
617 
 

Available online at http://ijdea.srbiau.ac.ir 

Int. J. Data Envelopment Analysis (ISSN 2345-458X) 

Vol.3, No.1, Year 2015 Article ID IJDEA-00314, 10 pages 

Research Article 

 

 

Efficiency Evaluation and Ranking DMUs in the 

Presence of 

Interval Data with Stochastic Bounds 

 

Hamid. Sharafi
a
*, Mohsen. Rostamy-Malkhalifeh

a
, Alireza. Salehi 

a
, 

Mohammad.Izadikhah 
b
 

(a) Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, 

Iran. 

(b) Department of Mathematics, Islamic Azad University, Arak Branch, Arak, Iran. 

  

Received 08 November 2014, Revised 02 December 2014, Accepted 17 January 2015  

Abstract 

 

On account of the existence of uncertainty, DEA occasionally faces the situation of imprecise data, 

especially when a set of DMUs include missing data, ordinal data, interval data, stochastic data, or 

fuzzy data. Therefore, how to evaluate the efficiency of a set of DMUs in interval environments is a 

problem worth studying. In this paper, we discussed the new method for evaluation and ranking 

interval data with stochastic bounds. The approach is exemplified by numerical examples.  

 

Keywords: Data envelopment analysis (DEA), Decision making unit (DMU), Efficiency, Ranking, 

Interval data, stochastic bounds. 

 

1. Introduction 

   Data Envelopment Analysis (DEA), as suggested by Charnes et al [1] is an productive approach for 

measuring relative efficiency values of a set of similar decision making units (DMUs) that have 

multiple inputs and multiple outputs. In DEA, the so-called ‘efficient frontier’ or ‘production frontier’  
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is construct as the envelope of all DMUs. The 

set of feasible activities or DMUs is called a 

production possibility set. The representation 

of the efficient frontier in DEA is 

judgmentally influenced by the values of 

inputs and outputs of observations in the data 

set. The change in input and output values can 

reason the change in the structure of the 

efficient frontier and the relative efficiency 

values of DMUs. An fascinating problem is 

how to preserve the relative efficiency value of 

a considered DMU if the internal technical 

structure of the considered DMU somewhat 

changes in a short term. 

Under many conditions, exact data are 

insufficient to model real-life situations. For 

example, human judgments including 

preferences are often vague and cannot 

estimate his preference with an exact 

numerical data, therefore these data may be 

have some structures such as bounded data, 

ordinal data, interval data, fuzzy data and 

stochastic data. In recent years, in different 

applications of DEA, inputs and outputs have 

been observed whose values are unclear R.G. 

Dyson,et al [2] T. Joro et al [3], T. J Stewart et 

al [4]. 

The interval DEA first proposed by Cooper et 

al [5] and the fuzzy DEA first proposed by 

Sengupta [6]. Cooper, Park, et al. [7] has 

growed an interval approach that permits 

mixtures of imprecise and precise data by 

transforming the DEA model into an ordinary 

linear programming (LP) form. One of the 

hardships in the interval approach is the 

evaluation of the lower and upper bounds of 

the relative efficiencies of the DMUs. despite 

this difficulty, several researchers have 

proposed diverse variations of the interval 

approach (Despotis & Smirlis [8]; Entani, 

Maeda, & Tanaka [9]; Kao [10]; Kao & Liu 

[11]; Wang, Greatbanks, & Yang, [12]). 

Despotis and Smirlis [8] have developed an 

interval approach for referring to with 

imprecise data in DEA by convert a non-linear 

DEA model to an LP equivalent. The upper 

and lower bounds for the efficiency scores of 

the DMUS are explained. They use a post-

DEA model and the endurance indices to 

discriminate among the efficient DMUs. They 

further formulate another post-DEA model to 

determine input thresholds that turn an 

inefficient DMU into an efficient one. 

Note that we have knowledge of data 

envelopment analysis methodology has many 

benefits, such as no requirement for a priori 

weights or explicit specification of functional 

relations among the multiple inputs and 

outputs. However, there is feebleness in 

conventional DEA models; in fact, original 

DEA models do not allow stochastic variations 

in input and output such as data entry errors. 

As a result, DEA efficiency measurement may 

be sensitive to such variations. A DMU which 

is measured as efficient relative to other 

DMUs, can turn inefficient if such random 
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variations are considered. Stochastic input and 

output variations into DEA have been studied 

by, for example, Cooper, Deng, Huang, and Li 

[13,14], Land, Lovell, and Thore [15] and 

Olesen and Petersen [16], Morita and Seiford 

[17], Khodabakhshi and Asgharian [18], 

Khodabakhshi [19] and khodabakhshi et al 

[20].  

The current article proceeds as follows: In 

Section 2, we survey some necessary 

preliminaries. Therefore, in Section 3, we 

suggest stochastic models and their 

deterministic equivalent for efficiency 

evaluation interval data with stochastic 

bounds. An example is presented in section 4. 

The paper terminates with conclusion. 

2. Preliminaries 

Suppose we have n DMUs , where each 

( 1,..., )jDMU j n consumes m inputs

1( ,..., )j j mjX x x to produce s outputs

1( ,..., )j j sjY y y . Contrary to the original DEA 

model, interval DEA model assume that some 

crisp values for inputs 
ijx  and outputs 

rjy are 

not known; it is only known that the input-

output values are in certain bounded intervals, 

i.e.  [ , ]L U

ij ij ijx x x  and  [ , ]L U

rj rj rjy y y . 

Where upper and lower bounded of the 

intervals are given as fixed numbers and it is 

assumed that 0ijx   and 0rjy  . In this 

case, the efficiency can be an interval. The 

upper limit of interval efficiency is obtained 

from the optimistic viewpoint and the lower 

limit is obtained from the pessimistic 

viewpoint. The following model provides such 

an upper bound for
jDMU : (D.K. Despotis 

et.al (2002)) 

1

1

min

. .

, 1,...,

, 1,...,

0, ( 1,..., )

U

o

n
U L L

j ij o io io

j
j o

n
L U U

j rj o ro ro

j
j o

j

s t

x x x i m

y y y r s

j n

 

  

 











  

  

 





 

 

 

 

 

 

 

 

(2.1) 

We denote by U

o  the efficiency score attained 

by DMUo in (1). The model below provides a 

lower bound of the efficiency score for

DMUo : 

1

1

min

. .

, 1,...,

, 1,...,

0, ( 1,..., )

L

o

n
L U U

j ij o io io

j
j o

n
U L L

j rj o ro ro
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j o
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s t
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  

  

 
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(2.2) 

2.1   Minimax regret-based approach in 

DEA 

Here we introduce the minimax regret 

approach (MRA) developed by Wang et al 

[12]. The approach has some attractive 

features and can be used to compare and rank 

the intervals of scores even if they are equi-
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centered but different in widths. The approach 

is summarized as follows: 

Let [ , ], ( 1,..., )L U

i i iA a a i n  be the intervals, 

and suppose [ , ]L U

i i iA a a is chosen as the best 

interval, and let max U

j i jb a . Obviously, if 

L

ia b , the DM might suffer the loss of 

opportunity or regret and feel regret. The 

maximum loss of opportunity he/she might 

suffer is given by : 

max( ) maxL u L

i i j i j ir b a a a    .  

If L

ia b , the DM will definitely suffer no loss 

of opportunity and feel no regret. In this 

situation, his/her regret is defined to be zero, 

i.e. 0ir  . Combining the above two 

situations, we have 

max( ) max{ ( ) ,0}U L

i j i j ir max a a  . Thus; the 

minimax regret criterion will choose the 

interval satisfying the following condition as 

the best (most desirable) interval: 

min max( ) min {max{max ( ) ,0}}

1,...,

U L

i i i j i j ir a a

i m

 



Based on the analysis above, we consider the 

following definition for comparing and 

ranking intervals. 

Definition 2.1. Let [ , ], ( 1,..., )L U

i i iA a a i m  be 

a set of n intervals. The maximum loss of 

opportunity (also called maximum regret) of 

each interval 
iA  is defined as: 

 

 

 

( ) max{max ( ) ,0}

1,..., 3. 2.

U L

i j i j iR A a a

i m

 

  

 

It is evident that the interval with the smallest 

maximum loss of opportunity is the most 

desirable interval. 

Since the maximum losses  of  opportunity  are  

relative numbers. So, they can only be used to 

choose the most desirable interval from among 

a set of intervals. 

3. Stochastic models 

In this section, we present stochastic upper 

bound model and stochastic lower bound 

model for efficiency score for interval data in 

the presence of stochastic bounds. 

We used by notation in Cooper et al [14] and 

let [ , ]L U
ij ij ijx x x , [ , ]L U

rj rj rjy y y , 

1
( ,..., )L L L

j j mj
X x x , 1

( ,..., )U U U
j j mj

X x x ,

1
( ,..., )L L L

j j sj
Y y y and 1

( ,..., )U U U
j j sj

Y y y

represent random input and output vectors, and 

1( ,..., )L L L

j j mjX x x ,
1( ,..., )U U U

j j mjX x x ,

1( ,..., )L L L

j j sjY y y and 
1( ,..., )U U U

j j sjY y y stand 

for the corresponding vector of expected 

values of input and output, and let us consider 

all input and output components to be jointly 

normally distributed . 

3.1 Stochastic model for upper bound 

By using model (2.1), the proposed stochastic 

upper bound model can be obtained as: 
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1

1

min

. . ( ) 1

1, ..., .

( ) 1

1, ..., .

0 (3.1)

U

o

n

U L L

j ij o io io

j

j o

n

L U U

j rj o ro ro

j

j o

s t P x x x

i m

P y y y

r s

 

   

  













   



   









 

Where  is a predetermined number between 

0 and 1 which specifies the significance level 

and P means “probability”. 

3.1.1 Deterministic equivalent  

Now in this part we show how to obtain 
U

o

from deterministic equivalent of the stochastic 

model (3). 

From first constraint in model (3) we have: 

 

1

( ) 1 ,

1,..., (3.3)

n
U L L

j ij o io io

j
j o

p x x x

i m

   



   




 

Then: 

1

( 0) ,

1,..., (3.4)

n
U L L

j ij o io io

j
j o

p x x x

i m

   



    




 

Above equation is equivalent: 

 

1 1

1

( ( )

3

)

(

) .4

n n

U L L U L L

j ij o io io j ij o io io

j j

j o j o

U

i

n

U L L

j ij o io io

j

j o

U

i

x x x x x x

p

x x x

     



  




 

 





     



 



 



 

Where: 

 
2

2

( ) cov( , )

2( ) cov( , )

( ) var( ) (3.5)

U U U

i j k ij ik

j o k o

U L

o o j ij io

j o

L

o o io

x x

x x

x

  

  

 

 





 

 




 

To obtain the deterministic equivalent of (3.4) 

and (3.5) we write: 

1 1

( )

; 1,..., (3.6)

n n
U L L U L L

j ij o io io j ij o io io

j j
j o j o

i U

i

x x x x x x

Z

i m

     



 
 

     





 

 

If we assume the input and output to be 

normally distributed, then iZ
is also normally 

distributed with mean zero and unit variance, 

since iZ
 is normally distributed.  

The deterministic equivalent of (3.4) is as: 

1
1( )

n
U L L

j ij o io io

j
j o

U

i

x x x  





 

 

 



 

 

 
(3.7) 

Where (3.7), represents the normal cumulative 

distribution function and 
1( )

 is its 

inverse. 

For the second constraint of model (4.1) we 

have: 

1

( ) 1 ,

1,..., (3.8)

n
L U U

j rj o ro ro

j
j o

p y y y

r s

  



   




 

By the similar manner like relations (3.2) until 

(3.7) we can obtain the deterministic 

equivalent of this constraint as follow: 
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1
1( )

1,..., (3.9)

n
L U U

j rj o ro ro

j
j o

U

r

y y y

r s

 





 
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





 

Where: 

2

2

( ) cov( , )

2( 1) cov( , )

( 1) var( ) (3.10)

U L L

r j k rj rk

j o k o

L U

o j rj ro

j o

U

o ro

y y

y y

y
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 



 





 

 




 

Hence, by using (3.7) and (3.9), the 

deterministic equivalent of (3.1) can be 

represented as: 

1

1

1

1

2

min

. .

( )

1,...,

( ) 0

1,...,

, , 0

( ) cov( , )

2( ) cov( , )

(

U

o

n
U L U L

j ij o io i i io

j
j o

n
L U U U

j rj o ro ro r r

j
j o

i r j

U U U

i j k ij ik

j o k o

U L

o o j ij io

j o

o

s t

x x s x

i m

y y y s

r s

s s

x x

x x

 

    

   



  

  



 



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


 

 




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

     






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







2

2

2
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( ) cov( , )

2( 1) cov( , )

( 1) var( )

L

o io

U L L

r j k rj rk

j o k o

L U

o j rj ro

j o

U

o ro

x

y y

y y
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

  

 



 





 

 


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(3.11) 

3.2 Stochastic model for lower bound 

By using the model (2.2), the proposed lower 

bound model for efficiency score for interval 

data in the presence of stochastic bounds can 

be obtained as: 

1

1

min

. .

( ) 1

1,...,

( ) 1

1,...,

0 (3.12)

L

o

n
L U U

j ij o io io

j

j o

n
U L L

j rj o ro ro
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j o

s t

P x x x
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P y y y
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   

  




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





   


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







 

Where  is a predetermined number between 

0 and 1 which specifies the significance level 

and P means “probability”.  

3.2.1 Deterministic equivalent 

By the similar manner like (3.11) we can 

obtain the deterministic equivalent of lower 

bound model as follows: 

1

1

1

1

min

. .
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1,...,

( ) 0

1,...,

, , 0

L

o

n
L U L U
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 
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 
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 




 


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

 

 

 

 

 

 

 

 

 

(3.13) 
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2

2
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x
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 
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 



 


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


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
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







 

 

 

 

 

 

 

 

 

(3.13) 

4. Application 

 To calculate the results of the models 

(3.11)and(3.13) we consider two cases, in the 

first case we have chosen 0.55   and hence 

1( ) 0.12  and in the second case we 

have chosen 0.45  and hence

1( ) 0.12   . We assume that inputs and 

outputs for all DMUs are independence 

therefore cov( , ) 0L L

ij ikx x  , cov( , ) 0L U

ij iox x 

, cov( , ) 0U U

rj rky y  , cov( , ) 0U L

rj roy y  . We 

will also assume that variance for inputs and 

outputs can be obtained as: 

15
21

14
1

( ) ( ) , 1,2,3L L L

r rj r

j

Var y y y r


    , 

15
21

14
1

( ) ( ) , 1,2,3U U U

r rj r

j

Var y y y r


   , 

15
21

14
1

( ) ( ) , 1,2L L L

i ij i

j

Var x x x i


   ,

15
21

14
1

( ) ( ) , 1,2U U U

i ij i

j

Var x x x i


  
 

15

1
15

1

L L

r rj

j

y y


  ,

15

1
15

1

U U

r rj

j

y y


  ,

15

1
15

1

U U

i ij

j

x x


  ,

15

1
15

1

L L

i ij

j

x x


  , 

Table 1.  The data set 

D
M

U
s 

In
p

u
t 

1
 

In
p

u
t 

2
 

O
u

tp
u

t 
1
 

O
u

tp
u

t 
2
 

O
u

tp
u

t3
 

1 
[149,

170] 

[2860,

3200] 

[96,1

01] 

[13150,

14530] 

[1124,

1247] 

2 
[168,

195] 

[2610,

3218] 

[89,9

2] 

[8385,8

571] 

[956,1

311] 

3 
[134,

189] 

[2690,

3388] 

[69,8

1] 

[8712,9

571] 

[745,1

265] 

4 
[150,

187] 

[3211,

3381] 

[81,8

6] 

[7422,7

506] 

[794,8

24] 

5 
[151,

158] 

[3217,

3505] 

[85,9

0] 

[7302,7

936] 

[828,9

50] 

6 
[136,

164] 

[2750,

3289] 

[98,1

09] 

[14873,

15231] 

[947,1

009] 

7 
[138,

198] 

[3142,

3369] 

[89,9

0] 

[8124,8

312] 

[812,8

61] 

8 
[129,

172] 

[2945,

3187] 

[88,9

3] 

[7436,8

125] 

[712,9

87] 

9 
[128,

161] 

[2820,

3186] 

[67,7

6] 

[12350,

12860] 

[1021,

1425] 

1

0 

[133,

155] 

[2590,

2872] 

[96,1

02] 

[8950,1

0950] 

[872,8

91] 

1

1 

[117,

136] 

[2745,

3386] 

[87,9

3] 

[9842,1

1840] 

[912,1

145] 

1

2 

[122,

174] 

[2974,

3416] 

[112,

118] 

[8453,9

851] 

[1284,

1367] 

1

3 

[131,

162] 

[2654,

3018] 

[80,8

6] 

[11520,

12563] 

[1009,

1381] 

1

4 

[150,

180] 

[2987,

3248] 

[114,

116] 

[8741,1

0256] 

[764,9

35] 

1

5 

[112,

132] 

[2864,

2951] 

[97,1

03] 

[9463,1

2120] 

[1241,

1321] 

15
21

14
1

( ) ( ) , 1,2,3L L L

r rj r

j

Var y y y r


    , 

15
21

14
1

( ) ( ) , 1,2,3U U U

r rj r

j

Var y y y r


   , 
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15
21

14
1

( ) ( ) , 1,2L L L

i ij i

j

Var x x x i


   ,

15
21

14
1

( ) ( ) , 1,2U U U

i ij i

j

Var x x x i


  
 

15

1
15

1

L L

r rj

j

y y


  ,

15

1
15

1

U U

r rj

j

y y


  ,

15

1
15

1

U U

i ij

j

x x


  ,

15

1
15

1

L L

i ij

j

x x


  , 

Table 2.  The result of 3.11 and 3.12 models 

with 0.45   

DMUs 
L

O  
U

O  jR  Ranking 

1 0.8330 1.0000 0.167 6 

2 0.7144 1.0000 0.2856 10 

3 0.5470 1.0000 0.453 15 

4 0.6197 0.8258 0.3803 14 

5 0.6265 0.8607 0.3735 13 

6 0.9443 1.0000 0.0557 1 

7 0.6822 0.9138 0.3178 12 

8 0.7133 1.0000 0.2867 11 

9 0.7661 1.0000 0.2339 8 

10 0.8630 1.0000 0.137 5 

11 0.7205 1.0000 0.2795 9 

12 0.8942 1.0000 0.1058 4 

13 0.7810 1.0000 0.219 7 

14 0.9029 1.0000 0.0971 2 

15 0.8998 1.0000 0.1002 3 

and
L

ijx , 
U

ijx , 
L

rjy  and
U

rjy  are the expected 

values of inputs and outputs for DMUj which 

are presented in Table 1. We will also assume 

that outputs and inputs for different DMUs are 

independent. This independence assumption 

then implies that cov( , ) 0L L

rj rky y  , 

cov( , ) 0L U

rj rky y  , cov( , ) 0U U

rj rky y  , 

cov( , ) 0L L

ij ikx x  , cov( , ) 0L U

ij ikx x  and 

cov( , ) 0U U

ij ikx x  . 

In table 2 and 3 we calculate lower and upper 

bond of efficiency for each DMUs and 

Complete ranking by equation (2.3). 

Table 3.  The result of 3.11 and 3.12 models 

with 0.55   

DMUs L

O  
U

O  jR  Ranking 

1 0.7927 1.0000 0.2073 6 

2 0.6802 1.0000 0.3198 9 

3 0.5125 1.0000 0.4875 15 

4 0.5883 0.7839 0.4117 14 

5 0.5961 0.8184 0.4039 13 

6 0.8891 1.0000 0.1109 1 

7 0.6498 0.8619 0.3502 12 

8 0.6788 0.9524 0.3212 10 

9 0.7235 1.0000 0.2765 8 

10 0.8225 1.0000 0.1775 5 

11 0.6745 1.0000 0.3255 11 

12 0.8569 1.0000 0.1431 4 

13 0.7378 1.0000 0.2622 7 

14 0.8665 1.0000 0.1335 2 

15 0.8572 1.0000 0.1428 3 

As you see in table 2, DMU2, DMU8 and 

DMU11 have ranking 10, 11 and 9 

respectively, where in table 3 these DMUs 

ranking 9, 10 and 11 respectively. 

5. Conclusion 

In real world condition there may exists 

probabilistic or stochastic data. However, there 

are very few published studies on performance 

measurement which concurrently incorporate 
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stochastic data with Interval data. In the 

present article we have developed stochastic 

version of the proposed Ranking method and 

obtained a deterministic equivalent for the 

stochastic version. This deterministic 

equivalent can be converted to a quadratic 

problem. 
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