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Abstract 

 

   This paper proposes an alternative approach for efficiency analysis when a set of DMUs uses interval 

scale variables in the productive process. To test the influence of these variables, we present a general 

approach of deriving DEA models to deal with the variables. We investigate a number of performance 

measures with unrestricted-in-sign interval and/or interval scale variables. 

Keywords: data envelopment analysis; interval scale variables; ratio scale variables. 

1. Introduction 

   Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative efficiency 

of decision-making units (DMUs) on the basis of multiple inputs and outputs. The original DEA models 

use (positive) ratio scale input and output variables but these models do not apply to variables in which 

interval scale data can appear. With the widespread use of interval scale variables, such as profit or the 

increase/decrease in bank accounts emphasis has led to the development of alternative models aiming 

at assessing efficiency in presence of ratio and interval scale data in DEA models . However, interval 

scale inputs/outputs cannot be used widely in DEA models. The problem with interval scale variables 

arises from the fact that rations of measurement on such a scale are meaningless. Consequently, a DEA 

model can be used to handle interval scale variables in which the ratio of virtual effect inputs and/or 

outputs and observed inputs and/or outputs does not have any role in the calculations. This paper deal 

with the problem of interval scale data in DEA, then investigate a number of different performance 

measures. The measures are modified in such a way that they also are able to handle variables consisting 
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of ratio scale for some and interval scale for other sample DMUs. This paper unfolds as follows. In 

section 2, we summarize three of the initial DEA models: the CCR model (Charnes et al., 1978), the 

BCC model (Banker et al., 1984), the additive model (Charnes et al., 1978). In sections 3 and 4, we 

examine a modified slacks-based measure model (Tone, 2001) and weighted-additive model of DEA 

proposed by Pastor and Ruiz (2005), respectively. Conclusions are summarized in section 5. 

 

2. The initial DEA models 

   Suppose we have n peer observed decision-making units (DMUs) where every 𝐷𝑀𝑈𝑗(𝑗 = 1,2, … , 𝑛) 

produce multiple outputs 𝑦𝑟𝑗 , (𝑟 = 1, … , 𝑠) by utilizing multiple inputs 𝑥𝑖𝑗 , (𝑖 = 1, … , 𝑚). The input 

and output vectors of 𝐷𝑀𝑈𝑗 are denoted by 𝒙𝑗 and 𝒚𝑗, respectively, and we assume 𝒙𝑗and 𝒚𝑗 are semi 

positive, i.e., (𝒙𝑗, 𝒚𝑗) ≥ (𝟎, 𝟎)𝜖ℝ𝑚+𝑠, 𝒙𝑗 ≠ 𝟎, 𝒚𝑗 ≠ 𝟎, 𝑗 = 1, … , 𝑛. We use by (𝒙𝑗, 𝒚𝑗) to descript 

𝐷𝑀𝑈𝑗, and specially use (𝒙𝑜, 𝒚𝑜) (𝑜𝜖{1,2, … , 𝑛}) as the DMU under evaluation. Throughout this 

paper, vectors will be denoted by bold letters. Let 

 ∀𝑖 (𝑖𝜖{ 1, … , 𝑚} ⇒ ∃𝑗(𝑗𝜖{1, … , 𝑛} & 𝑥𝑖𝑗 > 0)), 

∀𝑟 (𝑟𝜖{ 1, … , 𝑠} ⇒ ∃𝑗(𝑗𝜖{1, … , 𝑛} & 𝑦𝑟𝑗 > 0))  

The efficiency of each 𝐷𝑀𝑈𝑜 can be evaluated by the envelopment form of the input-oriented CCR 

model by solving the following linear program, 

min 𝜃 − 𝜀(∑ 𝑠𝑖
− + ∑ 𝑠𝑟

+𝑠
𝑟=1

𝑚
𝑖=1 )                                                                       

s. t.

∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− = 𝜃𝑥𝑖𝑜 ;    𝑖 = 1, … , 𝑚,𝑛

𝑗=1                                                 

∑ 𝜆𝑗𝑦𝑖𝑗 − 𝑠𝑟
+ = 𝑦𝑟𝑜;    𝑟 = 1, … , 𝑠,𝑛

𝑗=1                                                     

𝜆𝑗 ≥ 0, 𝑠𝑖
− ≥ 0, 𝑠𝑟

+ ≥ 0;  𝑗 = 1, … , 𝑛, 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠,

           (1) 

where 𝜃 is a scalar, and 𝜀 > 0 is the non-Archimedean element. In model (1) the ratio of virtual effect 

inputs and observed inputs (positive data) play a central role in the calculations, thus input data must be 

measured on ratio scale (Mohammadpour et al., 2015). However, in model (1) the ratio of virtual effect 

outputs and observed outputs hasn't any role in the calculations; therefore, the model can be applied 

with interval scale output data. But, since an assumption of CRS is not possible in technologies where 

negative data can exist (see Portela et al., 2004), thus the model (1) cannot be used with the negative 

interval scale output data. If some inputs are interval scale data, a modified ratio scale input-oriented 

CCR model is proposed as follows: 
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min 𝜃 − 𝜀(∑ 𝑠𝑖
−m

i=1 + ∑ 𝑠𝑟
+s

r=1 )                                                             

s. t.

∑ 𝜆𝑗𝒙𝑖𝑗 + 𝑠𝑖
− = 𝜃𝒙𝑖𝑜;       𝑖𝜖𝑅𝑖𝑛𝑝,            𝑛

𝑗=1                                 

∑ 𝜆𝑗𝒙𝑖𝑗 + 𝑠𝑖
− = 𝒙𝑖𝑜;  𝑛

𝑗=1        𝑖𝜖𝐼𝑖𝑛𝑝,                                             

∑ 𝜆𝑗𝒚𝑟𝑗 − 𝑠𝑟
+ = 𝒚𝑟𝑜;         𝑟𝜖𝑅𝑜𝑢𝑡 ∪ 𝐼𝑜𝑢𝑡

𝑛
𝑗=1 ,                              

𝜃 ≥ 0, 𝑖 = 1, … , |𝑅𝑖𝑛𝑝|,
  

 𝜆𝑗 ≥ 0, ∀𝑗;  𝑠𝑖
− ≥ 0, ∀𝑖;  𝑠𝑟

+ ≥ 0, ∀𝑟.

                           (2) 

where  

𝑅𝑖𝑛𝑝 = {𝑖: 𝑖𝜖{1, … , 𝑚} & ∀𝑗(𝑗𝜖{1, … , 𝑛} ⇒  𝑥𝑖𝑗  is a ratio scale variable)}        

𝐼𝑖𝑛𝑝 = {𝑖: 𝑖𝜖{1, … , 𝑚} & ∀𝑗(𝑗𝜖{1, … , 𝑛} ⇒  𝑥𝑖𝑗  is an interval scale variable)}

𝑅𝑜𝑢𝑡 = {𝑟: 𝑟𝜖{1, … , 𝑠} & ∀𝑗(𝑗𝜖{1, … , 𝑛} ⇒ 𝑦𝑟𝑗 is a ratio scale variable)}        

𝐼𝑜𝑢𝑡 = {𝑟: 𝑟𝜖{1, … , 𝑠} & ∀𝑗(𝑗𝜖{1, … , 𝑛} ⇒ 𝑦𝑟𝑗 is an interval scale variable)},

                  (3) 

and for simplification in using the defined sets let 𝑅𝑖𝑛𝑝 = {1, … , |𝑅𝑖𝑛𝑝|}, 𝑅𝑜𝑢𝑡 = {1, … , |𝑅𝑜𝑢𝑡|}, where 

symbol of |. | is the cardinality of sets. Since 𝐷𝑀𝑈𝑗 ( 𝑗 =  1 , … , 𝑛 ) are peer, then 

 𝑅𝑖𝑛𝑝 ∪ 𝐼𝑖𝑛𝑝 = {1, … , 𝑚}, 𝑅𝑜𝑢𝑡 ∪ 𝐼𝑜𝑢𝑡 = {1, … , 𝑠}.  

Model (2), at first evaluates the radial efficiencies of ratio scale input data 𝜃𝑖
∗(𝑖𝜖𝑅𝑖𝑛𝑝), then it takes 

account of the interval scale input excesses and output shortfalls that are represent by non-zero slacks. 

Thus model (2) detects all inefficiencies of inputs and outputs, if any. Therefore, model (2) indicates 

DMUo with the interval scale input and/or output data is CCR-efficient. Also, assuming that 

((𝜆1
∗ , … , 𝜆𝑛

∗ ), 𝜃∗, (𝑠1
−∗, … , 𝑠𝑚

−∗), (𝑠1
+∗, … . , 𝑠𝑠

+∗)) be an optimal solution of model (2), the production 

possibility (∑ 𝜆𝑗
∗𝒙𝑗

𝑛
𝑗=1 , ∑ 𝜆𝑗

∗𝒚𝑗
𝑛
𝑗=1 ) is CCR-efficient. Models (1) and (2) are not translation invariant 

with respect to either outputs or inputs; however these models with convexity constraint ∑ 𝜆𝑗 = 1 𝑛
𝑗=1  

are translation invariant with respect to interval scale outputs. Therefore, model (2) with convexity 

constraint ∑ 𝜆𝑗 = 1 𝑛
𝑗=1  can be used with non-negative interval scale inputs and negative interval scale 

outputs. Also, model (2) with constraint ∑ 𝜆𝑗 = 1 𝑛
𝑗=1  both indicates DMUo with interval input / output 

data is BCC-efficient and provide a performance measure.  

In model (2) we assume that Rinp ≠ ∅. Now, if Rinp = ∅, then the following model is obtained: 

max ∑ 𝑠𝑖
−𝑚

𝑖=1 + ∑ 𝑠𝑟
+𝑠

𝑟=1                                     

s. t.

∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− = 𝑥𝑖𝑜;      𝑖 = 1, … , 𝑚,𝑛

𝑗=1

∑ 𝜆𝑗𝑦𝑟𝑗 + 𝑠𝑟
+ = 𝑦𝑟𝑜;    𝑛

𝑗=1  𝑟 = 1, … , 𝑠,
 

                                              
 𝜆𝑗 ≥ 0, 𝑠𝑖

− ≥ 0, 𝑠𝑟
+ ≥ 0;   ∀𝑗, 𝑖, 𝑟.            

                                                                    (4) 
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Which is the model additive model proposed by Charnes et al. (1985) and it can be used with 

nonnegative scale interval inputs and/or outputs. Model (4) with convexity constraint ∑ 𝜆𝑗 = 1 𝑛
𝑗=1  is 

the additive model with the variable returns to scale assumption as follows: 

max ∑ 𝑠𝑖
− + ∑ 𝑠𝑟

+𝑠
𝑟=1

𝑚
𝑖=1                                                       

s. t.

∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− = 𝑥𝑖𝑜 ;   𝑖 = 1, … , 𝑚,𝑛

𝑗=1                      

∑ 𝜆𝑗𝑦𝑖𝑗 − 𝑠𝑟
+ = 𝑦𝑟𝑜;    𝑟 = 1, … , 𝑠,𝑛

𝑗=1                       

∑ 𝜆𝑗 = 1,                                                                   𝑛
𝑗=1

𝜆𝑗 ≥ 0, 𝑠𝑖
− ≥ 0, 𝑠𝑟

+ ≥ 0;   ∀𝑖, 𝑗, 𝑘.                              

                                                  (5) 

Model (5) which is translation invariant as demonstrated by Ali and Seiford can be used with the interval 

scale and/or negative interval scale input and output data. Also model (5) indicates DMUo is BCC- 

efficient. In other words, the optimal solution model of (5) is zero if and only if DMUo be BCC-efficient 

[2]. The model (5), however, does not provide an efficiency measurement for DMUs which are not 

BCC-efficient. 

 

3. A modified slacks-based measure model to deal negative interval outputs and inputs  

   The following modified slacks-based measure (MSBM), proposed by Sharp et al (2007), also provides 

efficiency measures and obviates the problems associated with zero weights being assigned to inputs or 

outputs. 

𝑚𝑖𝑛
1−

1

𝑚
∑

𝑤𝑖𝑠𝑖
−

𝑅𝑖0
−

𝑚
𝑖=1

1+
1

𝑠
∑

𝑣𝑟𝑠𝑟
+

𝑅𝑟0
+

𝑠
𝑟=1

                                               

𝑠. 𝑡.

∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 + 𝑠𝑖

− = 𝑥𝑖𝑜    𝑖 = 1, … , 𝑚 
  

∑ 𝜆𝑗𝑦𝑖𝑗
𝑛
𝑗=1 − 𝑠𝑟

+ = 𝑦𝑟𝑜    𝑟 = 1, … , 𝑠  

∑ 𝜆𝑗 = 1  𝑛
𝑗=1                                             

∑ 𝑤𝑖 = 1,   𝑚
𝑖=1 ∑ 𝑣𝑟 = 1                  𝑠

𝑟=1

𝜆𝑗 ≥ 0 , 𝑠𝑖
− ≥ 0 , 𝑠𝑟

+ ≥ 0     ∀𝑗, 𝑖, 𝑟.      

                                                       (5) 

Where 𝑅𝑖𝑜
− = 𝑥𝑖𝑜 − 𝑚𝑖𝑛

𝑗
{𝑥𝑖𝑗}, 𝑖 = 1, … , 𝑚;  𝑅𝑟𝑜

+ = 𝑚𝑎𝑥
𝑗

{𝑦𝑟𝑗} − 𝑦𝑟𝑜 , 𝑟 = 1, … , 𝑠.  

To avoid problems with zeros, the slacks corresponding to variables with 𝑅𝑖𝑜
− = 0, for some 𝑖 =

1, … , 𝑚, and/or 𝑅𝑟𝑜
+ = 0, for some 𝑟 = 1, … , 𝑠, are ignored. The ratio of virtual effect interval scale data 

and observed interval scale data plays a central role in the calculations whose provide efficiency 

measure in the objective function of model (5), thus we cannot use the model with interval scale data. 
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Following Tone (2001), the fractional programming problem represented by model (5) can be 

transformed to the following problem 

max 𝜆 − ∑
𝑤𝑖𝛼𝑖

−

𝑅𝑖𝑜
 𝑚

𝑖=1                                                   

s. t.

∑ 𝜆𝑗𝑥𝑖𝑗 − 𝛼𝑖
− = 𝑥𝑖𝑜  𝑖 = 1, … , 𝑚 𝑛

𝑗=1       

∑ 𝜆𝑗𝑦𝑟𝑗 + 𝛽𝑟
+ = 𝑦𝑟𝑜  𝑟 = 1, … , 𝑠       𝑛

𝑗=1

∑ 𝜆𝑗 = 1                                                 𝑛
𝑗=1

𝜆 +
1

|𝑅𝑜𝑢𝑡|
∑

𝑣𝑟𝛽𝑟
+

𝑦𝑖𝑜
            𝑠

𝑟=1                        
 

∑ 𝑤𝑖 = 1,𝑚
𝑖=1 ∑ 𝑣𝑟 = 1𝑠

𝑟=1                         

𝜆 > 0; 𝜇𝑗 ≥ 0, 𝛼𝑖
− ≥ 0, 𝛽𝑟

+ ≥ 0, ∀𝑗, 𝑖, 𝑟.

     
                                                   (6) 

Also, a modified version of model (6) is proposed as follows: 

min 𝜆 −
1

|𝑅𝑖𝑛𝑝|
∑

𝑤𝑖𝛼𝑖
−

𝑅𝑖𝑜
𝑖𝜖𝑅𝑖𝑛𝑝

− 𝜀 (∑ 𝛼𝑖
−

𝑖𝜖𝐼𝑖𝑛𝑝
+ ∑ 𝛽𝑟

+
𝑟𝜖𝐼𝑜𝑢𝑡

) 

s. t.

∑ 𝜆𝑗𝑥𝑖𝑗 − 𝛼𝑖
− = 𝑥𝑖𝑜  𝑖 = 1, … , 𝑚 𝑛

𝑗=1       

∑ 𝜆𝑗𝑦𝑟𝑗 + 𝛽𝑟
+ = 𝑦𝑟𝑜  𝑟 = 1, … , 𝑠       𝑛

𝑗=1

∑ 𝜆𝑗 = 1                                                 𝑛
𝑗=1

𝜆 +
1

|𝑅𝑜𝑢𝑡|
∑

𝑣𝑟𝛽𝑟
+

𝑦𝑖𝑜
𝑟𝜖𝑅𝑜𝑢𝑡

= 1                       
 

∑ 𝑤𝑖 = 1,𝑚
𝑖=1 ∑ 𝑣𝑟 = 1𝑠

𝑟=1                         

𝜆 > 0; 𝜇𝑗 ≥ 0, 𝛼𝑖
− ≥ 0, 𝛽𝑟

+ ≥ 0, ∀𝑗, 𝑖, 𝑟,

                       
                                      (7) 

to deal with unrestricted-in-sign interval scale input and/or output data as well as to take account of all 

inefficiencies of input and output data, if any.  

 

4. DEA weighed-additive models  

   The following weighted-additive model, proposed by Pastor and Ruiz (2005), allow us also indicates 

DMUo is CCR-efficient and provides efficiency measures  

max
1

𝑚+𝑠
(∑

𝑠𝑖
−

𝑅𝑖0
−

𝑚
𝑖=1 + ∑

𝑠𝑟
+

𝑅𝑟0
+

𝑠
𝑟=1 )                            

s. t.

∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 + 𝑠𝑖

− = 𝑥𝑖𝑜;      𝑖 = 1, … , 𝑚,

∑ 𝜆𝑗𝑦𝑖𝑗
𝑛
𝑗=1 − 𝑠𝑟

+ = 𝑦𝑟𝑜;       𝑟 = 1, … , 𝑠,

𝜆𝑗 ≥ 0 , 𝑠𝑖
− ≥ 0 , 𝑠𝑟

+ ≥ 0;    ∀𝑗, 𝑖, 𝑟,       

      
                                                        (12)  

where  
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Rio
− = 𝑥𝑖𝑜 − min

𝑗
{𝑥𝑖𝑗}     𝑖 = 1, … , 𝑚,

Rro
+ = max

𝑗
{𝑦𝑟𝑗} − 𝑦𝑟𝑜   𝑟 = 1, … , 𝑠.  

  

To avoid problems with zeros, the slacks corresponding to variables with Rio
− = 0, for some 𝑖 =

1, … , 𝑚, and/or Rro
+ = 0, for some𝑟 = 1, … , 𝑠, are ignored.  

The ratio of virtual effect interval scale data and observed interval scale data plays a central role in the 

calculations whose provide efficiency measure in the objective function of model (12), thus we cannot 

use the model with interval scale data. A modified version of weighted-additive model (12) proposed 

as follows, allows us also deal with nonnegative interval scale data and provides efficiency measure. 

max
1

|𝑅𝑖𝑛𝑝|+|𝑅𝑜𝑢𝑡|
(∑

𝑠𝑖
−

𝑅𝑖0
−𝑖𝜖𝑅𝑖𝑛𝑝

+ ∑
𝑠𝑟

+

𝑅𝑟0
+𝑟𝜖𝑅𝑜𝑢𝑡

) − ε (∑ 𝑠𝑖
−

𝑖𝜖𝐼𝑖𝑛𝑝
+ ∑ 𝑠𝑟

+
𝑟𝜖𝐼𝑜𝑢𝑡

)  

s. t.

∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 + 𝑠𝑖

− = 𝑥𝑖𝑜;      𝑖 = 1, … , 𝑚,                       

∑ 𝜆𝑗𝑦𝑖𝑗
𝑛
𝑗=1 − 𝑠𝑟

+ = 𝑦𝑟𝑜;     𝑟 = 1, … , 𝑠,                        

𝜆𝑗 ≥ 0 , 𝑠𝑖
− ≥ 0 , 𝑠𝑟

+ ≥ 0;     ∀𝑗, 𝑖, 𝑟,                             

                                  
(13)  

Model (13) with convexity constraint ∑ 𝜆𝑗 = 1𝑛
𝑗=1  can be used with unrestricted-in-sign interval scale 

input and/or output data. Also, model (13) takes account of all inefficiencies of input and output data 

(if any) both to indicate the efficiency measure and to provide the efficient projection of DMUo. In 

addition, assuming that (𝜆1
∗ , … , 𝜆𝑛

∗ ), (𝑠1
−∗, … , 𝑠𝑚

−∗), (𝑠1
+∗, … , 𝑠𝑠

+∗) be an optimal solution of model (13) 

production possible (∑ 𝜆𝑗
∗𝒙𝑗

𝑛
𝑗=1 , ∑ 𝜆𝑗

∗𝒚𝑗)n
j=1  is BCC-efficient. 

 

5. Conclusion 

   In this paper it is presented a systematic investigation of the problem of interval scale data in DEA. 

The problem with interval scale variables arises from the fact that rations of measurement on such a 

scale are meaningless. Consequently, a model of DEA can be used to deal with interval scale outputs 

(inputs) in which the ratio of virtual effect outputs (inputs) and observed outputs (inputs) does not have 

any role in the calculations. Also, it is pointed out that the interval scale variables are invariant under 

any translation transformation; therefore, a translation invariant DEA model can be used to handle 

negative interval scale variables. It is also discussed a general approach of deriving DEA models to deal 

with unrestricted-in-sign interval scale input and/or output data.  
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