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Abstract 
Finding the favorable weights from pairwise comparison matrices is very important to rank 
the alternatives in Multi Attribute Decision Making (MADM) concept. Using Linear 
Programming has considered to develop this field during recent researches. Combined 
Analytic Hierarchy Process and Data Envelopment Analysis considered by some researches 
to find the weights. Decreasing the numerical procedures is vital because of using linear 
programming in proposed models. In this paper we are going to present some models to 
generate the favorable weights from a pairwise comparison matrix combing Analytic 
Hierarchy Process (AHP) and Data Envelopment Analysis (DEA) models. First we address 
a history and applications of AHP and then some notes on DEA models. Finally three DEA 
models are proposed to find the weights. In this way we tried to decrease the computational 
process by decreasing the number of constraints and variables of proposed models. Some 
numerical examples are putted forward to illustrate our approaches. 
 
Keywords: Data Envelopment Analysis (DEA), Analytic Hierarchy Process(AHP), pairwise 
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1. Introduction 
Data envelopment analysis (DEA) is one 
of the most popular tools in production 
management literature for performance 
measurement, while the analytic hierarchy 
process (AHP) is a popular tool in the 
field of multiple-criteria decision-making 
(MCDM). MCDM has been succinctly 
defined as making decisions in the face of 
multiple conflicting objectives [9]. Many 
researchers have found similarities 
between DEA and MCDM techniques. 
One of the earliest attempts to integrate 
DEA with multi-objective linear 
programming (a MCDM technique) was 
provided by Golany [5]. Since then, there 
have been several attempts to use the 
principles of DEA in the MCDM 
literature. The traditional goals of DEA 
and MCDM have been compared by 
Stewart [8]. The goal of DEA is to 
determine the productive efficiency of a 
system or decision-making-unit (DMU) 
by comparing how well the DMU 
converts inputs into outputs, while the 
goal of MCDM is to rank and select from 
a set of alternatives that have conflicting 
criteria. It has been recognized for more 
than a decade that the MCDM and DEA 
formulations coincide if inputs and 
outputs can be viewed as criteria for 
performance evaluation, with 
minimization of inputs and/or 
maximization of outputs as associated 
objectives [2,4]. 
It is not the intention in this paper to go 
into the details of similarities. This paper 
is concerned about using the concepts of 
DEA for addressing specific problems in 
the AHP [3], a popular technique of 
MCDM. The paper begins with brief 
discussions on DEA and AHP and a 
literature survey on previous approaches 
linking the two methods. The proposed 
approaches synthesizing DEA concepts in 
AHP is discussed and illustrated in 
Section 3. A numerical example 
illustrated in the fourth section to 

compare the models. The paper ends with 
a summary and conclusions of the paper. 
 
2. Backgrounds 
2.1. Analytic Hierarchy Process  
Analytic Hierarchy Process (AHP), since 
its invention, has been a tool at the hands 
of decision makers and researchers; and it 
is one of the most widely used multiple 
criteria decision-making tools. Many 
outstanding works have been published 
based on AHP: they include applications 
of AHP in different fields such as 
planning, selecting a best alternative, 
resource allocations, resolving conflict, 
optimization, etc., and numerical 
extensions of AHP. Bibliographic review 
of the multiple criteria decision-making 
tools carried out by Steuer [7] is also 
important. This review paper is partially 
dedicated to the AHP applications, which 
are combined with finance. The speciality 
of AHP is its flexibility to be integrated 
with different techniques like Linear 
Programming, Quality Function 
Deployment, Fuzzy Logic, etc. This 
enables the user to extract benefits from 
all the combined methods, and hence, 
achieve the desired goal in a better way. 
Analytic Hierarchy Process is a multiple 
criteria decision-making tool. This is an 
Eigne value approach to the pairwise 
comparisons. It also provides a 
methodology to calibrate the numeric 
scale for the measurement of quantitative 
as well as qualitative performances. The 
scale ranges from 1 to 9 for least valued 
than, to 1 for equal, and to 9 for 
absolutely more important than covering 
the entire spectrum of the comparison. 
Some key and basic steps involved in this 
methodology are: 
 
Step1: Structuring of the decision 
problem into a hierarchical model.  
It includes decomposition of the decision 
problem into elements according to their 
common characteristics and the formation 
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of a hierarchical model having different 
levels. A simple AHP model has three 
levels (goal, criteria and alternatives), 
more complex models containing more 
than three levels are also used in the 
literature. For example, criteria can be 
divided further into sub criteria and sub-
sub-criteria. Additional levels containing 
different actors relevant to the problem 
under consideration may also be included 
in AHP studies. 
 
Step 2: Making pairwise comparisons 
and obtaining the judgment matrix.  
In this step, the elements of a particular 
level are compared with respect to a 
specific element in the immediate upper 
level. The resulting weights of the 
elements may be called the local weights. 
The opinion of a decision maker (DM) is 
elicited for comparing the elements. 
Elements are compared pairwise and 
judgments on comparative attractiveness 
of elements are captured using a rating 
scale (1 to 9 scale in traditional AHP). 
Usually, an element receiving higher 
rating is viewed as superior (or more 
attractive) compared to another one that 
receives a lower rating. The comparisons 
are used to form a matrix of pair-wise 
comparisons called the judgment matrix 
A . Each entry ija  of the judgment matrix 
are governed by the three rules: 

> 0; = 1/ij ij jia a a  ; and =1iia  for all i . 
If the transitivity property holds, i.e., 

= .ij ik kja a a  , for all the entries of the 
matrix, then the matrix is said to be 
consistent. If the property does not hold 
for all the entries, the level of 
inconsistency can be captured by a 
measure called consistency ratio (see next 
step). 
 
Step 3: Local weights and consistency 
of comparisons.  
In this step, local weights of the elements 
are calculated from the judgment matrices 

using the eigenvector method (EVM). 
The normalized eigenvector 
corresponding to the principal eigenvalue 
of the judgment matrix provides the 
weights of the corresponding elements. 
Though EVM is followed widely in 
traditional AHP computations, other 
methods are also suggested for calculating 
weights, including the logarithmic least-
square technique (LLST), goal 
programming, and others. When EVM is 
used, consistency ratio CR  can be 
computed. For a consistent matrix A  
value of CR less than 0.1 is considered 
acceptable because human judgments 
need not be always consistent, and there 
may be inconsistencies introduced 
because of the nature of scale used. If CR  
for a matrix is more than 0.1, judgments 
should be elicited once again from the 
DM till he gives more consistent 
judgments. 
 
Step 4: Aggregation of weights across 
various levels to obtain the final 
weights of alternatives.  
Once the local weights of elements of 
different levels are obtained as outlined in 
Step 3, they are aggregated to obtain final 
weights of the decision alternatives 
(elements at the lowest level). 
In this chapter we only focussed on step 2 
and finding the weights. The case of 
consistency may be considered for feature 
research. We are going to present some 
DEA models to generate the local 
weights. 
Some notes on DEA models appeared in 
the next section before presenting the 
recent work and our proposals to combine 
DEA and AHP.  
 
2.2. Some Notes on DEA Models 
Consider ,n DMUs  with m  inputs and s  
outputs. The input and output vectors of 

jDMU  ( =1, , )j n  are 

1 1= ( , , ) , = ( , , )t t
j j mj j jX x x Y y ysj    
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which 0, 0, 0, 0.j j j jX X Y Y     
By using the non-empty, constant return 
to scale, convexity and possibility 
postulates, the production possibility set 
(PPS) is made as follows: 

=1

=1

( , ) : ,
=

, 0, = 1 ,

n
j jj

c n
j j jj

X Y X X Y
T

Y j n



 

   
 

  


 

 

 
Let oDMU  is evaluated. The multiplier 
form of CCR model [3], in input oriented 
case is as follows: 

= 1

= 1

m ax

. = 1

s

r ro
r

m

i io
i

u y

S t v x




                            (1) 

=1 =1
0, =1, ,

, =1, , , =1 ,

s m

r rj i ij
r i

r i

u y v x j n

u r s v i m 

 

 

  

 
 
By adding the constrains 1 = 1  the BCC 
model [1], obtained respectively. 
In continue DEA models without any 
inputs or any outputs are discussed. Also, 
DEA models with fixed inputs or fixed 
outputs are presented. We will show that 
the CCR model without any inputs or any 
outputs is meaningless; and, the CCR 
model with fixed inputs or fixed outputs 
is equivalent to the BCC model without 
any inputs respectively. Then, we will 
show that the BCC model with fixed 
inputs or fixed outputs can be considered 
as a BCC model without any inputs or 
any outputs. Finally, it will prove that 
BCC model without any inputs or any 
outputs can be transformed to a model 
with fewer variables and constraints.  
 
Theorem 1  
The CCR model without any inputs is 
meaningless in output oriented form.  
Proof. Consider the following CCR model 
without any inputs to measure the  

efficiency score of oD M U : 

=1

max  

. , = 1, ,

0, = 1, ,

n

j rj ro
j

j

S t y y r s

j n



 







 



  (2) 

 
It is clear that =1o  and 

= 0,  =1,..., ,j j n j o   is a feasible 

solution of model 2, moreover =o k  
and = 0,  =1,..., ,j j n j o   is also a 
feasible solution of this model. It means 
that when k    the optimal value of 
the objective function tents to infinity: 

*   and clearly the evaluated unit 
is infinitely inefficient. This is completed 
the proof. Therefore, the CCR model 
without any inputs is meaningless.  
 
Theorem 2  
The CCR model without any outputs is 
meaningless in input oriented form.  
Proof. Consider the following CCR model 
without any outputs to measure the 
efficiency score of oDMU : 

=1

min  

. , = 1, ,

0, = 1, ,

n

j ij io
j

j

S t x x i m

j n



 







 



  (3) 

 
It is clear that 0,  =1,...,j j n   and * < 0
is not a feasible solution of model 3, then 

* = 0 . In other words all units evaluated 
with zero score, i.e. all units are evaluated 
absolutely inefficient. Therefore, the CCR 
model without any outputs is 
meaningless.  
 
Theorem 3  
A CCR model with a fixed input in output 
oriented form is equivalent to a BCC 
model without any input.  
Proof. Consider the following CCR model  
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with a non zero fixed input a  in output 
oriented development form: 

=1

=1

max  

. ,

, = 1, ,

0, = 1, ,

n

j
j

n

j rj ro
j

j

S t a a

y y r s

j n





 











 



      (1) 

  
We want to show that if * *( , )   be the 
optimal solution of 4.2.3 then 

*
=1

= 1n
jj

 . By contradiction, suppose 

that *
=1

< 1n
jj

 . Let 
*

*
=1

= j
j n

jj





, then 

we get: 
*

*=1 =1

=1

* *
*

* *

=1 =1

=

= > ,   =1,...,

n n
j

j rj rjn
j j

j
j

ro
ro ton n

j j
j j

y y

y y y r s






  
 

 


 

  (2) 

 
Therefore, 

*
*

*
=1

= >n
jj


 


 and it is 

contradicting with the optimality of * ; 
therefore, *

=1
= 1n

jj
 . Then the 

following BCC model is obtained:  

=1

=1

max  

.   , = 1, ,

= 1

0, = 1, ,

n

j rj ro
j

n

j
j

j

S t y y r s

j n



 

















    (3) 

  
Theorem 4  
The CCR model with fixed outputs in 
input oriented form is equivalent to a 
BCC model without any output.  
Proof is similar to theorem 3.  
 

Theorem 5  
The BCC model with fixed inputs in 
output oriented form is equivalent to a 
BCC model without any inputs.  
Proof. Consider the following mentioned 
BCC model:  

=1

max  

.   ,
n

j
j

S t a a



 
 

=1

=1

, = 1, ,

= 1 

 0 , = 1 , ,

n

j rj ro
j

n

j
j

j

y y r s

j n

 

















      (4) 

  
Clearly the following model can be 
considered:  

=1

=1

max  

.   , = 1, ,

= 1 

0, = 1, ,

n

j rj ro
j

n

j
j

j

S t y y r s

j n



 

















  (5) 

  
And the proof is completed.  
Now, we are going to present some DEA 
models to generate the kocal weight from 
a comparison pairwise matrix. The 
development output oriented form of 
BCC model and DEA/MOLP models are 
used in this way.  
 
3. DEA/AHP Models to generate the 
favorable weights 
Again consider the following pairwise 
comparison matrix:  

11 12 1

21 22 2

1 2

...

...
= . . ... .

...

n

n

n n nn

a a a
a a a

A
a a a

 
 
 
 
 
 
 
 

             (6) 

 

Where =1, =1,...,iia i n , 1= , ij
ji

a i j
a

   
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and 1= ( ,..., )nW w w  be its weights vector. 
DEA/AHP views each row of the matrix 
A  as a decision making entity, which is 
referred to as decision making unit in 
DEA, and each column as an output. A 
dummy input that has a value of 1 is 
assumed for all the DMUs. Each DMU 
has in fact n  outputs and one dummy 
constant input, based on which the 
following input-oriented CCR model is 
built by Ramanathan [8] to estimate the 
local weights of the comparison matrix A
: 

=1

=1

max  =

.   = 1

0,  = 1,...,

 , 0, = 1, ,

n

i j i jo o
j

n

j ij
j

j

w u a

S t v

u a v i n

u v j n

 








               (7) 

  
Where {1,..., }oi n  represents the DMU 

under evaluation, that is oDMU . The 
optimum objective function value of the 
above model, 

io
w  , represents the DEA 

efficiency of oDMU  and is used as its 
local weight. The LP model 4.3.2 is 
solved for all the DMUs to obtain the 
local weight vector W  of the comparison 
matrix A . It has been proved [6] that 
DEA/AHP can estimate the true weights 
if A  is a perfectly consistent comparison 
matrix. 
Now, consider the following output 
oriented CCR model with a fixed input:  

=1

=1

max  

. ,

, = 1, ,

0, = 1, ,

n

i
i

n

i ij i jo
i

i

S t a a

a a j n

i n





 











 



      (8) 

  
Where {1,..., }oi n  represents the DMU 

under evaluation, that is oDMU . Follow to 

theorem 4.2.3 this model is equivalent to 
the BCC model without any input in 
output oriented development form and we 
get the following model to generate the 
favorable weights from a pairwise 
comparison matrix:  

=1

=1

max  

.   , = 1, ,

= 1

0, = 1, ,

n

i ij i jo
i

n

i
i

i

S t a a j n

i n



 

















  (9) 

  
We proposed model 12 as a DEA/AHP 
model to generate the local weights. 
Clearly, n  linear programming problems 
with 1n   variables and 1n   constraints 
should be solved to find the weights. The 
optimal objective value of model 4.3.4 
can use as the local weights of 
alternatives and criterion. Obviously, the 
summation of local weights are equal to 
unity in AHP models therefore, we can 
use the normalized weights as the local 
weights (dividing each obtained weight to 
summation of all generated weights). The 
final weights of each alternative can 
calculate by the following formula:  

   =
    

[
   

  
]

 

i

i

j j

j

Final weight of A
Local weight of A with
respect of criterion C

Local weight of
criterion C

 
 

 
 
 
 

     (10) 

  
For all i . 
Again consider the matrix 9. As 
mentioned in this section we considered 
the efficiency of each alternatives (and 
criterion) as the local weights of pairwise 
comparison matrix. Then, consider the 
following MOLP/DEA model to obtain 
the weights:  

1
=1 =1

max  min{ ,..., }
n n

i i i in
i i

u a u a   
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=1

.  1, = 1, ,

0, = 1, ,

n

i ij
i

i

S t u a j n

u i n





 


      (11) 

 
The main idea of this model is that we 
want to maximize the minimum of the 
weights. After linearizing, the following 
linear programming problem is obtained:  

=1

=1

max  

.  1, = 1, ,

0 

0, = 1, ,

n

i ij
i

n

i ij
i

i

S t u a j n

u a

u i n







 











      (12) 

  
It is clear that only one problem should be 
solved to generate the weight. One may 
say that because of using MOLP 
technique an infinite number of optimal 
solutions may be at hand, therefore, the 
obtained weights (efficiency scores) may 
be changed. To answer this problem it is 
necessary to note that the weights are not 
unique in original AHP methods and they 
may change by using different kinds of 
methods. Finally, the weights are 
calculated as : 

*
=1

= ,  =1,...,n
i i iji

w u a i n , we can normalize 
the weights to satisfy the AHP properties. 
Maximizing the weights of alternatives 
and criterion is another way to find the 

weights. The proposed "common set of 
weights" model is as follows:  

1
=1 =1

=1

max  { , ..., } 

.  1, = 1, ,  

0, = 1, ,   

n n

i i i in
i i

n

i ij
i

i

u a u a

S t u a j n

u i n





 

 



      (13) 

 
This model transformed to the following 
linear programming problem using goal 
programming techniques as follows: 

=1

=1

min 

.  = 1, = 1, ,

, 0, = 1, ,

n

i
i
n

i ij i
i

i i

z

S t u a z j n

u z i n







 



  (14) 

  
It should be noted that only one problem 
is used to generate the weights from 
models 15 and 17, therefore, the 
computational process is so decreased.  
 
4. Numerical Example 
In this section we are going to add our 
proposals in a numerical example and 
compare them with the results of AHP 
method and model 4.3.2. In this way, 
consider a hierarchy process with three 
alternatives 1 2 3,   A A and A  and four 
criterion 1 2 3 4, ,   C C C and C .  
The pairwise comparison matrices 
 

 
Table 1: Comparison of criterion with respect to goal 

DMUs 1C  2C  3C  4C  

1C  1 1 4 5 

2C  1 1 5 3 

3C  1/4 1/5 1 3 

4C  1/5 1/3 1/3 1 
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Table 2: Comparison of alternatives with respect to 1C  

DMUs 1A  2A  3A  

1A  1 1/3 5 

2A  3 1 7 

3A  1/5 1/7 1 
 

Table 3: Comparison of alternatives with respect to 2C  

DMUs 1A  2A  3A  

1A  1 1/9 1/5 

2A  9 1 4 

3A  5 1/4 1 
  

Table 4: Comparison of alternatives with respect to 3C  

DMUs 1A  2A  3A  

1A  1 2 5 

2A  1/2 1 3 

3A  1/5 1/3 1 
 

Table 5: Comparison of alternatives with respect to 4C  

DMUs 1A  2A  3A  

1A  1 3 9 

2A  1/3 1 3 

3A  1/9 1/3 1 
 
Following tables show the generated 
weights by AHP method, model 4.3.2, 

BCC formulation (model 4.3.4), model 
4.3.7 and finally, model 4.3.9: 

 
Table 6: Generated weights by AHP method 

 1C  2C  3C  4C  Final Weights 

1A  0.279 0.060 0.582 0.692 0.261 

2A  0.649 0.709 0.309 0.231 0.590 

3A  0.072 0.231 0.109 0.077 0.148 
 0.400 0.394 0.128 0.078  
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Table 7: Generated weights by DEA/AHP model 10 
 1C  2C  3C  4C  Final Weights 

1A  0.714 0.111 1 1 0.712 

2A  1 1 0.600 0.333 1 

3A  0.143 0.556 0.200 0.111 0.346 
 

Table 8: Generated weights by BCC model 
 1C  2C  3C  4C  Final Weights 

1A  0.385 0.067 0.556 0.692 0.346 

2A  0.538 0.600 0.333 0.231 0.483 

3A  0.077 0.333 0.111 0.077 0.171 
 0.341 0.341 0.205 0.113  

 
Table 9: Generated weights by model 15 

 1C  2C  3C  4C  Final Weights 

1A  0.226 0.067 0.714 0.692 0.283 

2A  0.677 0.600 0.143 0.231 0.532 

3A  0.097 0.333 0.143 0.077 0.185 
 0.400 0.360 0.120 0.120  

 
Table 10: Generated weights by model 17 

 1C  2C  3C  4C  Final Weights 

1A  0.385 0.067 0.556 0.692 0.313 

2A  0.538 0.600 0.333 0.231 0.506 

3A  0.077 0.333 0.121 0.077 0.181 
 0.400 0.360 0.120 0.120  

 
note that the rank of alternatives remains 
unchanged in all the mentioned models. 
But there are some comparison between 
these models. 
 
5. Conclusion 
In this paper some DEA/AHP models 
presented to find favorable local weights 
from a comparison matrix. the following 
results obtained: 
• Consider the DEA/AHP model 10 n
linear programming problems which each 
of them has 1n   constraints and 1n   

variables should be solved to generate the 
weights.  
• The BCC formulation (model 12) should 
be solved n  times to generate the 
weights which each of them has 1n   
constraints and 1n   variables.  
• Only one problem need to be solved by 
using models 15 and 17 (MOLP/DEA 
models) which these models has only n  
constraints and n  variables.  
Inconsistency did not discuss in this paper 
and may be considered for feature studies 
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