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Abstract 

Acceptance sampling (AS), as one of the main fields of statistical quality control (SQC), 

involves a system of principles and methods to make decisions about accepting or rejecting a 

lot or sample. For attributes, the design of a single AS plan generally requires determination of 

sample size, and acceptance number. Numerous approaches have been developed for 

optimally selection of design parameters in last decades. We develop a multi-objective 

economic-statistical design (MOESD) of the single AS plan to reach a well-balanced 

compromise between cost and quality features. Moreover, a simple and efficient DEA-based 

algorithm for solving the model is proposed. Through a simulation study, the efficiency of 

proposed model is illustrated. Comparisons of optimal designs obtained using MOESD to 

economic model with statistical constraints reveals enhanced performance of the multi-

objective model. 
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1.  Introduction 
In quality assurance systems, inspection is 

broadened to include all aspects of 

manufacturing in recent times. Obviously, 

there are conditions in which inspection is 

troublesome, i.e. when 100% inspection is 

too costly and/or time consuming, testing 

is destructive, and so on [1]. In such 

situations, acceptance sampling (AS), as 

one of the main fields of statistical quality 

control (SQC), is most likely to be useful. 

Accordingly, a specified sample, instead 

of all items, is taken to evaluate whether 

to accept or reject the whole lot. Base on 

some considerations, samples can be 

either single, double, multiple, or 

sequential (for more information refer to 

[1]). Broadly, there are two classes of AS 

plans: variables and attributes. Our focus 

is on attributes where quality features are 

assessed on a “go, no-go” basis. 

Moreover, single-sampling plan is 

investigated in which the decision is made 

according to one random sample taken 

from the lot.  

Generally, the design of a single AS plan 

requires determination of sample size, and 

acceptance number. Two traditional 

methods of interest in literature are as 

follows: 

1.Two-point method: After determining 

two points on the operating characteristic 

(OC) Curve, acceptable and unacceptable 

quality levels can be specified as well as 

the risks regarding the acceptance or 

rejection decisions ([2], [3]). 

2.Optimization of total cost function: In 

this methods, the total cost function, in 

which the producer's cost and the 

consumer's cost are considered, is 

minimized to determine optimal design 

parameters ([4], [5], [6]). 

Numerous procedures for optimally 

selection of design parameters have been 

developed in recent years. In pure 

economical approaches, only cost of 

sampling system is minimized regardless 

of involving producer's risk (α) and 

consumer's (β) risk. In contrast, statistical 

approaches mostly focus on risks and 

seem to be economically ineffective. In 

fact, the weakness of these two 

approaches is in unilateral attitude to 

sampling concept. To overcome such 

undesirable weakness, Hsu [7] developed 

an economic model to determine the 

optimal design parameters by minimizing 

total cost while satisfying both the 

producer’s and the consumer’s 

requirements. Our proposed model can be 

classified as a combined model with the 

difference that both properties are 

simultaneously optimized. In this multi-

objective model, our intention is to reach 

a well-balanced compromise between the 

economic and the statistical features 

because of their identical importance. 

As a multiple criteria decision-making, 

some researches have prepared efficient 

solutions by applying procedures based 

on data envelopment analysis (DEA) to 

multi-objective design of control charts 

recently ([8], [9]). DEA is a powerful 

optimization method to assess the relative 

efficiency of decision making units 

(DMUs) with multiple inputs and outputs 

[10]. There has been continuous 

developments and real applications in this 

field of studies since the first original 

work [11]. In a mathematical model, 

known as CCR model, the performance of 

each DMU is measured with respect to 

the remaining DMUs. General definition 

of DMU for various means, and fewer 

assumptions involved in its modeling are 

of main motivations that make DEA more 

appealing.  

By exploring the literature, there is no 

research on efficient specification of 

design parameters for a mathematical 

modeling of AS plans. Indeed, by 

defining proper DMUs, we present multi-

objective economic-statistical design of 

single sample AS plan. The remaining 

sections of this paper are thus organized 

as follows. Basic concepts and 

terminology of AS plan is reviewed in 

section 2. Then, the mathematical 
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modeling is developed for the mentioned 

plan. In section 4, solution procedures for 

the models are provided. Specially, an 

algorithm using the DEA is developed 

with some modifications to solve the 

proposed multi-objective model. Section 

5 includes a simulation study to illustrate 

the solution procedure and to perform 

some comparisons. Finally, section 6 

covers some final conclusions that can be 

drawn.  

 

2.  Acceptance Sampling Basic 

Concepts and Terminology 
Acceptance sampling plans use statistical 

techniques to decide on accepting or 

rejecting an incoming lot. In single-

sampling plans for attributes, decision 

procedure is made by randomly taking 

one sample of n units from the lot of N 

units and then inspecting. If the number 

of defectives does not exceed a pre-

determined acceptance number (c), the 

whole lot is accepted. Otherwise, the lot 

is reject. We will use the following 

notations and definitions in the rest of the 

paper: 

N whole lot size 

n sample size 

c acceptance number 

S set of design parameters 

α producer’s risk 

β consumer’s risk 

ATI average total inspection 

AOQ average outgoing quality 

D 
number of nonconforming 

items 

Dd 
detected number of defective 

items 

Dn 

not detected number of 

defective items 

Ci cost of inspection per item 

Cf cost of internal failure 

Co cost of an outgoing defective 

TC total cost 
 

It is assumed that the distribution of the 

number of defectives (d) in a random 

sample of size n is binomial (n, p), where 

p is the fraction of defective items in the 

lot. Thus, the probability of acceptance is: 

0

( | , ) (1 )
c

p d n d

a

d

n
P P d c n p p p

d





 
    

 
   (1) 

 

In association with decisions on the 

obtained sample, we confront two types 

of errors: 

 Type I error (α): incorrectly rejection 

of a lot that is in fact acceptable. 

 Type II error (β): incorrectly 

acceptation of a lot that is indeed 

unacceptable.  

The probability of making such errors 

depend respectively on two levels of lot 

quality which are defined as follow: 

 Acceptable Quality Level (AQL) is the 

worst level of quality but still acceptable 

for the consumer. The producer tends to 

design a plan which has a high chance of 

acceptance with defective level of less 

than or equal to AQL. 

 Lot Tolerance Percent Defective 

(LTPD) is the worst level of quality that 

would be unacceptable for the consumer 

in an individual lot. It is aimed for the 

consumer to accept with low probability 

any sampling plan with LTPD level of 

quality. 

Using specified AQL and LTPD, 

producer’s risk and the consumer’s risk 

can be respectively calculated as 

following equations: 
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After rejection of a lot, it is common to 

100% inspect the rejected lot to remove 

all defectives items. This corrective action 

is called rectifying inspection. During a 

long series of lots in a process with 
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fraction defective p, the Average 

Outgoing Quality (AOQ) is obtained to 

evaluate rectifying inspection as below 

equation: 

pP
N

nN
AOQ p

a .
)( 

                               (4) 

Another important measure in relation to 

rectifying inspection is Average Total 

Inspection (ATI) which is calculated as 

follows: 

))(1( nNPnATI p
a                          (5) 

 

In a sampling plan, some defective items 

are detected and the others are not. If we 

indicate detected defective items by Dd 

and not detected ones by Dn, then we 

have (for detailed information on AS 

plans, refer to [1]): 

pnNPnpD p
ad ))(1(                       (6) 

pnNPD p
an )(                                     (7) 

 

3.  Design of Single AS Plan 
In this section, statistically constrained 

cost model is firstly introduced. Then, the 

proposed mathematical model for single 

sample AS plans is developed to consider 

economic and statistical properties 

simultaneously. 

 

A.  Cost Model with Statistical 

Constraints 
With the purpose of finding the optimal 

design parameters of AS plan, Hsu [7] 

developed a model in which statistical 

constraints based on the producer's and 

the consumer's risk were satisfied in 

minimum total cost. This proposed model 

is given by following formulation: 











1

..

...)( 0

AQL
a

LTPD
a

ndfi

p

pts

DCDCATICSTCMin

   (8) 

 

where TC is the total cost, S=(n, c, k) is a 

possible set of design parameters, Ci 

denotes the inspection cost per unit, Cf is 

internal failure cost (including rework, 

repair, and replacement of the failed unit), 

and Co indicates the cost of an outgoing 

defective [7]. In addition, α and β are the 

desired bounds to limit the constraints 

according to the considerations of 

decision maker (DM). 

 

B.  Multi-Objective Model 
In addition to the statistical properties, 

designing AS plans have several costly 

consequences as introduced above. 

Simultaneously considering both 

properties in a multi-objective format can 

help to find optimal design parameters 

which give the best compromise between 

the objectives. The proposed model is 

presented in the following formulation: 











1

..

)(

)(

...)( 0

AQL
a

LTPD
a

AQL
a

LTPD
a

ndfi

p

pts

SpMax

SpMin

DCDCATICSTCMin

   (9) 

 

The design of AS plan requires the 

specification of two decision variables, 

i.e. n, and c. In the next section, two 

algorithms are presented to search the 

optimal solution(s) based on the models 

introduced above. 

 
4.  Solution Procedure 
In this section, solution procedures are 

presented for both models proposed in 

previous section. These algorithms are 

applied to determine optimal decision 

parameters for single sample AS plans. 

 

A.  Proposed Solution for Cost 

Model with Statistical Constraints 
It is intended to find the design 

parameters such that both producer's and 

consumer's risk are satisfied in minimum 

cost. The solution algorithm for 

optimization is presented in following 

steps: 

(i) Set pre-specified values of parameters 
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in the model, i.e. a, m, α, β, δ, Ci, Cf and 

Co. 

(ii) Put limits on n and c according to 

DM’s discretion.  

(iii) Gather the results for each set of 

solutions, as S=(n, c), that satisfies the 

constraints. 

(iv) Calculate the cost function for the 

feasible solution combinations obtained 

from step (iii). 

(v) Select design(s) with minimum cost 

function as optimal. 
 

B.  Proposed Solution for Multi-

objective Model 
As previously mentioned, the design of 

AS plan needs the specification of 

decision variables, i.e. n, and c. By using 

the multi-objective model, we aim to 

achieve a well-balanced compromise 

between the economic and the statistical 

properties. For various control charts, 

algorithms based on DEA were proposed 

to search for the optimal design 

parameters using multi-objective models 

(for example see [8] and [9]).  

DEA is a well-known optimization 

method to assess the relative efficiency of 

a group of DMUs with multiple inputs 

and outputs. In its first mathematical 

model, known as CCR, to format can be 

considered as either input-oriented or 

output-oriented [10]. We apply the input-

oriented CCR model. Assuming n DMUs, 

each with m inputs and q outputs, the 

efficiency of a specific DMU is calculated 

by solving the model outlined in below 

format: 

0 0

1

0

1

( )

. . 1

q

r r

r

m

i i

i

Max E S u Y

s t v X













                      (10) 

1 1

( ) ( ) 0,

1,...,

0, 1,...,

0, 1,...,

q m

r rj i ij

r i

r

i

u Y S v X S

j n

u r q

v i m
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Where ur is the weight of output r, vi is 

the weight of input i, Yrj is the value of 

output r for j
th
 DMU, and Xij is the value 

of input i for j
th
 DMU. DMUs are denoted 

to feasible combinations of design 

variables. The measured performance of 

each DMU is relatively inefficient when 

E0
*
<1 and relatively efficient, strictly or 

weakly, when E0
*
=1. 

For the proposed model, it should be 

noted that the objectives including TC and 

pa
LTPD

 are considered as inputs and pa
AOQ

 

is probed as output. After formulating the 

model for each DMU, the set of weights 

can be discovered as decision variables. 

As a result, at least one DMU is expected 

to be efficient.  

Although DEA has the potential of 

solving various problems, it has not been 

applied for the design of AS plans so far. 

We employ the proposed algorithm in [8] 

by some modifications such as optimizing 

the model for designing AS plans instead 

of control charts and changing the 

objective functions and constraints, 

accordingly. The solution algorithm for 

optimization of the proposed model is 

outlined in following steps: 

(i) Set pre-specified values of parameters 

in the model, i.e. a, m, α, β, δ, Ci, Cf and 

Co. 

(ii) Put limits on n, and c according to 

DM’s idea to restrict the solution space 

beforehand. 

(iii) Compute objective functions for each 

set of design parameters, as DMU. 

(iv) After applying the constraints of the 

model, gather the feasible sets with the 

same sample size n into a set Qn. 

(v) Determine the non-dominated solution 

points (NDS) in terms of statistical and 

cost properties for each set of Qn. 

(vi) Mix all determined solutions from (v) 

into a set W. 

(vii)Specify efficient design set(s) with 

maximum score(s) calculated using the 

CCR model. 
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5.  Simulation Results 
In order to find the optimal design 

parameters of single AS plans for the 

proposed models, the pre-defined 

coefficients are considered according to 

[7]. These values are listed in Table 1 by 

considering some other values for cost, 

lot size and fraction defective parameters. 

Moreover, we consider 1≤n≤300 

increases by 1, and 0≤c≤10 increases by 1 

to limit the solution space. The results for 

the models and the comparisons are 

provided in the following. Note that all 

calculations have been facilitated under 

coded programs in the MATLAB (version 

R2016b) environment. 

For the cost model with statistical 

constraints, after setting pre-specified 

values of parameters according to Table 

1, DM’s discretions are put on design 

parameters to limit the solution space. 

Then, the feasible combinations, as 

S=(n,c), are gathered using the constraints 

of the model. Next, the cost function is 

calculated for each feasible solution. The 

design with minimum cost function is 

chosen as optimal. For the multi-objective 

model, the solution space is firstly 

confined under the limits put on design 

parameters. Furthermore, objective 

functions are computed for entire possible 

combinations, i.e. 300×21=6300 

combinations. Then, the constraints are 

applied to determine feasible solutions. 

Next, the NDS points in terms of 

statistical and cost properties for each set 

of Qn are chosen. Finally, the relative 

efficiency score of each DMU is 

calculated to specify a design set with 

maximum score as the most efficient one. 

From the results presented in Tables 2, 

some important points can be mentioned 

as follows: 

 All combinations have received 

efficiency score 1 using their own 

models. Although pre-specified values of 

parameters are changed, a few 

combinations are introduced through 

whole Table 2. In fact, (131, 5) and (300, 

10) for the first model and (285, 14) for 

the second model are repeated as optimal 

design parameters. Besides, the results of 

MOESD are more robust to altered 

parameters. 

 Comparing the most efficient units 

obtained using multi-objective model 

shows significant difference against the 

first model. 

 In a special case, the efficient units 

respectively from the first and second row 

in Table 2 are compared. It is observed 

that pa
AOQ

 has improved about 5.05%, and 

pa
LTPD

 has a slight decrease about 1.13%. 

However, TC is increased about 2.96%. 

In spite of the increase in cost, statistical 

performances are improved noticeably 

using multi-objective model. 

For more investigation, we considered 

these pre-specified values of parameters 

in the model: Ci=0.1, Cf=2, Co=10, 

p=0.01, and N=1000. Figure 1, depicted 

in Minitab statistical software 17, shows 

three curves including operating 

characteristic (OC), ATI, and AOQ for 

comparing the results of two different 

models. 

Generally, the power of a sampling plan 

in distinguishing good and bad lots gets 

closer to the ideal state, called 100% 

inspection, when sample size increases 

[1]. According to the OC curve in Figure 

1, the greater slope of sampling plan 

obtained using multi-objective model is 

an indication of its greater discriminatory 

power. Thus, the increase in cost for this 

model can be justified. On the other hand, 

it is desired to design a sampling plan so 

that the OC curve gives high probability 

of acceptance at the AQL and, also, low 

probability of acceptance at the LTPD [1]. 

In Table 3 for AQL=2%, probability of 

acceptance using the multi-objective 

model is higher than that of in the cost 

model. However for LTPD=7%, there is 

no significant difference between them. 

Another important measure, shown in 

Figure 1, is ATI. Clearly, larger ATI is 

obtained from multi-objective model for 
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fraction defectives almost lower than 3. 

After that, there is no significant 

difference between to models. As 

indicated in [1], AOQ is the quality of lot 

that results from the application of 

rectifying inspection. It is expected to be 

lower than incoming fraction defective 

(p) over a long term. Considering AOQ 

curve in Figure 1 and its results from 

Table 3, the performance of plan obtained 

using the multi-objective model is 

obviously better with lower AOQ values 

for AQL and LTPD points.  

These results can totally endorse the 

enhanced performance of the multi-

objective model and disclose the 

insufficiency of the cost model with 

statistical constraints in such space.  

 

6.  Conclusion and Future Researches 

This research aimed at to design a single 

AS plan in which sample size, and 

acceptance number must be determined. 

Moreover, it was tried to reach a well-

balanced compromise between cost 

(economical) and the producer's and 

consumer's quality and risk (statistical) 

features that never had been considered 

simultaneously. For these reasons, a 

multi-objective model was developed and 

a simple and efficient optimization 

algorithm using DEA was employed to 

solve it. Through a simulation study, the 

proposed model performed better than the 

existing cost model with statistical 

constraints.  

As mentioned earlier, samples can be 

either single, double, multiple, or 

sequential. We investigated the most 

common (single) sampling plan. The 

other plans can be used as future 

researches. 

 

 

 

Table1. Input values of parameters for performing different simulations 

Parameters Magnitudes 

AQL (p0) 0.02 

LTPD (p1) 0.07 

Failure rate (p) 0.01, 0.10 

Producer’s risk (α) 0.05 

Consumer’s risk (β) 0.10 

Ci 0.10, 1.00 

Cf 2.00, 3.00 

Co 10.00, 50.00 

Lot size (N) 1000, 2000 
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Table 2. Efficient designs of different models under various values of parameters 

 
Ci Cf Co p N Model n c TC pa

LTPD 
pa

AQL
 Efficiency 

 

2.00 

10.00 

0.01 

1000 

Cost with Stat. 

Const. 
131 5 102.66 0.0974 0.9513 

0.016 

 Multi-objective 285 14 105.70 0.0985 0.9993 1.000 

 
2000 

Cost with Stat. 

Const. 
131 5 202.70 0.0974 0.9513 

0.015 

 Multi-objective 285 14 205.70 0.0985 0.9993 1.000 

 

0.1 

1000 

Cost with Stat. 

Const. 
300 10 300.01 0.0050 0.9590 

0.020 

 Multi-objective 285 14 300.69 0.0985 0.9993 1.000 

 
2000 

Cost with Stat. 

Const. 
300 10 600.01 0.0050 0.9590 

0.020 

 Multi-objective 285 14 601.65 0.0985 0.9993 1.000 

 

50.00 

0.01 

1000 

Cost with Stat. 

Const. 
300 10 385.93 0.0050 0.9590 

0.020 

 Multi-objective 285 14 391.70 0.0985 0.9993 1.000 

 
2000 

Cost with Stat. 

Const. 
300 10 885.83 0.0050 0.9590 

0.020 

 Multi-objective 285 14 891.70 0.0985 0.9993 1.000 

 

0.1 

1000 

Cost with Stat. 

Const. 
300 10 300.04 0.0050 0.9590 

0.020 

 Multi-objective 285 14 304.61 0.0985 0.9993 1.000 

0.10 

2000 

Cost with Stat. 

Const. 
300 10 600.09 0.0050 0.9590 

0.020 

Multi-objective 285 14 611.05 0.0985 0.9993 1.000 

 

10.00 

0.01 

1000 

Cost with Stat. 

Const. 
131 5 103.99 0.0974 0.9513 

0.016 

 Multi-objective 285 14 108.55 0.0985 0.9993 1.000 

  
2000 

Cost with Stat. 

Const. 
131 5 204.05 0.0974 0.9513 

0.015 

  Multi-objective 285 14 208.55 0.0985 0.9993 1.000 

  

0.1 

1000 
Cost with Stat. 

Const. 
300 10 400.00 0.0050 0.9590 

0.020 

   Multi-objective 285 14 400.59 0.0985 0.9993 1.000 

 

3.00 

2000 

Cost with Stat. 

Const. 
300 10 800.01 0.0050 0.9590 

0.020 

 Multi-objective 285 14 801.41 0.0985 0.9993 1.000 

 

50.00 

0.01 

1000 

Cost with Stat. 

Const. 
300 10 388.93 0.0050 0.9590 

0.020 

 Multi-objective 285 14 394.55 0.0985 0.9993 1.000 

  
2000 

Cost with Stat. 

Const. 
300 10 888.83 0.0050 0.9590 

0.020 

  Multi-objective 285 14 894.55 0.0985 0.9993 1.000 

  

0.1 

1000 

Cost with Stat. 

Const. 
300 10 400.03 0.0050 0.9590 

0.020 

  Multi-objective 285 14 404.51 0.0985 0.9993 1.000 

  
2000 

Cost with Stat. 

Const. 
300 10 800.08 0.0050 0.9590 

0.020 

  Multi-objective 285 14 810.81 0.0985 0.9993 1.000 
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Table 2. (Continued) 

 
Ci Cf Co p N Model n c TC pa

LTPD pa
AOQ Efficiency 

   

0.01 

1000 

Cost with Stat. 

Const. 
131 5 222.25 0.0974 0.9513 0.025 

   Multi-objective 285 14 362.20 0.0985 0.9993 1.000 

   
2000 

Cost with Stat. 

Const. 
131 5 324.23 0.0974 0.9513 0.022 

  

10.00 

Multi-objective 285 14 462.20 0.0985 0.9993 1.000 

  0.1 1000 
Cost with Stat. 

Const. 
131 5 1198.69 0.0974 0.9513 0.015 

   

 

 Multi-objective 285 14 1199.80 0.0985 0.9993 1.000 

   
2000 

Cost with Stat. 

Const. 
131 5 2397.18 0.0974 0.9513 0.015 

 

2.00 

 Multi-objective 285 14 2399.53 0.0985 0.9993 1.000 

  

0.01 

1000 

Cost with Stat. 

Const. 
131 5 569.10 0.0974 0.9513 0.017 

   Multi-objective 285 14 648.20 0.0985 0.9993 1.000 

   
2000 

Cost with Stat. 

Const. 
131 5 1070.22 0.0974 0.9513 0.016 

  

50.00 

Multi-objective 285 14 1148.20 0.0985 0.9993 1.000 

  

0.1 

1000 

Cost with Stat. 

Const. 
300 10 1200.03 0.0050 0.9590 0.020 

   Multi-objective 285 14 1203.72 0.0985 0.9993 1.000 

   
2000 

Cost with Stat. 

Const. 
300 10 2400.07 0.0050 0.9590 0.020 

1.00 

  Multi-objective 285 14 2408.93 0.0985 0.9993 1.000 

  

0.01 

1000 

Cost with Stat. 

Const. 
131 5 223.57 0.0974 0.9513 0.025 

   Multi-objective 285 14 365.05 0.0985 0.9993 1.000 

   
2000 

Cost with Stat. 

Const. 
131 5 325.58 0.0974 0.9513 0.022 

  

10.00 

Multi-objective 285 14 465.05 0.0985 0.9993 1.000 

  

0.1 

1000 

Cost with Stat. 

Const. 
131 5 1298.03 0.0974 0.9513 0.015 

   Multi-objective 285 14 1299.71 0.0985 0.9993 1.000 

   
2000 

Cost with Stat. 

Const. 
131 5 2595.77 0.0974 0.9513 0.015 

 

3.00 

 Multi-objective 285 14 2599.29 0.0985 0.9993 1.000 

  

0.01 

1000 

Cost with Stat. 

Const. 
131 5 570.42 0.0974 0.9513 0.017 

   Multi-objective 285 14 651.05 0.0985 0.9993 1.000 

   
2000 

Cost with Stat. 

Const. 
131 5 1071.57 0.0974 0.9513 0.016 

  

50.00 

Multi-objective 285 14 1151.05 0.0985 0.9993 1.000 

  

0.1 

1000 

Cost with Stat. 

Const. 
300 10 1300.03 0.0050 0.9590 0.020 

   Multi-objective 285 14 1303.63 0.0985 0.9993 1.000 

   
2000 

Cost with Stat. 

Const. 
300 10 2600.07 0.0050 0.9590 0.020 

   Multi-objective 285 14 2608.70 0.0985 0.9993 1.000 
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Table 3.Comparison of different models for Ci=0.1, Cf=2, Co=10, p=0.01, and N=1000 

 
Model n c AQL% LTPD% Pa AOQ ATI 

Cost with Stat. Const. 131 5 
2 - 0951 1.653 173.3 

- 7 0.097 0.593 915.3 

Multi-objective 285 14 
2 - 0.999 1.429 285.5 

- 7 0.098 0.493 929.6 

 

 

Figure 1.a) OC curve, b) ATI curve, and c) AOQ curve for efficient designs obtained 

using different models when Ci=0.1, Cf=2, Co=10, p=0.01, and N=1000 
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