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Abstract 

     Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative technical 

efficiency for each member of a set of peer decision making units (DMUs) with multiple inputs and 

multiple outputs. The original DEA models use positive input and output variables that are measured 

on a ratio scale, but these models do not apply to the variables in which interval scale data can appear. 

However, with the widespread use of interval scale data, the emphasis has been directed towards the 

simultaneous consideration of the ratio and interval scale data in DEA models. This study, introduces 

a measure of inefficiency and identifies efficient units as is done in DEA models with VRS 

technology based on separating hyperplanes. The basic idea in the approach is to obtain a separating 

hyperplane of DMUs so that the hyperplane can separate the maximum number of DMUs whose 

performances are not better than a DMU under evaluation, from the rest of the DMUs. Performance 

measure is defined as a ratio of not-better units to all units. Also, this paper presents a relationship 

between the performance measures with those in DEA models with VRS technology. 

Keywords: Data envelopment analysis; efficiency analysis; variable return to scale; separation 

hyperplanes; discrimination power. 
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1. Introduction 

DEA is a mathematical optimization technique 

which determines the efficiency of each DMU 

by maximizing the ratio of a weighted sum of 

its outputs to a weighted sum of its inputs 

while ensuring that the efficiencies of other 

units do not exceed one [1]. Beside of its 

popularity, DEA has some drawbacks such as 

the inputs and outputs are measured on a 

(positive) ratio scale and models gives poor 

discrimination on the performance of DMUs. 

The original DEA models use (positive) ratio 

scale input and output variables but these 

models do not apply to variables in which 

interval scale data can appear. With the 

widespread use of interval scale variables, 

such as profit or the increase/decrease in bank 

accounts emphasis has led to the development 

of alternative models aiming at assessing 

efficiency in presence of ratio and interval 

scale data in DEA model [2]. However, 

interval scale  inputs/outputs cannot be used 

widely in DEA models. The problem with 

interval scale variables arises from the fact that 

rations of measurement on such a scale are 

meaningless. Consequently, a DEA model can 

be used to handle interval scale variables in 

which the ratio of  virtual effect inputs and/or 

outputs and observed inputs and/or outputs 

does not have any role in the calculations. 

Halme et al. introduced a combined DEA 

problem with VRS (BCC model) based on the 

directional distance function where both 

outputs were maximized and inputs were 

minimized [3]. As acknowledged by Halme et 

al as a drawback, since the number of the 

variables augments as a consequence of the 

decomposition of the interval-scale variables, 

some of the inefficient units may become 

efficient. Furthermore, there are some cases in 

which the interval-scale variables used in DEA 

applications are not the result of the 

subtraction of the two ratio-scale variables [2]. 

Various efforts have been devoted to develop 

methods without a priori information to 

improve discrimination in DEA. 

Sexton et al. first introduce the concept of 

cross-efficiency in DEA by using peer 

evaluation instead of a self-evaluation [4]. 

Andersen and Petersen present the procedure 

referred to SE-CCR model for ranking 

efficient units [5]. Their basic idea is to 

compare the unit under evaluation with all 

other units in the sample, i.e., the DMU itself 

is excluded. Doyle and Green further extend 

the work by Sexton et al. (1986) by 

introducing aggressive and benevolent cross-

efficiency referred to CEM [6]. Tofallis 

addresses the discrimination problem by 

presenting the profiling method [7]. He uses 

the original DEA but taking one input at a time 

and only with related outputs. Seiford and Zhu 

develop a supper-efficiency DEA model 

referred to SE-BCC model [8]. Li and Reeves 

propose a multiple criteria approach to DEA 

referred to MCDEA [9]. Tone proposes the 

super-efficiency model using the slacks-based 

measure of efficiency [10]. However, none of 

research works in DEA literature has been 

done to improve discrimination a set of DMUs 

in the presence of interval scale data. 

Many methods are considered that incorporate 
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 a priori information to improve the 

discrimination of traditional DEA models. 

Direct weight restrictions was initially 

developed by Allen et al. [11], used by 

Beasley [12]. The Cone Ratio Model was 

developed by Charnes et al. [13], [14]. Wong 

and Beasley explore the use of such virtual 

input and output restrictions [15]. Based on the 

Russell measure, Zhu presented some models 

to introduce a preference structure in DEA 

models, using weights to do so [16]. The 

method of value efficiency analysis was 

developed by Halme et al. as a way of 

incorporating the decision maker’s value 

judgments and preferences into the analysis, 

using two stages [17], [18]. 

In this paper in order to increase the 

discriminatory power a set of DMUs in the 

presence of interval scale data, it is obtained a 

normal vector to a separating hyperplane of 

DMUs that the hyperplane can separate the 

maximum number of DMUs whose 

performances are not better than a DMU under 

evaluation, from the rest of the DMUs. 

Performance measure is defined as a ratio of 

not-better units to all units. Besides, in this 

paper we present a relationship between the 

performance measures with those in DEA 

models with VRS technology. This paper is 

organized as follows: In section 2 we 

introduce preliminaries of DEA. In section 3 

we present an approach to efficiency analysis 

based on separating hyperplanes of DMUs and 

the relationship between the efficiency 

measures with those in DEA models with 

variables return to scale technology. 

Conclusions are summarized in section 4. 

 

2. Preliminaries 

We assume that there are n peer observed 

DMUs to be evaluated. Each DMU produces 𝒔 

different outputs by consuming 𝒎 different 

inputs. Specifically, 𝑫𝑴𝑼𝒋 consumes amount 

𝒙𝒊𝒋 of input 𝒊 and produces amount 𝒚𝒓𝒋 of 

output 𝒓. The input and output vectors of 

𝑫𝑴𝑼𝒋 are denoted by 𝒙𝒋 and 𝒚𝒋, respectively. 

We assume 𝒙𝒋and 𝒚𝒋 are semi-positive, 

i.e., 𝒙𝒋 ≥ 𝟎,𝒙𝒋 ≠ 𝟎, 𝒚𝒋 ≥ 𝟎, 𝒚𝒋 ≠ 𝟎 for 

𝒋 = 𝟏,… ,𝒏, and further assume that each 𝑫𝑴𝑼 

has at least one positive input and one positive 

output value. We use 𝑫𝑴𝑼𝒐  𝒐𝝐 𝟏,𝟐,… ,𝒏   

as the 𝑫𝑴𝑼 under evaluation. Throughout this 

paper, vectors will be denoted by bold letters. 

2.1. The BBC MODEL 

The production set 𝑷𝒗 of the BCC model is 

defined as a set of semi-positive  𝒙,𝒚  as 

follows: 

𝑃𝑣 = { 𝑥,𝑦 : 𝑥 ≥  𝜆𝑗𝑥𝑗
𝑛
𝑗=1 , 𝑦 ≤  𝜆𝑗𝑦𝑗

𝑛
𝑗=1 ,  

 𝜆𝑗 = 1,𝑛
𝑗=1  𝜆𝑗 ≥ 0;  𝑗 = 1… ,𝑛 }, 

where (𝜆1,… , 𝜆𝑛 ) is a semi-positive in ℝ𝑛 . The 

input-oriented BCC model evaluates the 

efficiency of each 𝐷𝑀𝑈𝑜  by solving the 

following linear program: 

min       𝜃                                   

𝑆. 𝑡.         𝜆𝑗𝑥𝑗 ≤ 𝜃𝑥𝑜 ,
𝑛

𝑗=1
 

                𝜆𝑗𝑦𝑗 ≥ 𝑦𝑜 ,
𝑛

𝑗=1
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            𝜆𝑗𝑦𝑗 ≥ 𝑦𝑜 ,
𝑛

𝑗=1
    

            𝜆𝑗
𝑛

𝑗=1
= 1,          

𝜆𝑗 ≥ 0;  𝑗 = 1,… ,𝑛                                                    (1) 

where 𝜃 is a scalar. Also, the output-oriented 

BCC model evaluates the efficiency of each 

𝐷𝑀𝑈𝑜  by solving the following linear program: 

max       𝜑 

 𝑠. 𝑡.        𝜆𝑗𝑥𝑗 ≤ 𝑥𝑜 ,
𝑛

𝑗=1
   

                𝜆𝑗𝑦𝑗 ≥ 𝜑𝑦𝑜 ,
𝑛

𝑗=1
 

                𝜆𝑗
𝑛

𝑗=1
= 1, 

𝜆𝑗 ≥ 0;  𝑗 = 1,… ,𝑛.                                                   (2) 

where 𝜑 is a scalar. 

Definition 1. (Input-oriented BCC-efficient) 

The performance of 𝐷𝑀𝑈𝑜  is the input-

oriented BCC-efficient if and only if 𝜃∗ = 1 

[19]. 

The dual problem of model (2) is expressed as: 

𝑧∗ =  max 𝑢𝑡𝑦𝑜 + 𝑢𝑜                                               

s. t.

𝑣𝑡𝑥𝑜 = 1,                                               

𝑢𝑡𝑦𝑗 + 𝑢𝑜 − 𝑣
𝑡𝑥𝑗 ≤ 0; 𝑗 = 1,… , 𝑛,

𝑢 ≥ 0, 𝑣 ≥ 0.                                        

 

           (3) 

Definition 2. (Output-oriented BCC-efficient) 

The performance of 𝐷𝑀𝑈𝑜  is the output-

oriented BCC - efficient if and only if  𝑧∗ = 1. 

Also, The dual problem of model (2) is 

expressed as:  

𝑡∗ =  min 𝑣𝑡𝑥𝑜 + 𝑣𝑜                                                   

s. t

𝑢𝑡𝑦𝑜 = 1,                                                   

𝑢𝑡𝑦𝑗 − (𝑣𝑡𝑥𝑗 + 𝑣𝑜) ≥ 0;  𝑗 = 1,… ,𝑛,

𝑢 ≥ 0,𝑣 ≥ 0.                                            

  

          (4) 

Definition 3. (Input-oriented BCC-efficient) 

The performance of 𝐷𝑀𝑈𝑜  is the output-

oriented BCC-efficient if and only if 𝑡∗ = 1. 

2.2. THE TWO-PHASE PROCESS FOR INPUT-

ORIENTED BCC MODEL 

The two-phase process for BCC model evaluates 

 the efficiency of 𝐷𝑀𝑈𝑜  by solving the following  

linear program: 

 

min         𝜃 − 𝜀 1𝑡𝑠− + 1𝑡𝑠+  

s. t.      𝜆𝑗𝑥𝑗 + 𝑠− = 𝜃𝑥𝑜 ,
𝑛

𝑗=1
 

            𝜆𝑗𝑦𝑗 − 𝑠
+ = 𝑦𝑜 ,

𝑛

𝑗=1
 

 𝜆𝑗
𝑛

𝑗=1
= 1,                                              

𝑠− ≥ 0, 𝑠+ ≥ 0,𝜆𝑗 ≥ 0;   𝑗 = 1,… , 𝑛                    (5)  

 

where 𝜀 > 0 is the non-Archimedean element. 

Definition 4. (BCC-efficient). The 

performance of 𝐷𝑀𝑈𝑜  is BCC-efficient if only 

if an optimal solution (𝜃∗, 𝜆∗, 𝑠−∗, 𝑠+∗) of the 

two-phase model (3) satisfies: 𝜃∗ = 1, 𝑠−∗ =

0, and 𝑠+∗ = 0. The dual multiplier form of 

program model (2) is expressed as: 

 

𝑚𝑎𝑥 𝑢𝑡𝑦𝑜 + 𝑢𝑜                                                

s. t.

𝑣𝑡𝑥𝑜 = 1,                                                 

𝑢𝑡𝑦𝑗 + 𝑢𝑜 − 𝑣
𝑡𝑥𝑗 ≤ 0;   𝑗 = 1,… ,𝑛,

𝑢 ≥ 1ε,𝑣 ≥ 1ε.                                     

       (6) 

 

By definition (2.2) and strong duality theorem, 

the performance of 𝐷𝑀𝑈𝑜  is BCC-efficient if 

only if an optimal solution (𝒖∗,𝒗∗,𝑢𝑜
∗ ) of 

model (4) satisfies 

𝒖∗𝑡𝒚𝑜 + 𝑢𝑜
∗ = 1  
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Definition 5. (Reference set) Reference set of 

𝐷𝑀𝑈𝑜  denoted by 𝐸𝑜 is defined as: 

𝐸𝑜 =

 𝐷𝑀𝑈𝑗│
 𝑗𝜖 1,… ,𝑛  𝜆𝑗

∗ > 0 𝑖𝑛 𝑠𝑜𝑚𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

  𝜃∗,𝜆∗,𝑠−∗,𝑠+∗  of model  2.5 
   

The DMUs in 𝐸𝑜 are BCC-efficient [20]. 

Definition 6. (Extreme BCC-efficient) 𝐷𝑀𝑈𝑜  

is extreme BCC-efficient if only if 𝐸𝑜 =

{𝐷𝑀𝑈𝑜}. 

If 𝐷𝑀𝑈𝑜  be extreme BCC-efficient, then 

𝐷𝑀𝑈𝑜   

is BCC-efficient [20]. 

Theorem 1.  𝐷𝑀𝑈𝑜  is extreme BCC-efficient 

iff 

min         𝜃 − 𝜀   𝜆𝑗
𝑗≠𝑜

  

𝑠. 𝑡.          𝜆𝑗𝑥𝑗 + 𝑠− = 𝜃𝑥𝑝 ,
𝑛

𝑗=1
 

                 𝜆𝑗𝑦𝑗 − 𝑠
+ = 𝑦𝑜 ,

𝑛

𝑗=1
 

                 𝜆𝑗
𝑛

𝑗=1
= 1, 

𝑠− ≥ 0, 𝑠+ ≥ 0,𝜆𝑗 ≥ 0;  𝑗 = 1,… ,𝑛.                     (7) 

has an optimal objective function value of one. 

Proof. Let 𝐷𝑀𝑈𝑜  not be extreme BCC-

efficient. Then, there exists an optimal solution 

 𝜃∗, 𝜆∗, 𝑠−∗, 𝑠+∗  to model (2) such that a 

𝜆𝑗
∗ > 0  𝑗 ≠ 𝑜 , and also noting that 𝜃∗ ≤ 1, 

thus 𝜃∗ −𝜀  𝜆∗𝑗 < 1𝑗≠𝑜 . Therefore, since 

 𝜃∗, 𝜆∗, 𝑠−∗, 𝑠+∗  is a feasible solution to 

model (7), the optimal objective function value 

of model )5  ( is less one. 

Let the optimal objective function value of the 

model )7( be less one, and let  𝜃 , 𝜆, 𝑠− , 𝑠+   be 

an optimal solution of the model, then either 

𝜃 < 1 or (𝜃 = 1 and  𝜆𝑗  > 0𝑗≠𝑜 ). If 𝜃 < 1, 

since  𝜃 ,𝜆, 𝑠− , 𝑠+   is a feasible solution of the 

model (5), then 𝐷𝑀𝑈𝑜  isn't BCC-efficient, 

thus 𝐷𝑀𝑈𝑜  isn't extreme BCC-efficient. If 

𝜃 = 1 and  𝜆𝑗  > 0𝑗≠𝑜 , then either  𝑠 −, 𝑠 + ≠

 0,0  or  𝑠− , 𝑠+  =  0,0  If  𝑠− , 𝑠+  ≠  0,0 , 

since  𝜃 ,𝜆, 𝑠− , 𝑠+   is a feasible solution of 

model (5), then 𝐷𝑀𝑈𝑜  isn't BCC-efficient, 

thus 𝐷𝑀𝑈𝑜  isn't extrem BCC-efficient. If 

 𝑠 −, 𝑠 + =  0,0 , then either  𝜃 , 𝜆, 𝑠− , 𝑠+   is 

an optimal solution of mode (5) or isn't. If 

 𝜃 , 𝜆, 𝑠− , 𝑠+   be an optimal solution of model 

(5), then, since  𝜆𝑗  > 0𝑗≠𝑜 , thus 𝐷𝑀𝑈𝑜  isn't 

extrem BCC-efficient. If  𝜃 , 𝜆, 𝑠− , 𝑠+   not be 

an optimal solution of model (5) then there 

exists an optimal solution  𝜃∗, 𝜆∗, 𝑠−∗, 𝑠+∗  of 

the model such that 𝜃∗ = 1 with  𝑠−∗, 𝑠+∗ ≠

 0,0  which in this case also, 𝐷𝑀𝑈𝑜  isn't 

extreme BCC-efficient. 

3.Efficiency analyses based on separating 

hyperplanes of DMUs 

Theorem 2. 𝑫𝑴𝑼𝒐 is input oriented BCC – 

efficient iff 

min      𝑡𝑗

𝑛

𝑗=1

 

              𝑣𝑡𝑥𝑜 − (𝑢𝑡𝑦𝑜 + 𝑢𝑜) = 0,   𝑣𝑡𝑥𝑜 ≥ 𝜀,           

s. t.        𝑣𝑡𝑥𝑗 − (𝑢𝑡𝑦𝑗 + 𝑢𝑜) + Μ𝑡𝑗 ≥ 0;  𝑗 = 1,…𝑛,

𝑢 ≥ 0,   𝑣 ≥ 0, 𝑡𝑗 𝜖 0,1 ,                                   (8) 

 

where M is a sufficiently large number, has an 

optimal objective function value of zero∎. 

Proof. Let the optimal objective function 

value of model (8) is zero. Then, letting 

 𝑢 , 𝑣 ,𝑢 𝑜 , 𝑡   be an optimal solution of model 
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 (8), we have: 

𝑣 𝑡𝑥𝑜 =  𝑢 𝑡𝑦𝑜 + 𝑢 𝑜 ,  𝑢 ≥ 0, 𝑣 ≥ 0, 𝑣 𝑡𝑥𝑜 ≥ 𝜀, 

𝑣 𝑡𝑥𝑗 − (𝑢 𝑡𝑦𝑗 + 𝑢 𝑜) ≥ 0;  𝑗 = 1, . . ,𝑛. 

So that by taking 𝑢 = 𝑢 
𝑘 , 𝑣 = 𝑣 

𝑘  with 

𝑘 = 𝑢 𝑡𝑦𝑜, we have  

𝑣 𝑡𝑥𝑜 =   𝑢 𝑡𝑦𝑜 + 𝑢 𝑜 , 

𝑣 𝑡𝑥𝑗 −  𝑢 
𝑡𝑦𝑗 + 𝑢 𝑜 ≥ 0; (𝑖 = 1,… ,𝑛), 

 𝑢 , 𝑣  ≥  0,0  𝑣 𝑡𝑥𝑜 = 1,   

Thus,  𝑢 , 𝑣 ,𝑢 𝑜  is an optimal solution for 

model (3). Therefore, 𝐷𝑀𝑈𝑜  is input oriented 

BCC-efficient.  

Conversely, let 𝐷𝑀𝑈𝑜  is input oriented BCC - 

efficient, and let  𝑢 , 𝑣 ,𝑢 𝑜  is an optimal 

solution of model (2), then 

𝑢 ≥ 0, 𝑣 ≥ 0, 𝑣 𝑡𝑥𝑜 = 1, 

𝑣 𝑡𝑥𝑗 −  𝑢 
𝑡𝑦𝑗 + 𝑢 𝑜 ≥ 0;  𝑗 = 1, . . ,𝑛. 

Thus  𝑢 , 𝑣 ,𝑢 𝑜 , 𝑡  , where 𝑡 = 0𝜖ℝ𝑛 , is a 

feasible solution for model (8). Therefore, the 

optimal objective function value of model (8) 

is zero. 

Theorem 3. 𝐷𝑀𝑈𝑜  is both input oriented BCC 

- efficient and output oriented BCC-efficient if 

min  𝑡𝑗

𝑛

𝑗=1

                                                                     

𝑠. 𝑡.

𝑣𝑡𝑥𝑜 − (𝑢𝑡𝑦𝑜 + 𝑢𝑜) = 0  

 𝑣𝑡𝑥𝑜 ≥ 𝜀, 𝑢𝑡𝑦𝑜 ≥ 𝜀,    
                                 

𝑣𝑡𝑥𝑗 − (𝑢𝑡𝑦𝑗 + 𝑢𝑜) +Μ𝑡𝑗 ≥ 0;   𝑗 = 1,… , 𝑛 

𝑢 ≥ 0,𝑣 ≥ 0, 𝑡𝑗 𝜖 0,1 .                                       

 

                                                                       (9) 

has an optimal objective function value of 

zero. 

Proof. Let the optimal objective function 

value model (9) is zero, thus letting 

 𝑢 , 𝑣 ,𝑢 𝑜 , 𝑡   be an optimal solution for the 

model, we have 𝑢 ≥ 0, 𝑣 ≥ 0, 𝑢 𝑡𝑦𝑜 ≥ 𝜀, 

𝑣 𝑡𝑥𝑜 ≥ 𝜀,                𝑣 
𝑡𝑥𝑗 −  𝑢 

𝑡𝑦𝑗 + 𝑢 𝑜 ≥ 0;   

(𝑗 = 1,… ,𝑛),     (𝑣 𝑡𝑥𝑜) = (𝑢 𝑡𝑦𝑜 + 𝑢 𝑜). 

So that by taking 𝑢 = (𝑢 𝑘 ), 𝑣 = (𝑣 𝑘 ) with 

𝑘 = 𝑢 𝑡𝑦𝑜 we have 

𝑢 ≥ 0,  𝑣 ≥ 0,  𝑣 𝑡𝑥𝑜 = 1, 𝑣 𝑡𝑥𝑜 =  𝑢 𝑡𝑦𝑜 +

𝑢 𝑜 , 𝑣 𝑡𝑥𝑗 − (𝑢 𝑡𝑦𝑗 + 𝑢 𝑜) ≥ 0;  𝑗 = 1,… ,𝑛. 

Thus  𝑢 , 𝑣, 𝑢 𝑜  is a feasible solution of model 

(4), and since 𝑣 𝑡𝑥𝑜 = 1, it follows that the 

optimal objective function value of model (9) 

is equal to one. Hence, 𝐷𝑀𝑈𝑜  is input oriented 

BCC - efficient. Similarly, we can show that 

𝐷𝑀𝑈𝑜  is output oriented BCC-efficient. 

Theorem 4. 𝐷𝑀𝑈𝑜  is BCC – efficient iff 

𝑚𝑖𝑛  𝑡𝑗

𝑛

𝑗=1

                                                                          

𝑠. 𝑡.

 𝑣𝑡𝑥𝑜 − (𝑢𝑡𝑦𝑜 + 𝑢𝑜) = 0                                      

𝑣𝑡𝑥𝑗 − (𝑢𝑡𝑦𝑗 + 𝑢𝑜) +𝛭𝑡𝑗 ≥ 0;  𝑗 = 1,… , 𝑛,

 𝑢 ≥ 1𝜀, 𝑣 ≥ 1𝜀, 𝑡𝑗 𝜖 0,1 .                                    

  

 

 (10) 

has an optimal objective function value of 

zero. 

Proof. Let the optimal objective function 

value model (10) is zero, then letting 

 𝑢 , 𝑣 ,𝑢 𝑜 , 𝑣 𝑜 , 𝑡   be an optimal solution for the 

model, we have  

𝑢 ≥ 1𝜀, 𝑣 ≥ 1𝜀,  𝑣 𝑡𝑥𝑜 =  𝑢 𝑡𝑦𝑜 + 𝑢 𝑜 , 𝑣 𝑡𝑥𝑗 −

 𝑢 𝑡𝑦𝑗 + 𝑢 𝑜 ≥ 0;  𝑗 = 1, . . ,𝑛. 

Thus  𝑢 , 𝑣, 𝑢 𝑜  is a feasible solution for the 

following model 

 

min 𝑣𝑡𝑥𝑜 −  𝑢
𝑡𝑦𝑜 + 𝑢𝑜                                   

𝑠. 𝑡.

                                   
𝑣𝑡𝑥𝑗 −  𝑢

𝑡𝑦𝑗 + 𝑢𝑜 ≥ 0;   𝑗 = 1,… ,𝑛,
        

𝑢 ≥ 1𝜀, 𝑣 ≥ 1𝜀,  𝑢𝑜  𝑓𝑟𝑒𝑒 ,                     
 
   

                                                                            (11)  
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which for the feasible solution the objective 

function value of the model is equal to zero. 

Therefore, the optimal objective function value 

model (10) is zero. Thus, by strong duality 

theorem, the optimal objective function value 

of the following model: 

max        𝑠𝑖
− + 𝑠𝑟

+

𝑠

𝑟=1

𝑚

𝑖=1

 

𝑠. 𝑡.          
𝜆𝑗𝑥𝑖𝑗 + 𝑠ᵢ− = 𝑥𝑖𝑜  ;   𝑖 = 1,… ,𝑚,

 

𝑛

𝑗=1

 

                 𝜆𝑗𝑦𝑖𝑗 − 𝑠ᵢ
+ = 𝑦𝑟𝑜 ;   𝑟 = 1,… , 𝑠,

𝑛

𝑗=1

 

𝜆𝑗 ≥ 0;  ∀𝑗, 𝑠𝑖
− ≥ 0; ∀𝑖, 𝑠𝑟

+ ≥ 0, ;∀ 𝑟         (12) 

 

which is dual form of model (11), equal to 

zero. Consequently 𝐷𝑀𝑈𝑜  is BCC – efficient. 

It is easy to show that if 𝐷𝑀𝑈𝑜  is BCC – 

efficient, then the optimal objective function 

value model (11) is zero. 

Theorem 5. 𝐷𝑀𝑈𝑜  is extreme BCC – efficient 

iff 

min        𝑡𝑗
𝑗≠𝑜

 

𝑠. 𝑡.      

𝑣𝑡𝑥𝑜 − (𝑢𝑡𝑦𝑜 + 𝑢𝑜) = 0 ,𝑣𝑡𝑥𝑜 ≥ 𝜀,            

𝑣𝑡𝑥𝑗 − (𝑢𝑡𝑦𝑗 + 𝑢𝑜) +𝛭𝑡𝑗 ≥ 𝜀, 𝑗 ≠ 𝑜,

𝑢 ≥ 0,   𝑣 ≥ 0,  𝑡𝑗 𝜖 0,1 , 𝑗 ≠ 𝑜,             (13)

   

 

has an optimal objective function value of 

zero. 

Proof. Let the optimal objective function 

value model (13) is zero, then letting 

 𝑢 , 𝑣 ,𝑢 𝑜 , 𝑡   be an optimal solution for the 

model, where 𝑡 =  𝑡 1,… , 𝑡 𝑜−1 , 𝑡 𝑜+1,… , 𝑡 𝑛  =

0𝜖ℝ𝑛−1, we have 

𝑣 𝑡𝑥𝑜 =  𝑢 𝑡𝑦𝑜 + 𝑢 𝑜 , 

𝑣 𝑡𝑥𝑗 −  𝑢 
𝑡𝑦𝑗 + 𝑢 𝑜 ≥ 1;  𝑗𝜖 1,… ,𝑛 −  𝑜 , 

𝑣 𝑡𝑥𝑜 ≥ 1, 𝑢 ≥ 0,  𝑣 ≥ 0,  𝑢 𝑜 ≥ 0, 𝑣 𝑜 ≥ 0. 

Therefore,  𝑢 , 𝑣, 𝑢 𝑜  is a feasible solution for 

the following model:  

min 𝑣𝑡𝑥𝑜 −  𝑢
𝑡𝑦𝑜 + 𝑢𝑜                                             

𝑠. 𝑡.

𝑣 𝑡𝑥𝑜 ≥ 1,                               
                                   

𝑣𝑡𝑥𝑜 −  𝑢
𝑡𝑦𝑜 + 𝑢𝑜 ≥ 0,  

                                

                                   
𝑣𝑡𝑥𝑗 −  𝑢

𝑡𝑦𝑗 + 𝑢𝑜 ≥ 1;  𝑗𝜖 1,… ,𝑛 −  𝑜 ,

 

                                    

   

            𝑢 ≥ 0, 𝑣 ≥ 0,  𝑢𝑜  𝑓𝑟𝑒𝑒 ,                     14  

Therefore, by strong duality theorem, the 

optimal objective function value of the 

following model: 

𝑚𝑎𝑥     𝜑 + 𝜆𝑗  
𝑗≠𝑜

 

𝑠. 𝑡         𝜆𝑗𝑥𝑗 + 𝜑𝑥𝑜 ≤  𝑥𝑜 ,

𝑛

𝑗=1

 

               𝜆𝑗𝑦𝑗 ≥ 𝑦𝑜 ,

𝑛

𝑗=1

 

               𝜆𝑗 = 1,                 

𝑛

𝑗=1

 

          𝜆𝑗 ≥ 0;   𝑗 = 1,… , 𝑛, 

 

which is dual form of model (14), equal to 

zero. Hence, by theorem (4), 𝐷𝑀𝑈𝑜  is extreme 

BCC-efficient.  

It is easy to show that if 𝐷𝑀𝑈𝑜  is extrem BCC 

– efficient, then the optimal objective function 

value model (14) is zero . 

4. Illustrative example 

To illustrate, we consider an example consisting 

of twelve DMUs each consuming two outputs to 

produce a single output (see Table 1) each one of 

which can be measured on interval scale 

variables. 
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Table1: Data set 
 

 

By using the data set from Table 1, we solve 

models of (3), (6), (8), (9), (10) and (13) for 

each DMU. The results are reported in Table 

2. Where, for example, Eff (3) represents the 

efficiency obtained by model (3).  

Model (3) indicates 𝐷𝑀𝑈𝑜  is radial BCC-

efficient, thus according to the table 2, all of 

12 units are radial efficient. Model (6) 

indicates DMUo  is BCC-efficient, therefore 

according to the table 2 units of 1, 2, 3, 10 and 

10 are not CCR-efficient, while units of 4, 5, 

6, 7, 9, 11, and 12 are BCC-efficient. Model 

(8) indicates normal vector of a hyperplane in 

the PPS with VRS technology so that the 

DMU under evaluation is on the hyperplane 

and it can separate the maximum number of 

DMUs whose performances are not better than 

the DMU under evaluation, from the rest of 

DMUs. For example, maximum number of 

DMUs whose performances are not better than 

the U.1 is 12. Thus, the efficiency score of U.1 

is 12/12 = 12. Also, model (8) diagnoses radial 

efficient units correctly. Model (9) indicate 

normal vector with nonzero components of a 

hyperplane in the PPS with VRS technology 

so that the hyperplane can separate the 

maximum number of DMUs whose 

performances are not better than the DMU 

under evaluation, from the rest of DMUs. In 

addition, virtual input and virtual output of the 

DMU under evaluation be positive. For 

example, the maximum number of DMUs 

whose performances are not better than U.3 is 

12-5=7. Then, the objective function value of 

model (9) in the evaluation of U.3 is equal to 5 

thus the efficiency score of Unit 3 is 7/12 

=0.5833333. Also, model (10) diagnoses 

BBC-efficient units correctly, although the 

efficiency scores for units that are not BCC-

efficient will differ from efficiency scores 

obtained from model (6). Finally, model (13) 

diagnoses extreme BBC-efficient units 

correctly, although the efficiency scores for 

units that are not BCC-efficient will differ 

from efficiency scores obtained from model 

(7). For example, the objective function value 

of model (13) in the evaluation of U.8 is equal 

to one, thus the efficiency score of U.8 is 

11/12 = 0.9166667. More importantly, Model 

(13) both indicates extreme BCC-efficiency of 

unites and provides efficiency scores for the 

units that are not extreme BCC-efficient. 

5. Conclusion 

We provided models to improve discrimination 

 Input Output 1 Output 2 

U. 1 1 1 2.5 

U. 2 1 2.5 1 

U. 3 1 2.5 4 

U. 4 1 4 5.5 

U. 5 1 5 3.5 

U. 6 1 2 6 

U. 7 1 6 4 

U. 8 1 1.5 6 

U. 9 1 8 2 

U. 10 1 8 1 

U. 11 1 5.5 5 

U. 12 1 7 3 
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among DMUs, in the presence of interval scale 

data, based on separation hyperplanes in PPS 

with VRS technology. For this purpose we 

obtained a vector normal to a separating 

hyperplane of DMUs so that the hyperplane 

can separate the maximum number of DMUs 

whose performances are not better than a 

DMU under evaluation, from the rest of the 

DMUs. In addition, we presented the 

relationship between the performance 

measures with those in the DEA with VRS 

technology. Furthermore, these performance 

measures can be applied as a criterion for 

efficiency analysis and improving 

discrimination of a set of peer DMUs.  
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