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Abstract 

 

The paper deals with Data Envelopment Analysis (DEA) and Artificial Neural Network (ANN). We 

believe that solving for the DEA efficiency measure, simultaneously with neural network model, 

provides a promising rich approach to optimal solution. In this paper, a new neural network model is 

used to estimate the inefficiency of DMUs in large datasets.  
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1. Introduction 

Data envelopment analysis (DEA), occasionally called frontier analysis, was first put forward by 

Charnes, Cooper and Rhodes in 1978 [1]. It is a performance measurement technique which can be used 

for evaluating the relative efficiency of decision-making units (DMU's) in organizations. The major 

advantages of DEA are its allowing the relative efficiency to change over time and requiring no prior 

assumption on the best solution frontier; therefore, lots of businesses or organizations have applied 

DEA to find their operating performances for further making decisions on the efficiency improvement. 

Those inefficient DMUs can be identified and proposed to make up their input resources and/or 

generated benefits. The identification has been performed widely by linear programming (LP) technique 

[2,3,4]; yet, the serious dependence on the number of DMUs causes the LP technique to a longer DEA 

computation time. To overcome this limitation, an alternative approach seems to be needed. 

DEA for a large dataset with many inputs/outputs would require huge computer resources in terms 

of memory and CPU time. This paper proposes a neural network Data Envelopment Analysis to address 
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this problem for the very large scale datasets now emerging in practice. Neural network requirements 

for computer memory and CPU time are far less than that needed by conventional DEA methods and 

can therefore be a useful tool in measuring the efficiency of large datasets. 

This paper explores an alternative algorithm using a neural network to estimate the efficiency of DMUs 

(and inefficiency of DMUs) in large datasets. This method offers considerable computational savings. 

We use a neural network model as a solution tool in measuring the efficiency (and inefficiency) of large 

datasets simultaneously. 

The paper unfolds as follows. The DEA models are explained in Section 2. Section 3 describes a new 

neural network algorithm for DEA (NNDEA). Finally, simple numerical examples are provided for the 

sake of illustration.  

 

2. Data envelopment analysis (DEA) models 

DEA is a non-parametric approach for measuring relative efficiency that produces a single aggregate 

measure of relative efficiency among comparable units (called DMUs) that is a function of the inputs 

and outputs of processes operating at the DMUs. DEA defines relative efficiency as the ratio of the sum 

of weighted outputs to the sum of weighted inputs: 

 

Sum of weighted outputs
DEA efficiency=  

Sum of weighted inputs
 

 

The more output produced for a given amount of resources, the more efficient (i.e., less wasteful) is the 

process. The problem is how to weight each of the individual input and output variables, expressed in 

their natural units; solving for these weights is the fundamental essence of DEA. 

The following derivations of the DEA linear programming formulation follow that of Charnes et al. [1]. 

The efficiency of the rth DMU, wr , can be obtained by solving the following linear DEA formulation. 

Model: Charnes et al. Modified Data Envelopment Analysis Model (DEA Model) 

1

1

1 1

(1)

. .

1 (2)

0 1,..., (3)

, 1,..., , 1,...,

J

r j jr

j

I

i ir

i

J I

j jk i ik

j i

j i

Max w u O

s t

v I

u O v I k K

u v i I j J





 





  

  





 

where   is an infinitesimal value and 
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i= 1,..., I inputs used at DMU, 

j= 1,..., J outputs produced at DMU, 

k= 1,..., r, . . . , K DMUs. 

Parameters: 

Ojk = amount of the jth output for the kth DMU, 

Iik = amount of the ith input for the kth DMU. 

Decision variables: 

u j = the weight assigned to the jth output, 

vi = the weight assigned to the ith input. 

 

The typical DEA solution process consists of sequentially solving DEA model for each DMU. The DEA 

model solution process needs to be modified to allow for the DEA efficiencies of all the DMUs to be 

calculated in one linear program. We define a new variable dr as the level of inefficiency of  

DMU r (dr =1 − wr). The DEA model to solve all for all DMUs simultaneously is expanded in the 

following manner [6]: 

Model: Simultaneous DEA (SDEA)  
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Where 

Decision variables: 

urj = the weight assigned to the jth output for DMU r, 

vri = the weight assigned to the ith input for DMU r.  

 

To allow for the simultaneous solution of the DEA model for all DMUs, the objective function (4) now 

maximizes the sum of the efficiencies. The constraints in (5) require the sum of DMU r’s weighted 

inputs to be equal to 1. The constraints in (6) define efficiency as the sum of DMU r’s weighted outputs. 

The constraints in (7), require the sum of each set of weighted outputs to be less than the corresponding 
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sum of weighted inputs. 

 

3. New NN-DEA Model 

   In this section we demonstrate a neural network model to estimate the inefficiency of DMUs (and 

efficiency of DMUs) in large datasets. 

We transform SDEA model to a neural network model [5]. In general, if the penalty method is applied 

to solve SDEA model, we can obtain an unconstrained optimization problem: 
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where L is a positive number, K is the total number of DMUs, r=1,…,K and 
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Since that in SDEA model objective function (E(X)) and all constraint are convex, demonstrate 

following NN-DEA model: 
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Proposition 1. If for any L (8) has an optimal solution, and if for system (9) we can find a state  

variable x(t) such that the neural network (9) is asymptotically stable at x*, then the optimal solution to 

(8) will be the equilibrium state of (9). [5] 

Proposition 2. Under the penalty method, P(x) of (8) is a Lyapunov function of system (9). [5] 

 

4. Numerical Example 

   Consider table 1 for 3 DMUs. 

Table 1. Input/Output Data For Example 

DMU I1 I2 O 

1 1 1 1 

2 2 1 1 

3 3 2 1 

 

with respect to SDEA model we have following model 
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For measure inefficiency (and efficiency) of DMUs we apply NN-DEA model (9) and use Euler method 

for solving our neural network. Thus we have following neural network model for this example: 
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We select 1000, 0.000001L   and use Euler method with n = 3000 iteration for solving above 

neural network and obtain state variable X(t). The state variable X*(t) (or optimal solution of SDEA 

model) is 
* * *
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Thus DMU1 and DMU2 is efficient and DMU3 is inefficient. 

 

5. Conclusions  

   DEA is a non-parametric method that is widely used for measuring the efficiency and productivity of 

Decision Making Units. DEA for a large dataset with many input/output variables and/or many DMUs 

would require huge computer resources in terms of memory and CPU time. This paper used a new 

neural network for DEA to introduce an alternative algorithm and approach to estimating the efficiency 
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of DMUs in large datasets. We use a new NN-DEA to find the optimal efficiency among multiple 

DMUs of a DEA problem. 
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