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Abstract 
Traditional data envelopment analysis (DEA) models usually evaluate the efficiency scores 
of decision making units (DMUs) with precise data from an optimistic point of view where 
the status of each measure (i.e. input/output) is certain. However, there are occasions in real 
world applications that measures can play both input and output roles in an imprecise 
environment. In the current study, measures with two roles, input and output, are called 
“adaptable measures”. This paper proposes a DEA-based approach for estimating the 
performance of DMUs where adaptable and fuzzy data exist. Indeed, efficiency scores are 
calculated from two aspects, optimistic and pessimistic, when there are adaptable and fuzzy 
data. Two different efficiency scores are integrated into a geometric average efficiency. 
Thus, the overall efficiency is calculated and adaptable variables are split into input and 
output variables in evaluating the efficiency of each DMU. A numerical example is used to 
illustrate the approach. 
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1. Introduction 
Data envelopment analysis (DEA), initially 
suggested by Charnes et al. [1], is a 
nonparametric technique to evaluate the 
relative efficiency of decision making units 
(DMUs) that use multiple inputs to produce 
multiple outputs. In conventional DEA 
models, the efficiency scores of DMUs with 
crisp inputs/outputs are usually calculated 
from an optimistic point of view. Wang et 
al. [2] measured the performance of DMUs 
with precise data from different points of 
view, optimistic and pessimistic, and 
calculated the overall efficiency by using 
the geometric average efficiency.  However, 
in the real world, there are situations that 
imprecise data exist. In the DEA literature, 
there are methods for assessing the 
efficiency of firms in the presence of vague 
inputs and outputs.  
One of the popular approaches for the 
efficiency evaluation in the presence of 
imprecise information is fuzzy DEA 
methods. Firstly, Sengupta [3] suggested a 
fuzzy DEA model to incorporate fuzzy data 
via the tolerance levels definition. 
Afterwards, various DEA-based approaches 
are introduced to measure the performance 
of DMUs with fuzzy factors. Hatami-
Marbini et al. [4] reviewed the fuzzy data 
envelopment analysis literature over 20 
years. Also, Emrouznejad and Tavana [5] 
classified the application of fuzzy set theory 
in DEA into six groups: the tolerance 
approach [3, 6], the possibility approach [7, 
8], the  -level based approach [9, 10], the 
fuzzy arithmetic [11, 12] the fuzzy ranking 
approach [13], and the fuzzy random/type-2 
fuzzy set [14, 15]. Readers can refer to 
Hatami-Marbini et al. [4] and Emrouznejad 
& Tavana [5] for more information.  
Furthermore, the input/output status of 
measures has been usually specified in the 
conventional DEA models. Nonetheless, 
sometimes the input/output status of a 
variable is uncertain. It means a variable 
can be considered as both an input and 
output. In this study, variables with 
uncertain status are defined as adaptable 

variables. In the DEA literature, there are 
some contexts with studying the subject. 
Cook and Zhu [16] proposed an approach to 
classifying flexible measures (i.e. measures 
that can play either input or output roles). 
Then, Toloo [17] introduced a modified 
model to determine the status of flexible 
measures. Afterwards, Amirteimoori and 
Emrouznejad [18] defined a new production 
possibility set (PPS) and a new model for 
measuring the efficiency of DMUs. 
Furthermore, Toloo [19], Amirteimoori and 
Emrouznejad [20], Kordrostami and Jahani 
[21], Amirteimoori et al. [22], 
Amirteimoori et al. [23], Toloo [24] are 
some contexts, that deal with the issue. 
Amirteimoori et al. [22] proposed a flexible 
slack-based measure for classifying inputs 
and outputs. Also, Kordrostami and Noveiri 
[21] suggested an approach to evaluate the 
efficiency of DMUs in the presence of 
flexible and negative measures. In 
aforementioned papers, flexible measures 
are finally considered as input or output 
while all measures are deemed as precise 
and crisp factors. Kordrostami et al. [25] 
and Kordrostami and Noveiri [26] proposed 
approaches for measuring the efficiency in 
the presence of imprecise and flexible 
measures. Nonetheless, sometimes a 
variable can be taken as both an input and 
an output where fuzzy factors present. 
Amirteimoori et al. [23] considered precise 
recyclable outputs into the production 
process. To illustrate, recyclable outputs are 
products that some portion of them may be 
considered as inputs again. Indeed, it seems 
that adaptable variables can be taken from 
two aspects. First, they can be deemed as 
variables same as recyclable outputs. 
Second, variables with two roles both input 
and output. In DEA contexts, variables with 
both input and output roles are so-called 
dual-role factors [27, 28] and flexible 
measures. Nevertheless, in those models, 
finally a dual-role factor can play only one 
role, input or output while in this study an 
adaptable measure can play both input and 
output roles. Indeed, the present models 
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have some drawbacks. Firstly, they 
calculate the efficiency from an optimistic 
viewpoint. Secondly, the majority of them 
consider precise inputs and outputs. Finally, 
the role of a variable is determined as an 
input or an output. 
To tackle the aforementioned drawbacks, in 
the current paper, the overall efficiency of 
DMUs is calculated where adaptable and 
fuzzy data present. Actually, the fuzzy 
expected value models are introduced to 
estimate the optimistic and pessimistic 
efficiencies of DMUs. Then, the efficiency 
scores are integrated as a geometric average 
efficiency. Moreover, it is indicated how 
much of adaptable variable is considered as 
input and how much as output. In sum, 
fuzzy expected value DEA models are 
introduced to specify the efficiency of 
DMUs where fuzzy adaptable measures 
exist. 
The paper is organized as follows. Section 2 
reviews some basic concepts of fuzzy 
variables, the fuzzy expected value and 
dual-role factors. In Section 3, a DEA-
based methodology is developed that is 
designed to handle situations that adaptable 
and fuzzy factors present. A numerical 
example illustrates and clarifies the 
proposed approach in Section 4. 
Conclusions appear in Section 5. 
 
2. Basic concepts and fundamentals 
Firstly, basic concepts of fuzzy numbers 
and related issues are provided in this 
section. It is pointed out that adaptable 
measures, which are under consideration in 
this study, have the similar definition of 
dual-role factors. Actually, a dual-role 
factor can play both roles, input and output, 
simultaneously. So, dual-role factors are 
also described briefly. 
 
2.1. Fuzzy variables 
Definition 2.1. A fuzzy set A in X is 
characterized by a membership function

( )A x which associates with each point in 
X a real number in the interval[0,1] . 

( )A x  indicates the degree of membership 
of x in A .[29] 
Definition 2.2. A fuzzy subset B of the real 
numbers R  is convex if and only if for 

, , [0,1]x y R     ,
( (1 ) ) min( ( ), ( ))B B Bx y x y       . 

Definition 2.3. Fuzzy numbers are convex 
normalized fuzzy set of real numbers in 
which ( )x is piecewise continuous. 
In this study trapezoidal and triangular 
fuzzy variables are utilized because of the 
wide applications of them in practical 
problems. A trapezoidal fuzzy variable 

( , , , )a b c d  is a fuzzy variable with the 
following membership function 

( ) / ( ) ,
1 ,

( )
( ) / ( ) ,
0 .

x a b a i f a x b
i f b x c

x
x d c d i f c x d

o t h e r w is e



   
       


 

A triangular fuzzy variable ( , , )a b c  is 
a fuzzy variable with a membership 
function   as follows: 

( ) / ( ) ,
( ) ( ) / ( ) ,

0 .

x a b a i f a x b
x x c b c i f b x c

o th e r w is e


   
    



 

Definition 2.4. [30] The expected value of a 
trapezoidal fuzzy variable ( , , , )a b c d  is 
defined as 

( )( )
4

a b c dE    
  

Also, the expected value of a triangular 
fuzzy number ( , , )a b c   is shown by 

( 2 )( )
4

a b cE 
 

 . 

Proposition 1. [30, 31] Assume f and g
are fuzzy variables and a  and b  are real 
numbers. Thus, we have 

( ) ( ) ( ).E af bg aE f bE g    
 
2.3. Dual-role factors 
In traditional DEA models, the performance 
of DMUs with a specified set of inputs and 
outputs is evaluated. Nevertheless, there are 
occasions in real-world problems that a 
measure can play the role of both an input 
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and an output, simultaneously. In the 
literature, these factors are so-called 
flexible measures and dual-role factors. 
Factors like trainees in organizations, 
awards to scholars, and outages in power 
plants are deemed as dual-role factors. For 
instance, according to Cook et al. [27] “the 
number of nurse trainees on staff in a study 
of hospital efficiency constitutes an output 
measure for a hospital, but at the same time 
it is an important component of the 
hospital’s total staff component, hence it is 
an input”. 
 
3. Efficiency measurement of DMUs 
with fuzzy adaptable variables  
In this section, an approach based on DEA 
is introduced to estimate the overall 
efficiency of DMUs when fuzzy adaptable 
variables exist. For this purpose, the 
efficiency scores of DMUs are firstly 
calculated from two aspects, optimistic and 
pessimistic viewpoints.  
Assume, there are n  DMUs, jDMU , 

( 1,..., )j n with m  inputs ( 1,..., )ijx i m , 

s  outputs ( 1,..., )rjy r s  and k  adaptable 

variables ( 1,..., )tj t kz  . In this case, 
inputs, outputs and adaptable variables are 
considered as trapezoidal fuzzy data, i.e. 

( , , , )L M N U
ij ij ij ij ijx x x x x , ( , , , )L M N U

rj rj rj rj rjy y y y y  

and ( , , , )L M N U
tj tj tj tj tjz z z zz  , respectively. 

According to Liu and Liu [30] and 
definition 2.4, we have 

( (1/ 4)( )) L M N U
ij ij ij ij ijE x x x x x   ,     

( (1/ 4)( )) L M N U
rj rj rj rj rjE y y y y y   , and

( (1 / 4)( )) L M N U
tj tj tj tj tjE z z z z z   .  

With considering the continuous variable 
td 0 1td  , we define the relative 

efficiency of oDMU  , the unit under 
evaluation, as follows:  

1 1

1 1

( )

( (1 ) )

s k

r ro t t to
Opt r t
o m k

i io t t to
i t

E u y w d z
e

E v x w d z

 

 




 

 

 

 

 

          (1) 

 
That , ,i rv u and tw are weights of input, 
output and adaptable variables, 
respectively. Also, td  is used to determine 
the portion of adaptable variable tjz  that is 

taken as output. Due to proposition 1, Opt
oe

can be rewritten as follows: 

1 1

1 1

( ) ( )

( ) (1 ) ( )

s k

r ro t t to
Opt r t
o m k

i io t t to
i t

u E y w d E z
e

v E x w d E z

 

 




 

 

 

 

 

    (2) 

 
Thus, the following fractional nonlinear 
programming is proposed for evaluating the 
efficiency of oDMU from optimistic point 
of view: 

1 1

1 1

1 1

1 1

( ) ( )

( ) (1 ) ( )

( ) ( )
. . 1, 1,..., ,

( ) (1 ) ( )

, , , , , ,
0 1, .

s k

r ro t t to
best r t
o m k

i io t t to
i t

s k

r rj t t tj
r t

m k

i ij t t tj
i t

i r t

t

u E y w d E z
Max e

v E x w d E z

u E y w d E z
s t j n

v E x w d E z

v u w i r t
d t



 

 

 

 




 


 

 

 

  

 

 

 

 

 

 

 

 

(3) 

 
That   is the non-Archimedean 
infinitesimal.  
Note that at this stage the continuous 
variable td in (3) is used to indicate the 
portion of the expected value of adaptable 
variable, ( )tjE z , that is taken as the 
expected value of output. Model (3) is 
transformed into a fractional linear program 
by using definition 2.4 and the change of 
variables t t tw d  . Therefore, model (3) is 
replaced by the following problem: 
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( )
1

( )
1

( )
1

( ) ( )
1 1

( )
1. .

(

s L M N Uu y y y yr ro ro ro robest rMax eo m L M N Uv x x x xi io io io ioi
k L M N Uz z z zt to to to tot

k kL M N U L M N Uw z z z z z z z zt to to to to t to to to tot t
s L M N Uu y y y yr rj rj rj rjrs t

L Mv x x xi ij ij i





  


  


   


        
 

  


  ) ( )
11

( )
1 1, 1,..., ,

( )
1

, , , , , ,

0 , .

m kN U L M N Ux z z z ztj ij tj tj tj tjti
k L M N Uz z z zt tj tj tj tjt j nk L M N Uw z z z zt tj tj tj tjt

v u w i r tr ti
w tt t









     


   
  

   


 

  

 
By utilizing the Charnes and Cooper [32] 
transformation, i.e. 

( ) ( )
11
1

( )
1

m kL M N U L M N Uv x x x x w z z z zt to to to toi io io io io ti
k L M N Uz z z zt to to to tot




       


    


r ru u , i iv v , t tw w , t t   
 
model (4) changes to the following linear 
programming: 

( )
1

( )
1

. . ( ) ( )
11

( ) 1,
1

( ) (
1

sbest L M N UMax e u y y y yo r ro ro ro ror
k L M N Uz z z zt to to to tot

m KL M N U L M N Us t v x x x x w z z z zt to to to toi io io io io ti
K L M N Uz z z zt to to to tot
s L M N U Lu y y y y z zr trj rj rj rj tj tjr







   


   


       


    


    


)
1

( ) ( )
11

( ) 0, 1,..., ,
1

, , , , , ,

0 , .

k M N Uz ztj tjt
m KL M N U L M N Uv x x x x w z z z zti ij ij ij ij tj tj tj tjti
K L M N Uz z z z j nt tj tj tj tjt

v u w i r tr ti
w tt t







 


        


     


 

  

 
Notice that the efficiency obtained from  
model (5) is between 0 and 1. That is 
0 1b es t

oe  . 
Definition 3.1. oD M U  is said optimistic  
efficient in model (5) if and only if 1best

oe  . 

Now for evaluating the efficiency of 
oD M U from pessimistic point of view, 

model (3) can be substituted by the 
following program:  

( ) ( )
1 1

( ) (1 ) ( )
11

( ) ( )
1 1. . 1, 1, ..., ,

( ) (1 ) ( )
11

, , , , , ,

0 1, .

s k
u E y w d E zr ro t t tow orst r tM in eo m k

v E x w d E zt t toi io ti
s k

u E y w d E zr t trj tjr ts t j nm k
v E x w d E zt ti ij tjti

v u w i r tr ti
d tt



 
 

  


 
   

  

 

  

 

 

 

 

 

 
As aforementioned in the case of the 
optimistic viewpoint, model (6) can be 
transformed to the following linear 
programming by using definition 2.4, the 
change of variables t t tw d  and the 
Charnes and Cooper [32] transformation: 

( )
1

( )
1

. . ( )
1

( ) ( ) 1,
1 1

( ) (
1

sworst L M N UMin e u y y y yo r ro ro ro ror
k L M N Uz z z zt to to to tot

m L M N Us t v x x x xi io io io ioi
K KL M N U L M N Uw z z z z z z z zt to to to to t to to to tot t

s L M N U Lu y y y y z zr trj rj rj rj tj tr







    


  


   


        
 

    


)
1

( ) ( )
11

( ) 0, 1,..., ,
1

, , , , , ,

0 , .

k M N Uz zj tj tjt
m KL M N U L M N Uv x x x x w z z z zti ij ij ij ij tj tj tj tjti

K L M N Uz z z z j nt tj tj tj tjt
v u w i r tr ti

w tt t







 


        


     


 

  

 
The efficiency resulted from (7) is greater 
than or equal to 1, i.e. 1w o rst

oe  . 
Definition 3.2. oD M U  is said pessimistic 
infficient in model (7) if and only if 

1w o rst
oe  . 

In the existence of triangular fuzzy 
variables, ( , , )L M U

ij ij ij ijx x x x , ( , , )L M U
rj rj rj rjy y y y  

and ( , , )L M U
tj tj tj tjz z zz  , models (5) and (7) 

are substituted by the following models: 

(4) 

(5) 

(6) 

(7) 
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( 2 ) ( 2 )
1 1

. . ( 2 ) ( 2 )
11

( 2 ) 1,
1

( 2 ) ( 2 )
1 1

( 2

s kbest L M U L M UMax e u y y y z z zo r ro ro ro t to to tor t
m KL M U L M Us t v x x x w z z zt to to toi io io io ti

K L M Uz z zt to to tot
s kL M U L M Uu y y y z z zr trj rj rj tj tj tjr t

Lv x xi ij







      
 

      


  


     
 

  ) ( 2 )
11

( 2 ) 0, 1,..., ,
1

, , , , , ,

0 , .

m KM U L M Ux w z z ztij ij tj tj tjti
K L M Uz z z j nt tj tj tjt

v u w i r tr ti
w tt t







    


    


 

  

  

 
and 

( 2 ) ( 2 )
1 1

. . ( 2 ) ( 2 )
11

( 2 ) 1,
1

( 2 ) ( 2 )
1 1

( 2

s kworst L M U L M UMin e u y y y z z zo r ro ro ro t to to tor t
m KL M U L M Us t v x x x w z z zt to to toi io io io ti

K L M Uz z zt to to tot
s kL M U L M Uu y y y z z zr trj rj rj tj tj tjr t

Lv xi ij







      
 

     


   


     
 

  ) ( 2 )
11

( 2 ) 0, 1,..., ,
1

, , , , , ,

0 , .

m KM U L M Ux x w z z ztij ij tj tj tjti
K L M Uz z z j nt tj tj tjt

v u w i r tr ti
w tt t







    


    


 

  

  

 
In the next stage, a geometric average of 
optimistic and pessimistic efficiencies is 
used to calculate the overall efficiency of 
DMUs, i.e. 

, 1, ..., .Overall best worst
j j je e e j n              (10) 

 
Moreover, portions of adaptable variables 
are estimated by using the arithmetic 
average of values that are obtained from 
both viewpoints. It means 

(1 ) (1 )
, 1, ...,

2

best worst
j joveralld j

d d
j n

  
    

, 1, ..., .
2

best worst
j joveralld j

d d
j n


             (11) 

 
To explain, for integrating optimistic and 
pessimistic efficiencies and determining the 
portions of adaptable measures, the 
averages of values are calculated.  

4. An example 
For illustration and clarification the 
approach, a numerical example is provided. 
Suppose there are 20 DMUs that each 
DMU consists of two inputs, one 
adaptable measure and one output. Data can 
be seen in Table 1. Data has been given as 
triangular fuzzy numbers. At first, models 
(8) and (9) are calculated. The results have 
been shown in Table 2. The results obtained 
from model (8) are provided in columns 
4-6. As can be found, 6 DMUs, DMU4, 
DMU5, DMU6, DMU7, DMU16 and 
DMU17 are optimistic efficient. Also, 
columns 7-9 show the results obtained from 
model (9). Column 7 indicates 4 DMUs, 
DMU1, DMU 11, DMU16 and DMU 20 
are pessimistic inefficient. Then, the 
geometric average efficiencies are 
computed that are obtained via integrating 
two different efficiencies. Column 4 of 
Table 3 indicates them. Afterwards, the 
arithmetic averages of values of d and 
1 d , which are obtained from both 
viewpoints, are calculated and shown in 
columns 6 and 7 of Table 3, respectively. 
To compare the results, we consider the 
adaptable measure as an output factor and 
calculate the optimistic and pessimistic 
efficiency scores using the fuzzy expected 
value approach (Wang and Chin's models 
[33]. Results are shown in columns 2 and 3 
of Table 2. Column 2 indicates the 
optimistic efficiency results when the 
adaptable measure is considered as an 
output. The pessimistic efficiency scores 
when the adaptable measure is deemed as 
an output are given in column 3. As can be 
seen, .WC best best

j je e  and .WC worst worst
j je e . To 

illustrate, best
je and worst

je obtain the results 

closer than to 1 in contrast to .WC best
je and 

.WC worst
je . Column 2 of Table 3 describes the 

average efficiency, calculated by the 
geometric average, when the adaptable 
measure is considered as an output. The 
average efficiencies comparisons of two 
approaches do not display an especial 

(8) 

(9) 
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pattern. Actually, the varied results have 
been obtained due to differences between 
optimistic and pessimistic efficiency scores. 
Columns 3 and 5 of Table 3 show the 
ranking of DMUs by .WC average

je and average
je , 

respectively. Interestingly, DMU 4 has 

obtained the best ranking in both 
approaches.  
To summary, incorporating adaptable 
measures in the efficiency evaluation 
changes the results. 

Table 1. Fuzzy data 
#DMU Input 1 Input 2 Adaptable measure Output 1 

1 (5, 5, 5) (470, 475, 480) (34, 35, 36) (194, 195, 196) 
2 (10, 11, 13) (314, 315, 318) (48, 50, 52) (196,197, 200) 
3 (4, 6, 9) (332, 334, 335) (54, 54, 56) (221, 223, 223) 
4 (5, 7, 10) (195, 195, 195) (41, 43, 43) (190, 190, 190) 
5 (4, 5, 9) (257, 258, 259) (58, 59, 59) (207, 208, 209) 
6 (2, 4, 5) (258, 261, 262) (55, 55, 55) (192, 196, 196) 
7 (7, 9, 10) (266, 267, 270) (31, 32, 33) (204, 205, 206) 
8 (9, 13, 15) (349, 350, 351) (62, 64, 64) (198, 199, 200) 
9 (9, 11, 12) (349, 352, 355) (67, 68, 70) (222, 223, 225) 
10 (5, 6, 8) (321, 323, 323) (32, 33, 34) (185, 185, 187) 
11 (20, 20, 20) (326, 328, 328) (62, 64, 64) (169, 170, 173) 
12 (15, 17, 21) (339, 340, 341) (24, 24, 25) (217, 218, 218) 
13 (15, 17, 19) (306, 308, 310) (28, 30, 30) (168, 170, 171) 
14 (16, 17, 18) (331, 333, 334) (46,47,48) (198, 200, 201) 
15 (9, 12, 16) (315, 316, 318) (39, 41, 41) (186, 187, 189) 
16 (17, 17, 17) (244, 245, 247) (14, 14, 14) (170, 170, 170) 
17 (3, 4, 5) (310, 310, 310) (19, 20, 21) (183, 185, 185) 
18 (16, 19, 24) (236, 237, 238) (36, 38, 38) (170, 170, 170) 
19 (16, 17, 18) (279, 281, 283) (25, 25, 27) (182, 183, 184) 
20 (18, 21, 24) (363, 363, 364) (22, 23, 25) (167, 168, 170) 

Table 2. Results for an example 
#DMU .WC best

je  .WC worst
je  best

je  best
jd  1 best

jd  worst
je  worst

jd  1 worst
jd  

1 0.749537 1 0.920967 0.48915 0.51085 1 1 0 
2 0.709686 1.427614 0.954065 0.50165 0.49835 1.050989 0.48705 0.51295 
3 0.842279 1.588662 0.974514 0.48388 0.51612 1.070293 0.48576 0.51424 
4 1 2.213471 1 0.48385 0.51615 1.098806 0.48964 0.51036 
5 1 1.903211 1 0.51206 0.48794 1.080501 0.48516 0.51484 
6 1 1.804562 1 0.51204 0.48796 1.068744 0.48613 0.51387 
7 0.823915 1.746587 1 0 1 1.083092 0.51502 0.48498 
8 0.796623 1.296539 0.941921 0.50213 0.49787 1.026552 0.48315 0.51685 
9 0.851391 1.465507 0.955313 0.51492 0.48508 1.04998 0.48184 0.51816 
10 0.720766 1.36826 0.965283 0.48147 0.51853 1.049929 0.49567 0.50433 
11 0.851219 1.06428 0.936521 0.50212 0.49788 1 0.49141 0.50859 
12 0.657184 1.162342 0.984127 0.4872 0.5128 1.034216 0.52498 0.47502 
13 0.565594 1.197453 0.953741 0.48826 0.51174 1.026144 0.4961 0.5039 
14 0.64147 1.317405 0.945419 0.50157 0.49843 1.041044 0.49368 0.50632 
15 0.60767 1.339817 0.950203 0.48371 0.51629 1.043148 0.49465 0.50535 
16 0.711293 1 1 0 1 1 1 0 
17 0.886777 1.057571 1 0 1 1.022523 0.52038 0.47962 
18 0.736174 1.088617 0.970496 0.48545 0.51455 1.047969 0.49517 0.50483 
19 0.668304 1.34366 0.979607 0.49001 0.50999 1.048339 0.51216 0.48784 
20 0.475297 1 0.937407 0.49053 0.50947 1 1 0 
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Table 3. Averages of results and ranking 
#DMU .WC overall

je  Rank overall
je  Rank d

overall
j  d

overall
j  

1 0.865758 17 0.95967 20 0.744575 0.255425 
2 1.006557 8 1.001355 12 0.49435 0.50565 
3 1.156761 5 1.021281 5 0.48482 0.51518 
4 1.487774 1 1.048239 1 0.486745 0.513255 
5 1.379569 2 1.039472 3 0.49861 0.50139 
6 1.34334 3 1.033801 4 0.499085 0.500915 
7 1.1996 4 1.040717 2 0.25751 0.74249 
8 1.016294 7 0.983326 17 0.49264 0.50736 
9 1.117014 6 1.001529 11 0.49838 0.50162 

10 0.993074 9 1.006717 10 0.48857 0.51143 
11 0.951806 11 0.96774 19 0.496765 0.503235 
12 0.873998 16 1.008861 8 0.50609 0.49391 
13 0.822966 19 0.98928 16 0.49218 0.50782 
14 0.91928 13 0.99208 15 0.497625 0.502375 
15 0.902312 14 0.995591 14 0.48918 0.51082 
16 0.843382 18 1 13 0.5 0.5 
17 0.968416 10 1.011199 7 0.26019 0.73981 
18 0.895216 15 1.008489 9 0.49031 0.50969 
19 0.947615 12 1.01339 6 0.501085 0.498915 
20 0.689418 20 0.968198 18 0.745265 0.254735 

 
5. Conclusions 
In real world applications, there are 
situations that the status of imprecise 
measures is uncertain from input and/or 
output viewpoints. Also, conventional DEA 
models usually evaluate the efficiency from 
an optimistic point of view. In the current 
paper, the efficiency scores of DMUs from 
two aspects, optimistic and pessimistic, 
have been evaluated where these adaptable 
variables exist in a fuzzy environment. 
Then, the overall efficiency of DMUs has 
been calculated by using the geometric 
average of efficiencies. Actually, the fuzzy 
expected value has been used to handle 
fuzzy DEA models introduced herein in 
order to handle situations that imprecise and 
adaptable measures exist. 
A numerical example has been used to 
illustrate the approach. Analysis of the 
results has shown that the average 
efficiency scores obtained have changed by 
incorporating fuzzy adaptable measures. 

Also, the overall efficiency calculation and 
the consideration of both points of view, 
optimistic and pessimistic, result in more 
rational and realistic consequences.  
Models developed in the current study have 
been based on constant return to scale 
technology. However, the approach can be 
extended for variable returns to scale 
technology. Moreover, further research 
might be concentrated on the investigation 
of the supplier selection problem where 
adaptable and imprecise variables present. 
Also, it seems more research is required in 
determining the overall efficiency in the 
existence of fuzzy adaptable measures and 
undesirable factors. 
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