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Abstract  

   Data Envelopment Analysis (DEA) as a non-parametric method for efficiency measurement allows 

decision making units (DMUs) to select the most advantageous weight factors in order to maximize 

their efficiency scores.  In most practical applications of DEA presented in the literature, the presented 

models assume that all inputs are fully desirable. However, in many real situations undesirable inputs 

are part of the production process. In order to deal with undesirable inputs, this paper changes the 

undesirable inputs to be desirable ones by reversing, then a compromise solution approach is proposed 

to generate a common set of weights under DEA framework. The DEA efficiencies obtained with the 

most favorable weights to each DMU are treated as the target efficiencies of DMUs. Based on the 

generalized measure of distance, three types of DEA-based efficiency score programming can be 

derived. The proposed approach is then applied to real-world data set that characterize the performance 

of seven types of chemical activities.   

 

Keywords: Data Envelopment Analysis (DEA), Efficiency, Undesirable Input, Compromise solution.  

 

1. Introduction 

   Data Envelopment Analysis (DEA) is a non- parametric technique for evaluating the relative 

efficiency of a set of homogeneous decision making units (DMUs) by using a ratio of the weighted sum 
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of outputs to the weighted sum of inputs. Specifically, it determines a set of weights such that the 

efficiency of a target DMU relative to the other DMUs is maximized. This flexibility in the selection of 

input and output weights often causes more than one DMU being evaluated as efficient, leading to them 

being unable to be fully discriminated. As the methods of DEA are run for each DMU separately, the 

set of weights will typically be different for the various DMUs. Also, in some cases it may be considered 

unacceptable that the same factor is accorded widely different weights. A possible answer to this 

difficulty lies in the specification of a common set of weights (CWS). To derive a common set of 

weights for DMUs, a number of approaches have been proposed in the DEA literature. For example, 

Kao and Hwang [7] proposed the compromise solution approach to generate a common set of weights 

for all DMUs. The efficiency scores calculated from the standard DEA model is the ideal solution for 

each DMU to achieve. The common set of weights which is able to produce a vector of efficiency scores 

closest to the ideal solution is desired. This vector of efficiency scores is called the compromise solution. 

Based on the generalized measure of distance, a family of compromise solutions with parameter ,p   

 p1 , can be generated. As another method, Roll and Golany[10] suggested a method including 

running a general unbounded DEA model to obtain different sets of weights and then taking their 

average or weighted average with DEA efficiencies as the weights, maximizing the average efficiency 

of DMUs and assigning low weights to less important factors and maximal feasible weights to important 

ones. Chen et.al [4] proposed a linear multi –criteria programming which can be boil down to a single-

objective linear programming by combining the DEA and the compromise solution programming. 

Zohrebandian et.al [12] presented a multi-objective linear programming to generate the common 

weights. Also see Belton and Vickers [2] and Li and Reevese [8].in all above mentioned literatures 

multiple desirable inputs were applied to generate multiple outputs. However, in some real occasions, 

both desirable and undesirable inputs may be applied. The most important example of undesirable inputs 

returns to recycled system process. The garbage can be considered as undesirable inputs which need to 

be reconstituted and re-entered to production process. The existing DEA researches mainly deal with 

undesirable outputs in four different divisions. The first group is hyperbolic measure approach, a non- 

linear DEA model introduced by Fare et.al [6] using reciprocal measure to evaluate the efficiency of 

undesirable outputs. Seiford ad Zhu [11] changed the undesirable outputs to be positive desirable 

outputs by a linear monotone decreasing transformation. The last one is directional distance function 

approach which is proposed by Chung et.al [5]. This approach evaluates and improves DMUs’ 

efficiency according to the given direction. The researchers have made some contributions to deal with 

undesirable outputs into DEA models. However, analysts are sometimes interested in additionally 

estimating the weights in presence of undesirable inputs. In this paper we aim to search one common 

set of weights to estimate the absolute efficiency of each DMU if undesirable inputs are used in 
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production process. The method for selecting common set of weights is based on the approach presented 

by Kao and Hwang [8].  

The structure of this paper is organized as follows. In the next section we shall introduce standard DEA 

model with presence of undesirable inputs. In the section to follow the compromise solution for 

generating common set of weights under the DEA framework with undesirable inputs will be applied. 

Then a real-world problem is solved by the compromise solution approach to show that the developed 

models can illustrate the evaluations. Conclusions are offered in section 5.  

 

2. DEA Frameworks 

   Consider a set of DMUs indexed by J . For all },...,1{ nj , 
jDMU uses inputs ),...,1( Mixij  to 

produce outputs ),...,1( Sryrj  . Also, for each Jj  0jX   and 0jY . The input-oriented 

technical efficiency of oDMU , },....,1{ no  can be measured by the BCC model below Banker et.al., 

1984) [1]. 
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The model (1) tries to focus on each individual DMU to select the weights attached to the inputs and 

outputs, and to locate the envelopment surface.  A set of weights for the inputs and outputs is determined 

by the BCC program to show each DMU  in its most favorable light as long as the efficiency scores of 

all DMUs calculated from the same set of weights do not exceed unity. The dual formulation of model 

(1) is as follows: 
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Applying model (2) each DMU is allowed to select the most advantageous weights for maximizing its 

efficiency score. Thus, the resulting score is the best attainable efficiency level for each DMU. In fact, 

the linear model above is an equivalent form of the following fractional model. That is to say, applying 

Charnes-Cooper transformation [2], model (2) is attained. The fractional model is as follows: 
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3. Compromise weight solution with undesirable inputs  

   As far as we are aware, the standard CCR and BCC model assume that all inputs and outputs can be 

taken real –valued quantities. Also all consumed inputs and produced outputs are assumed desirable. 

However, in some real occasions, there are undesirable inputs. For example, in garbage recycling, trash 

can be considered as an undesirable input. Assume that each 
jDMU consumes M desirable inputs 

),....,1( Mixij  and K undesirable inputs as ),...,1( Ktxtj  to generate S outputs as ),...,1( Sryrj 

In order to tackle the efficiency measurement of oDMU , according to Seiford and Zhu [11], the 

following model can be presented: 
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In which vxx tjtj  , and v  is a chosen vector such that 0tjx  for all .,...,1 nj   

Definition1: The optimal value of problem model (4) is called the efficiency index of .oDMU  if 1o  

we say oDMU  is (at least) weakly efficient.  

Considering the dual format of model (4), we have the following linear problem: 
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The fractional format of model (5) can be rewritten as follows: 

* 1

1 1

1

1 1

 

. .

1     ,    1,...,          (6)

, , 0  for all , ,

 is free in sign 

S

r ro o

r

O M K

i io t to

i t

S

r rj o

r

M K

i ij t tj

i t

r i t

o

u y u

E Max

v x x

s t

u y u

j n

v x x

u v r i t

u









 



 









 







 



 

 



502  M.Eyni,et al /IJDEA Vol.2, No.4, (2014). 497-508 
 

 

Suppose that the optimal solution of model (6) is denoted by ),,,(
****

ouVU  . The objective function 

of model (6) tries to determine the efficiency under the constraints that the efficiency score of all units 

are less than or equal to one when the same weights are applied. The optimal objective value of model 

(6) denoted by
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In order to solve the MOLP program, the proposed approach by Kao and Hung [8] seems acceptable. 

The proposed compromise method determine the closest distance between 
*

jE  and the efficiency value 

attainable calculated from the common weights denoted as the vector ),,( vuE . The program can have 

the following format: 
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In the model above 
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jE   is the ideal or target efficiency score obtained from model (6). In model (8) for 
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For p , the objective function means that the maximal dissatisfaction of the DMUs is decreased to 

be minimal. However, it is better to investigate all three values of p and make a subjective judgment. 

Top of all, 2p  seems to be better choice, because the objective function indicates the conventional 

Euclidean distance between the ideal target 
*

E and ),,( vuE j
. Also from the statistical point of view 

this deviation has the smallest variance.  

4. Numerical Example 

   The applicability of the proposed approach is illustrated by an empirical data set consisting of seven 

DMUs. In order to investigate the effect of temperature on chemical instances, each unit uses two sets 

of inputs: desirable and undesirable to produce two categories of outputs. Desirable inputs includes 

ionic liquid and undesirable inputs consists of temperature. What’s more, higher temperature seems 

more acceptable during experiment. The outputs characterized as time (calculated per min) and the 

percentage of the material which yielded. Applying model (6), BCC fractional model, the efficiency 

scores are obtained. Table (1) summarizes the date set. 

Table1: The Chemical Data Set 

DMU Desirable Input Undesirable Input Output1 Output2 

1 0 40 240 56 

2 5 25 75 65 

3 3 40 30 75 

4 10 40 10 96 

5 10 25 40 89 

6 10 55 8 90 

7 15 40 15 88 

 

Employing 10v  to corresponding component in undesirable inputs, Table (2) presents the efficiency 

scores by Model (6).  What’s more, this score is used as ideal or target vector in different distance 

estimations.  

Table2: The results for BCC model 

DMU 1 2 3 4 5 6 7 

*

oE  1 0.16 0.29 0.39 1 0.43 1 

 

It can be seen that in presence of undesirable inputs, three DMUs are satisfied in efficiency definition. 

That is, their efficiency scores are unity. The objective is to find such compromise weights for both 

desirable and undesirable inputs to be closest to the ideal solution vector
*

oE . To determine the degree 
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of closeness, three distance measure are used to indicate the compromise weights. In Model (8) p  

represents the distance parameter. For 1p , the deviation jj EE 
*

 is weighted equally. Hence model 

(8) boils down to model (8-1). For 2p , the objective is to find the set of weights which results in 

shortest distance between 
2

E and 
*

E  in the conventional Euclidean space. To solve model (8) for

2p  , it suffices to solve model (8-2).  For p , the objective is to minimize the maximum of 

individual deviations. Hence model (8) can be transformed to model (8-3). The most prominent 

characteristic features of these models is to allow each unit to select the most favorable weights in 

calculating efficiency under the envelopment constraints. What’s more, referring to decision maker, 

every distance measure can be selected to reflect the shortest deviation in each point of view. Table (3) 

reports the results of utilizing the three proposed model to data set of Table (1). Likewise, selects the 

results in Table (2) as ideal vector to compromise.  

 

Table (3): Efficiency scores calculated from different methods of common weights 

DMU *

oE
 

Model(8-1) Model(8-2) Model(8-3) 

  1p  2p  p  

1 1 10.1318(1) 8.3332(1) 1.9845(1) 

2 0.16 4.2518(7) 5.0760(7) 1.1445(7) 

3 0.29 5.1618(6) 5.7474(6) 1.2745(6) 

4 0.39 5.8618(5) 6.1940(5) 1.3745(5) 

5 1 10.1318(2) 8.3332(2) 1.9845(2) 

6 0.43 6.1418(4) 6.3612(4) 1.4145(4) 

7 1 10.1318(3) 8.3332(3) 1.9845(3) 

 

The associated ranking calculated from three different methods of common weights are shown in 

parenthesis. As Table (3) presents efficiency score calculated from Model (8-1) the largest efficiency 

score is obtained (10.1318), whereas, Model (8-2) and Model (8-3) have smaller values of 5.0760 and 

1.1445. However, there is no differences between efficient units but also detect some information in 

presence of undesirable inputs. The common set of weights generated from these three models are 

shown in Table (4). 

Table (4):  Common set of weights from different models 

Method Desirable Input Undesirable Input Output 1 Output 2 

Model(8-1) 0.0100 0.0100 0.0100 0.0591 

Model(8-2) 0.0100 0.0100 0.0100 0.0591 

Model(8-3) 0.0617 0.0239 0.0100 0..684 
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As Table (4) shows the resultant weights are same for Model (8-1) and Model (8-2). However, they 

reflect the technical rates of substitution, but the results are same. As Kao and Hwang [8] argues it is 

inappropriate to say which weights are correct and which are not. Also, the ranking of these three models 

are consistent with those of the BCC model, indicating that the results are reasonable. The compromise 

solution approach of Model(8) is to use different distance measures to generate a linear production 

frontier such that the efficiency scores of the DMUs calculated from this production frontier are closest 

to the target  efficiency scores.  

 

5. Conclusion  

    Standard DEA models suffers flexibility in selecting weights for inputs and outputs in calculating the 

efficiency scores. This shortcoming of this flexibility highlights when it hampers a common base for 

comparison in presence of undesirable inputs. This paper researches one common set of weights that is 

the most favorable for determining the absolute efficiency for DMUs in presence of undesirable inputs. 

The paper proposes the compromise solution approach to generate a common set of weights for all 

DMUs. Based on generalized measure of distance, three DEA-based model are generated to obtain a 

common set of weights. The practical application of this methodology is aimed at evaluating a group of 

DMUs characterizes the performance of 7 real-chemical activities with undesirable inputs.  

 

References 

[1]Banker, R.J., Charnes, A., Cooper, W.W., 1984. Some models for estimating technical and scale 

inefficiencies in data envelopment analysis. Management Science 30(9), 1078-1092.   

[2] Belton V and Vickers SP. Demystifying DEA-A visual interactive Approach based on multiple 

criteria analysis. Journal of Operation Research Society 44 (1993): 883-896. 

 [3] Charnes A, Cooper WW and Rhodes E .Measuring efficiency of n decision making unit. European 

Journal of Operation Research 2 (1978): 429-444.  

[4] Chen, Y-W. Larbani, M. Chang, Y-P. Multi objective data envelopment analysis. Journal of 

Operation Research Society (2009) 60: 1556-1566.  

[5]Chung, Y., Fare, R., 1995. Productivity and Undesirable Outputs: A Directional Distance Function 

Approach. Discussion Paper Series No. 95-24 

[6] Fare, R.,Grosskopf,S.,Lovell,C.A.K.,1989.Multilateral productivity comparisons when some 

outputs are undesirable :a nonparametric approach. The Review of Economics and Statistics71,90–98. 

[7] Fare, R., Grosskopf, S., Lovell,C.A.K.,Yaiswarng,S.,1993.Deviation of shadow prices for 

undesirable outputs: a distance function approach. The Review of Economics and Statistics.75, 374–

380.  



508  M.Eyni,et al /IJDEA Vol.2, No.4, (2014). 497-508 
 

 

[8] Kao C and Hung CT. Data envelopment analysis with common weight: The compromise solution 

approach. Journal of Operation Research Society (2005) 56: 1196-1203.  

[9] Li X-B and Reevese GR. A multiple criteria approach to data envelopment analysis .European 

Journal of Operation Research 115 (1999): 507-517.  

 [10] Roll Y and Golany B. Alternative methods of treating factor weights in DEA. Omega 21 (1993): 

99-103. 

[11] Seiford, L.M., Zhu, J., 2002. Modeling undesirable factors in efficiency evaluation. European 

Journal of Operational Research 142, 16–20.  

 [12] Zohrehbandian M. Makui A. Alinezhad A. A compromise solution approach for finding common 

weights in DEA: an improvement to Kao and Hung's approach. . Journal of Operation Research Society 

(2010) 61: 604-610. 

 

 

 


