Machine learning algorithms such as Support Vector 
Machines (SVM), Random Forest, and Deep Learning have 
been applied to EEG data to classify individuals as either PD 
patients or healthy controls [20] [24]. 
Recent research has shed light on the importance of assessing 
fairness in machine learning models, particularly with regard 
to gender-based biases in PD diagnosis [10]. Ethical and fair 
diagnosis is crucial in the application of these models in a 
clinical setting. 
Recent research has highlighted the critical importance of 
assessing fairness in machine learning models, particularly in 
the context of gender-based biases in Parkinson's disease 
(PD) diagnosis. As machine learning algorithms are 
increasingly deployed in clinical settings, it is imperative to 
ensure that these models are not perpetuating existing biases 
or disparities.  
Gender-based biases in PD diagnosis can have significant 
consequences, leading to unequal access to care, delayed 
treatment, and poorer health outcomes for individuals from 
marginalized groups. By systematically evaluating the 
fairness of machine learning models, researchers and 
clinicians can identify and address potential biases, 
promoting ethical and equitable healthcare practices.  
Ethical and fair diagnosis is crucial for ensuring that PD 
patients receive the appropriate care and support they need. 
A biased model can misdiagnose individuals, leading to 
unnecessary suffering, incorrect treatments, and a waste of 
healthcare resources. By prioritizing fairness in machine 
learning, we can help to create a more just and equitable 
healthcare system for all. 
Multiple studies have introduced novel diagnostic systems 
that combine EEG and machine learning techniques to 
address various aspects of PD diagnosis. These include the 
use of partial directed coherence (PDC) to uncover 
connectivity patterns [1], compact deep hybrid networks for 
feature extraction [6], and the utilization of Common Spatial 
Pattern (CSP) for emotion classification [15]. 
Multiple studies have introduced innovative diagnostic 
systems that leverage the power of electroencephalography 
(EEG) in conjunction with machine learning techniques to 
address various aspects of Parkinson's disease (PD) 
diagnosis. These systems offer promising approaches to 
improve the accuracy, efficiency, and objectivity of PD 
diagnosis. 
Partial directed coherence (PDC): This technique has been 
employed to uncover the complex connectivity patterns 
within the brain of PD patients. By analyzing the directional 
influence between different brain regions, PDC can provide 
valuable insights into the neural mechanisms underlying PD, 
potentially aiding in early diagnosis and monitoring disease 
progression. 
Compact deep hybrid networks: These networks have been 
developed to effectively extract informative features from 

EEG data. By combining deep learning architectures with 
traditional signal processing techniques, these models can 
capture the intricate patterns and characteristics of PD-
related brain activity, enhancing diagnostic accuracy. 
Common Spatial Pattern (CSP): CSP has been utilized for 
emotion classification in PD patients, offering potential 
applications for monitoring disease-related changes in 
emotional processing. By identifying spatial patterns in EEG 
data that discriminate between different emotional states, 
CSP can contribute to a more comprehensive understanding 
of PD and its impact on patients' well-being. 
In this paper, we leverage the comprehensive knowledge and 
methodologies drawn from the 25 referenced studies 
mentioned above. We aim to contribute to the evolving field 
of EEG-based PD diagnosis by proposing a novel diagnostic 
system that incorporates the Non-Linear Support Vector 
Machine (SVM) classification method. This integration is 
expected to improve diagnostic accuracy, interpretability, 
and fairness, ultimately enhancing the early diagnosis and 
management of Parkinson's disease. 
the combination of EEG signals and machine learning 
techniques offers a promising approach for PD diagnosis. 
This paper builds upon the existing research and the IEEE 
framework to present a novel system that aims to address the 
diagnostic challenges associated with Parkinson's disease, 
offering potential benefits for both patients and healthcare 
providers. 
The combination of EEG signals and machine learning 
techniques offers a promising approach for PD diagnosis.** 
EEG data provides a non-invasive window into the brain's 
electrical activity, allowing researchers to identify subtle 
changes associated with PD. Machine learning algorithms, 
with their ability to learn complex patterns from data, can 
effectively analyze EEG signals to extract diagnostic features 
and make accurate predictions. 
This paper builds upon the existing research and the IEEE 
framework to present a novel system that aims to address the 
diagnostic challenges associated with Parkinson's disease. By 
integrating state-of-the-art machine learning techniques with 
carefully selected EEG features, our system seeks to improve 
the accuracy, efficiency, and objectivity of PD diagnosis. 
Our proposed system offers potential benefits for both 
patients and healthcare providers. For patients, early and 
accurate diagnosis can lead to more timely interventions, 
potentially slowing the progression of the disease and 
improving quality of life. For healthcare providers, our 
system can streamline the diagnostic process, reducing the 
burden on clinicians and enabling more efficient allocation 
of resources. Ultimately, our research aims to contribute to 
the development of more effective and accessible diagnostic 
tools for Parkinson's disease. 
 

3. METHOD AND MATERIALS 

Materials 
In this study, we utilized a dataset that had been previously 
collected by another research group. This dataset has been 
analyzed in prior publications, one of which revealed an 
increased phase-amplitude coupling (PAC) between the β 
phase and broadband γ amplitude in Parkinson's disease (PD) 
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patients when they were not taking medication, compared to 
when they were on medication. The same dataset was also 
compared to a group of healthy individuals who were 
matched in age. This dataset contains EEG 
(Electroencephalography) data from 15 PD patients, of 
which eight were female, with an average age of 63.2 years 
(±8.2 years). These patients were assessed both while on and 
off dopaminergic medication. Additionally, the dataset 
includes data from 16 healthy participants matched in age, of 
which nine were female, with an average age of 63.5 years 
(±9.6 years). 
All PD patients were diagnosed by a specialist in movement 
disorders at Scripps Clinic in La Jolla, California. All 
participants were right-handed and provided written consent, 
following the guidelines of the Institutional Review Board of 
the University of California, San Diego, and the principles of 
the Declaration of Helsinki. For more detailed information 
on the patients, you can refer to the source [26].  
Data Collection 
Data collection occurred when patients were both taking 
their regular medication and during periods when they 
abstained from medication. These two conditions were 
balanced systematically, and the data were collected on 
different days. When the patients were on medication, they 
followed their usual medication routine. On the other hand, 
during the off-medication condition, patients refrained from 
medication for at least 12 hours prior to the data collection 
session. Healthy control participants, in contrast, underwent 
testing only once. 
when patients were taking their regular medication and 
during periods when they abstained from medication. This 
approach allowed for a comprehensive assessment of the 
impact of medication on EEG signals and the potential for 
differentiating between PD patients and healthy controls.  
To ensure balance and minimize confounding factors, the 
two conditions were systematically alternated.** Data 
collection sessions were scheduled on different days to avoid 
carryover effects from one condition to the other.  
When patients were on medication, they followed their usual 
medication routine, ensuring that the data were collected 
under conditions that reflected their typical daily experience.  
During the off-medication condition, patients refrained from 
taking their medication for at least 12 hours prior to the data 
collection session. This allowed for an evaluation of the 
baseline EEG activity in the absence of medication, 
providing valuable insights into the underlying 
neurophysiological changes associated with PD.  
Healthy control participants, in contrast, underwent testing 
only once. This approach allowed for a comparison of EEG 
signals between PD patients and healthy individuals under 
similar conditions, facilitating the identification of diagnostic 
features specific to PD. 
During the data collection process, EEG data was recorded 
using a 32-channel BioSemi ActiveTwo system, and it was 
sampled at a rate of 128 Hz. Resting data was collected for a 
minimum of 3 minutes. Throughout the data acquisition, 
participants were seated comfortably and were instructed to 
focus their attention on a cross displayed on a screen. 
Furthermore, additional electrodes were placed at the side 
and beneath the left eye to monitor eye blinks and 
movements. While participating in the study, the subjects 

also completed several other assessments, which are outlined 
in a previously published report [25]. However, these 
additional assessments are not the primary focus of analysis 
in this particular study. 

Method 

The accurate and early diagnosis of Parkinson's disease 

(PD) is pivotal in improving patient outcomes and enabling 

timely intervention. Parkinson's disease is a complex 

neurodegenerative disorder affecting millions worldwide, 

demanding innovative diagnostic tools. The fusion of human 

electroencephalogram (EEG) signals and machine learning 

methods offers a promising avenue for non-invasive, 

efficient, and early PD diagnosis. 

The amalgamation of diverse studies, represented by the 25 

references cited, brings together a wealth of knowledge, 

resulting in a tailored methodology for enhanced accuracy 

and reliability in the diagnosis of Parkinson's disease using 

EEG signals and machine learning. 

Our method draws upon the expertise of previous 

researchers who have explored various aspects of EEG-

based diagnosis, from specific feature extraction techniques 

[1, 2, 3, 4, 5, 6] to the selection of machine learning models 

[7, 8, 9, 20] and the ethical considerations involved [1-9]. 

Incorporating insights from previous studies, our advanced 

approach combines state-of-the-art feature engineering 

methods, extensive hyperparameter optimization, and 

customized kernel selection strategies. While our primary 

focus is on enhancing diagnostic accuracy, we also prioritize 

the interpretability of the Support Vector Machine (SVM) 

model, a crucial aspect for both clinicians and researchers. 

Our methodology builds upon the foundation of ethical 

research, addressing data privacy concerns and potential 

biases, aligning with established ethical standards [1-9]. 

4. DATA PREPROCESSING 

In the context of diagnosing Parkinson's disease based on 
human EEG signals, rigorous preprocessing is essential to 
ensure the reliability and accuracy of subsequent analyses. 
This section outlines the preprocessing steps undertaken to 
enhance the quality of the EEG signals and extract 
meaningful features for classification. All preprocessing 
steps are carried out using Matlab R2023a. The 
preprocessing pipeline consists of the following stages: 
1. Notch Filter for Hum Line Removal 
The EEG signals often contain interference from power lines, 
typically at 60 Hz, commonly referred to as the "hum" line. 
To eliminate this unwanted frequency component and reduce 
noise, a notch filter was applied. This step is crucial to ensure 
that the subsequent analysis is not affected by electrical 
interference. 
2. Band-Pass Filter for Frequency Extraction 
Extracting relevant frequency information is pivotal for 
identifying distinct EEG patterns. A band-pass filter was 
employed to retain EEG frequencies within the range of 0.1 
Hz to 80 Hz. This step effectively removes any high-
frequency noise while preserving the frequencies of interest 
for further analysis. 
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3. Extraction of Different Rhythms 
EEG signals encompass a variety of frequency rhythms 
associated with specific cognitive and neural processes. The 
following rhythms were extracted: 
- Delta Rhythm (0.1 - 3.9 Hz 
- Theta Rhythm (4 - 7.9 Hz) 
- Alpha Rhythm (7 - 12.9 Hz) 
- Beta Rhythm (13 - 29.9 Hz) 
- Gamma Rhythm (30 - 80 Hz): Gamma waves are involved 
in complex cognitive functions such as perception and 
consciousness. 
Figure 1 presents an illustrating a comparison of Filtered 
EEG signals obtained from healthy subjects and PD patients. 

 

Fig 1: Comparison of EEG Signals for Healthy Subjects and Parkinson's 
Disease Patients. a) healthy control b) parkinson disease 

4. Calculation of Band Power: 
After rhythm extraction, the power within each frequency 
band was quantified using the power spectrum method. This 
transformation from the time domain to the frequency 
domain, often achieved using the Fast Fourier Transform 
(FFT), provides insight into the amplitude and distribution of 
power across different rhythms. 

                                                  

 

where N is the number of data points in the EEG signal and 
Xk is the kth data point. 

5. Power Spectrum Method 
To better visualize and analyze the extracted band powers, a 

power spectrum is generated. The power spectrum represents 

the distribution of power across different frequency bands. 

This provides insights into the relative dominance of various 

brain rhythms and their potential correlation with Parkinson's 

disease. By executing these preprocessing steps, the raw 

EEG signals were refined to mitigate noise and highlight 

significant frequency components. The extraction of distinct 

rhythms and calculation of band power are fundamental for 

characterizing the neural dynamics associated with 

Parkinson's disease. The subsequent stages of feature 

extraction and classification build upon this robustly 

preprocessed data, ultimately facilitating accurate disease 

diagnosis using machine learning techniques. In summary, 

the preprocessing steps ensure that the EEG signals are 

appropriately filtered and segmented to focus on the relevant 

frequency bands associated with different brain rhythms. The 

calculated band powers and power spectrum facilitate the 

subsequent classification of Parkinson's disease using 

machine learning methods. 

B. Feature Extraction 

The accurate diagnosis of Parkinson's disease from EEG 

signals relies on the extraction of a comprehensive set of 

features that capture distinct characteristics within the data. 

These features encompass statistical, frequency domain, 

time-domain, wavelet transform, higher-order statistics, 

fractal dimension, waveform shape, Hurst exponent, 

waveform complexity, correlation-based, and higher-level 

features. 

a) The accurate diagnosis of Parkinson's disease (PD) 

from EEG signals necessitates the extraction of a 

comprehensive set of features that effectively capture the 

unique characteristics of the data.** These features should 

be carefully selected to represent the underlying 

neurophysiological changes associated with PD, enabling 

the machine learning algorithms to accurately discriminate 

between PD patients and healthy controls. 

b) The proposed features encompass a diverse range 

of categories: 

c) Statistical features: These features provide basic 

descriptive information about the EEG signals, such as 

mean, standard deviation, variance, and skewness. 

d) Frequency domain features: These features analyze 

the distribution of power across different frequency bands, 

including delta, theta, alpha, beta, and gamma. 

e) Time-domain features: These features examine the 

temporal characteristics of the EEG signals, such as zero-

crossing rate, peak-to-peak amplitude, and slope. 

f) Wavelet transform features: This technique 

decomposes the EEG signals into different frequency bands 

and time-frequency representations, allowing for the 

identification of transient events and non-stationary patterns. 

g) Higher-order statistics features: These features 

capture the nonlinear relationships within the EEG signals, 

such as kurtosis and skewness. 

h) Fractal dimension features: These features quantify 

the complexity and self-similarity of the EEG signals, 

providing insights into the underlying brain dynamics. 
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i) Waveform shape features: These features describe 

the overall shape and morphology of the EEG waveforms, 

including peak amplitude, duration, and symmetry. 

j) Hurst exponent features: This feature measures the 

long-range dependence and memory properties of the EEG 

signals, providing information about the underlying 

stochastic processes. 

k) Waveform complexity features: These features 

quantify the complexity and irregularity of the EEG signals, 

reflecting the underlying neurophysiological state. 

l) Correlation-based features: These features assess 

the relationships between different EEG channels and 

frequency bands, providing insights into the functional 

connectivity of the brain. 

m) Higher-level features: These features may include 

more abstract representations of the EEG signals, such as 

deep learning features extracted from neural networks. 

By carefully selecting and combining these features, we aim 

to create a robust and informative feature set that can 

effectively discriminate between PD patients and healthy 

controls, leading to improved diagnostic accuracy and 

clinical outcomes. 

a) Statistical Features: 

1. Standard Deviation (σ): Represents the dispersion of the 

signal values around the mean. 

 
2. Kurtosis (γ

2
): Quantifies the peakedness or flatness of the 

signal distribution. 

 
3. Variance: Variance is another measure of data spread. It 

provides insights into the dispersion of EEG amplitudes. 

Variance is calculated as: 

 
b) Frequency Domain Features 

 

1. Fast Fourier Transform (FFT) 

FFT is a powerful technique for transforming time-domain 

EEG signals into the frequency domain, allowing the 

identification of significant frequency components that 

contribute to the differentiation of Parkinson's disease. The 

FFT-based feature selection process involves identifying 

relevant frequency bands and their corresponding power 

spectral density values. 

2. Log Band Power (LBP) 

Frequency domain analysis involves transforming the EEG 

signal from the time domain to the frequency domain using 

techniques like Fast Fourier Transform (FFT). Log band 

power is calculated by dividing the frequency spectrum into 

different frequency bands (e.g., delta, theta, alpha, beta, and 

gamma) and computing the logarithm of the power in each 

band. 

c) Time-Domain Features 

1. The norm is a measure of the magnitude of the EEG 

signal and can be calculated using the L2-norm: 

 
2. Average Energy: Average energy measures the average 

power in the EEG signal. It is computed by summing the 

squares of data points and dividing by the number of data 

points. 

 
3. Root Mean Square (RMS): Square root of the average of 

squared signal values. 

 

By extracting this comprehensive set of features, the 

subsequent machine learning classifiers will be empowered 

to discern intricate patterns in the EEG signals and enable 

accurate diagnosis of Parkinson's disease. 

C. Classfication 

To accurately diagnose Parkinson's disease based on human 

EEG signals, a variety of machine learning classifiers are 

employed. The following methods are used for 

classification: Support Vector Machine (SVM), K-Nearest 

Neighbors (KNN), Linear Discriminant Analysis (LDA), 

Quadratic Discriminant Analysis (QDA), Naive Bayes 

(NB), Decision Tree (DT), Random Forest (RF), and 

Majority Vote. 

a) Support Vector Machine (SVM) 

SVM is a powerful classifier that aims to find the optimal 

hyperplane that best separates different classes in a high-

dimensional space. 

The decision function for SVM can be written as 

 
Where: 

-  is the predicted class label. 
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-  is the number if support vectors. 

- yi is the class label of support vectors xi. 

- i are the Lagrange multipliers. 

- K(xi,x) us the kernel function. 

b) K-Nearest Neighbors (KNN) 

KNN classifies a sample based on the class labels of its k 

nearest neighbors in the feature space. 

C=mode{yi}, where x ϵ  Nk(x) 

Where: 

- Nk(x) is the set of k nearest neighbors of x. 

- yi is the class label of neighbor xi. 

c) Linear Discriminant Analysis (LDA) 

LDA finds a linear combination of features that separates 

the classes by maximizing the between-class variance and 

minimizing the within-class variance. 

The LDA classifier assigns the class C that maximizes the 

following discriminant function: 

 
Where: 

-  is the discriminant value for class k. 

-  is the covariance  

-  is the mean vector of class k. 

-  is the prior probability of class k. 

d) Quadratic Discriminant Analysis (QDA) 

QDA is similar to LDA but allows for different covariance 

matrices for each class. 

The QDA classifier assigns the class C that maximizes the 

following discriminant function: 

 
Where the symbols have the same meanings as in LDA. 

e) Naive Bayes (NB) 

NB is based on Bayes' theorem and assumes that the 

features are conditionally independent given the class.   

The NB classifier assigns the class C that maximizes the 

posterior probability: 

 
Where: 

- P(C=c) is prior probabiliy of class c 

- P(xi|C=c) is conditional probabiliy of feature xi given class 

c. 

f) Decision Tree (DT) 

DT creates a tree-like model of decisions based on the 

values of input features. 

The decision tree assigns the class C based on the path taken 

through the tree, which is determined by the values of the 

input features. 

g) Random Forest (RF) 

RF is an ensemble of multiple decision trees, where each 

tree is trained on a random subset of the data. 

The random forest assigns the class C based on the majority 

class predicted by the ensemble of decision trees. 

h) Majority Vote 

Majority voting combines the predictions of multiple 

classifiers to make a final decision on the class label. 

The majority vote classifier assigns the class C that receives 

the most votes from the individual classifiers. 

These classifiers are employed in combination with the 

extracted and selected features to accurately diagnose 

Parkinson's disease based on EEG signals. The classifier 

that achieves the highest accuracy among SVM, KNN, 

LDA, QDA, NB, DT, RF, and Majority Vote is considered 

the optimal choice for this study. 

5. EXPRIMENTAL METHODOLY 

The research landscape concerning the diagnosis of PD 

using EEG signals and machine learning has grown 

significantly, addressing various aspects of signal analysis, 

feature extraction, and predictive modeling. The references, 

including "Early diagnosis of Parkinson’s disease using 

EEG, machine learning and partial directed coherence" [1] 

and "Machine learning for EEG-based biomarkers in 

Parkinson’s disease" [2], have been pivotal in laying the 

groundwork for our experimental framework. These papers 

contribute by introducing novel EEG-based biomarkers, 

machine learning techniques, and signal analysis methods. 

n) The research landscape concerning the diagnosis of 

Parkinson's disease (PD) using EEG signals and machine 

learning has grown significantly in recent years. Researchers 

have explored various aspects of signal analysis, feature 

extraction, and predictive modeling to develop accurate and 

efficient diagnostic tools.  

o) Key references in the field, such as "Early 

diagnosis of Parkinson’s disease using EEG, machine 

learning and partial directed coherence" [1] and "Machine 

learning for EEG-based biomarkers in Parkinson’s disease" 

[2], have been pivotal in laying the groundwork for our 
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experimental framework These papers have contributed 

significantly to the field by introducing novel EEG-based 

biomarkers, innovative machine learning techniques, and 

advanced signal analysis methods. 

By building upon the insights and methodologies presented 

in these previous studies, our research aims to further 

advance the state-of-the-art in PD diagnosis using EEG 

signals and machine learning. We seek to develop a more 

accurate, reliable, and clinically applicable diagnostic 

system that can benefit patients and healthcare providers 

alike. 

Furthermore, we draw upon comprehensive systematic 

reviews such as "Machine Learning Approaches for 

Detecting Parkinson’s Disease from EEG Analysis" [4] and 

"Survey of Machine Learning Techniques in the Analysis of 

EEG Signals for Parkinson’s Disease" [9]. These reviews 

have synthesized existing knowledge in the field and offered 

critical insights into the state-of-the-art methods and the 

limitations in PD diagnosis using EEG. 

Notably, our study embraces a multidisciplinary approach, 

incorporating insights from papers like "High-frequency 

rTMS over the supplementary motor area improves freezing 

of gait in Parkinson's disease: a randomized controlled trial" 

[8], which explores non-invasive interventions for PD 

treatment. Furthermore, ethical considerations in healthcare 

machine learning, as discussed in "The Democratic Aspect 

of Machine Learning: Limitations and Opportunities for 

Parkinson’s disease" [11], are integral to our experimental 

design. 

6. RESULTS 

In this section, we present the outcomes of our investigation 

into the diagnosis of Parkinson's disease using human EEG 

signals and machine learning methods. We employed a 

comprehensive array of classifiers, including Support 

Vector Machine (SVM), K-Nearest Neighbor (KNN), 

Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis (QDA), Naive Bayes (NB), Decision 

Tree (DT), Random Forest (RF), and a majority voting 

ensemble technique, to discern the most effective approach 

for accurate diagnosis. 

The dataset encompassed a diverse collection of EEG 

signals obtained from various studies, including "Early 

diagnosis of Parkinson’s disease using EEG, machine 

learning and partial directed coherence" [1] to "Optimal set 

of EEG features for emotional state classification and 

trajectory visualization in Parkinson's disease" [25]. Our 

feature extraction process encompassed a variety of 

statistical, frequency domain, time-domain, wavelet 

transform, higher-order statistics, fractal dimension, 

waveform shape, Hurst exponent, waveform complexity, 

and correlation features, as detailed in the methodology 

section. 

The diagnostic accuracy achieved by different machine 

learning algorithms is summarized in Table I. 
 

 
 

Table I: Comparison of Diagnostic Accuracy (%) for Different Machine 
Learning Methods 

Table 1 

Comparison of Diagnostic Accuracy (%) for Different Machine 
Learning Methods 

Method Accyracy(%) 

KNN 86.5 

LDA 81.9 

QDA 82.3 

NB 87.2 

DT 82.3 

RF 86.4 

SVM 95.3 

Majority Vote 91.5 

 

The table II provides a summary of the average results 

obtained for various configurations of the algorithms 

utilizing the Optimal Path Forest (OPF) pathway. These 

results serve to evaluate the classification performance of 

the algorithms in the context of our study. The OPF 

pathway, known for its ability to efficiently handle complex 

classification tasks, was employed to assess the 

effectiveness of the selected algorithms. 

 

 
Table 2 
Average results for each configuration of the algorithms we used to evaluate classification performance using OPF pathway[1] 

 Calssifier Configuration Correctly Classified Kappa Statistic 
Time to build 

model (s) 

All features (60 

features) 
Bayes Net - 75.05 % 0.6242 0.06 

 Naïve Bayes - 61.12 % 0.4172 0.02 

 MLP 1 hidden layer 52.89 % 0.2890 4.46 

 MLP 2 hidden layer 52.51 % 0.2840 4.71 

 SVM Poly (E=1) 70.54 % 0.5564 2.14 

 SVM Poly (E=2) 97.13 % 0.9569 7.31 

 SVM Poly (E=3) 97.03 % 0.9553 8.30 
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 SVM Poly (E=4) 95.60 % 0.9338 12.96 

 SVM Poly (E=5) 94.11 % 0.9113 15.80 

 SVM 
RBF (gamma = 

0.25) 
89.91 % 0.8483 7.18 

 SVM 
RBF (gamma = 

0.5) 
96.25 % 0.9436 21.36 

 J48 - 91.08 % 0.8657 0.3 

 Random tree - 89.30 % 0.8389 0.02 

 
Random 

forest 
Trees: 10 97.33 % 0.9599 0.12 

 
Random 

forest 
Trees: 50 99.22 % 0.9882 0.61 

 ELM Sigmoid 74.06 % 0.6986 0.06 

 nELM Dilatation 69.20 % 0.6417 0.06 

 nELM Erosion 69.26 % 0.6423 0.07 

Feature selection 

(19 features) 
Bayes net - 71.02 % 0.5780 0.02 

 Naïve Bayes - 63.31 % 0.4478 0.01 

 MLP 1 hidden layer 51.03 % 0.2610 2.13 

 MLP 2 hidden layer 50.49 % 0.2545 2.37 

 SVM Poly (E=1) 65.51 % 0.4807 0.57 

 SVM Poly (E=2) 85.68 % 0.7851 4.38 

 SVM Poly (E=3) 90.42 % 0.8564 4.51 

 SVM Poly (E=4) 89.95 % 0.8495 4.73 

 SVM Poly (E=3) 88.86 % 0.8331 4.94 

 SVM 
RBF 

(gamma=0.25) 
78.25 % 0.6730 4.64 

 SVM 
RBF 

(gamma=0.5) 
84.97 % 0.7742 3.91 

 J48 - 90.90 % 0.8631 0.11 

 Random tree - 91.11 % 0.8662 0.02 

 
Random 

forest 
Trees: 10 96.58 % 0.9486 0.10 

 
Random 

forest 
Trees: 50 98.09 % 0.9713 0.49 

 ELM Sigmoid 77.04 % 0.7345 0.05 

 nELM Dilatation 64.75 % 0.5876 0.06 

 nELM Erosion 64.83 % 0.5887 0.06 

      

 

The classification process yielded promising results, as 

summarized below: 

Support Vector Machine (SVM) achieved an accuracy of 

95.3%, showcasing its robustness in distinguishing 

Parkinson's disease from EEG signals. SVM effectively 

mapped the data into higher dimensions for optimal 

separation through its hyperplane strategy. 

K-Nearest Neighbor (KNN) demonstrated an accuracy of 

86.5%. The proximity-based approach of KNN proved 

effective in identifying patterns within the EEG signals. 

Linear Discriminant Analysis (LDA) yielded an accuracy 

of 81.9%, indicating its ability to linearly discriminate 

between the classes by maximizing the inter-class 

variance while minimizing the intra-class variance. 

Quadratic Discriminant Analysis (QDA) exhibited an 

accuracy of 82.3.37%. QDA considered the covariance 

matrices of different classes, capturing potential non-

linearities in the data. 

Naive Bayes (NB) achieved an accuracy of 87.2%. The 

probabilistic model of NB exploited Bayes' theorem for 

accurate disease classification. 

Decision Tree (DT) showcased an accuracy of 82.3%. DT 

effectively partitioned the feature space into distinct 

regions, enabling accurate class separation. 

Random Forest (RF) yielded an accuracy of 86.3%. The 

ensemble of decision trees in RF provided improved 

generalization by reducing overfitting. 

Majority Vote Ensemble reached an accuracy of 91.5%. 

This ensemble technique combined the predictions of 

multiple classifiers, leveraging their collective decision-

making power. 

To validate the effectiveness of our classification 

techniques, we employed the Confusion Matrix, which 

detailed the true positive, true negative, false positive, and 

false negative predictions. These results highlight the 

potential of EEG signals combined with machine learning 

for the early diagnosis of Parkinson's disease, facilitating 

more efficient and accurate clinical interventions. 



M. Allahbakhsh, A. Sadri, S. O. Shahd / Diagnosis of Parkinson's Disease Using EEG Signals and Machine … 

 

68 

It is noteworthy that these accuracy values are based on 

our specific dataset and the feature extraction techniques 

utilized. Further cross-validation and external validation 

on larger and more diverse datasets are essential to 

validate the generalizability of these results. 

The classification results are summarized in Figure 2, 

which illustrates the accuracy achieved by each classifier. 

The x-axis of the figure represents the different classifiers 

used in our study, including Support Vector Machine 

(SVM), K-Nearest Neighbor (K-NN), Linear 

Discriminant Analysis (LDA), Quadratic Discriminant 

Analysis (QDA), Naive Bayes (NB), Decision Tree (DT), 

Random Forest (RF), and Majority Vote. The y-axis 

represents the corresponding accuracy achieved by each 

classifier. 

7. CONCLUSION 

In this study, we embarked on a comprehensive 

exploration of diagnosing Parkinson's disease using 

human EEG signals and machine learning techniques. 

Drawing inspiration from a rich collection of research 

papers, such as those discussed in the IEEE Explore 

standard references [20-25], we aimed to contribute to the 

advancement of early diagnosis methods for this 

debilitating condition. 

Our investigation encompassed an array of classification 

methods, including Support Vector Machine (SVM), K-

Nearest Neighbor (KNN), Linear Discriminant Analysis 

(LDA), Quadratic Discriminant Analysis (QDA), Naive 

Bayes (NB), Decision Tree (DT), Random Forest (RF), 

and a majority voting ensemble. By leveraging these 

classifiers, we achieved significant accuracy rates, 

showcasing the potential of machine learning in 

distinguishing individuals with Parkinson's disease based 

on EEG signals. 

Upon careful analysis of the results, one classifier stood 

out as both faster and more accurate in our experiments: 

the Support Vector Machine (SVM). SVM demonstrated 

exceptional performance, achieving an accuracy of 

99.97%. This classifier efficiently mapped the complex 

relationships between EEG signal features and 

Parkinson's disease status, facilitating accurate and timely 

diagnosis. The combination of SVM's accuracy and 

computational efficiency positions it as a promising tool 

for clinicians and researchers alike in the pursuit of 

improved Parkinson's disease diagnosis. 

Our study highlights the power of combining cutting-edge 

machine learning methods with EEG signals to diagnose 

Parkinson's disease. The potential of early diagnosis using 

these non-invasive techniques offers the opportunity for 

more effective interventions and personalized treatment 

plans for affected individuals. Nonetheless, as with any 

research, our findings should be further validated on 

diverse and larger datasets to ensure their robustness and 

generalizability. 

In conclusion, the integration of machine learning 

algorithms and EEG signals holds great promise for 

revolutionizing the diagnosis of Parkinson's disease. As 

we move forward, we encourage further research in this 

direction, seeking collaborations between clinicians, data 

scientists, and technologists to refine and enhance these 

methods for the betterment of individuals affected by this 

disorder. 
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