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Abstract 

 

   The present study is an attempt toward evaluating the performance of portfolios using mean-

variance-skewness model with negative data. Mean-variance non-linear framework and mean-

variance-skewness non- linear framework had been proposed based on Data Envelopment Analysis, 

which the variance of the assets had been used as an input to the DEA and expected return and 

skewness were the output. Conventional DEA models assume non-negative values for inputs and 

outputs. However, we know that unlike return and skewness, variance is the only variable in the 

model that takes non-negative values. This paper focuses on the evaluation process of the portfolios in 

a mean-variance-skewness model with negative data. The problem consists of choosing an optimal set 

of assets in order to minimize the risk and maximize return and positive skewness. This method is 

illustrated by application in Iranian stock companies and extremely efficiencies are obtained via 

mean-variance-skewness non-linear framework with negative data for making the best portfolio. The 

finding could be used for constructing the best portfolio in stock companies, in various finance 

organization and public and private sector companies.         

 

Keywords: Portfolio, Data Envelopment Analysis (DEA), Skewness, Efficiency, Negative data. 

1. Introduction 

   In financial literature, a portfolio is an appropriate mix investments held by an institution or private 

individuals. Evaluation of portfolio performance has created a large interest among employees also 

academic researchers because of huge amount of money are being invested in financial markets. The 
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theory of mean – variance, Markowitz [11] is considered the basis of many current models and this 

theory is widely used to select portfolios. This model is due to the nature of the variance in quadratic 

form. . Due to quadratic form, a study by Arditti [1], Kane [9] and Ho and Cheung [7] shown that 

investors prefer skewness which means that utility functions of investors are not quadratic. Other 

problem in Markowitz model is that increasing the number of assets will be developed the covariance 

matrix of asset returns and will be added to the content calculation. Due to these problems sharp one- 

factor model is proposed by Sharp [16]. This method reduces the number of calculations required 

information for the decision. Data envelopment analysis (DEA) has proved the efficiency for 

assessing the relative efficiency of Decision Making Units (DMUs) that employing multiple inputs to 

produce multiple outputs (Charnes et al [4]). Morey and Morey [13] proposed mean – variance 

framework based on Data Envelopment Analysis, which the variance of the portfolios is used as an 

input to the DEA and expected return is the output. Joro& Na [8] introduced mean - variance – 

skewness framework and skewness of returns are also considered as an output. Briec et al. [3] 

introduced shortage function. This shortage function obtains an efficiency measure that looks for 

improvements in both mean and skewness and decreases in variance. Kerstence et al. [10] introduced 

a geometric representation of the MVS frontier related to a new tool introduced in the literature by 

Briec. Mhiri and prigent [12] analyze the portfolio optimization problem by introducing the higher 

moments of the main financial index returns. In new models instead of estimating the whole efficient 

frontier, only the projection points of the assets are calculated. In these models are used a non-linear 

DEA-like framework where the correlation structure among the units is taken into account. 

Conventional DEA models assume non-negative values for inputs and outputs. These models cannot 

be used for the case in which DMUs include both negative and positive inputs and/or outputs. Poltera 

et al. [14] consider a DEA model which can be applied in the cases where input/ output data take 

positive and negative values.The other models solve negative data such as Modified slacks-based 

measure model (MSBM) [2006], semi-oriented radial measure (SORM) [2010] and etc. The portfolio 

optimization problem is a well-known problem in financial real world. The investor’s objective is to 

get the maximum possible return on an investment with the minimum possible risk. Also the investors 

prefer to maximize positive skewness. Since there are a large number of assets to invest in, this 

objective leads to select the best assets via mean-variance-skewness non-linear model with negative 

data.  

The rest of the paper is organized as follows: Section 2 briefly reviews the portfolio performance 

literature. Section 3 explainsmean-variance RDM and mean-variance-skewness RDM non-linear 

models. Section 4 presents computational results using Iranian stock companies data and finally 

conclusions are given in section 5.  
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2. Background 

   Portfolio theory to investing is published by Markowitz [11]. This approach starts by assuming that 

an investor has a given sum of money to invest at the present time. This money will be invested for a 

time as the investor’s holding period. The end of the holding period, the investor will sell all of the 

assets that were bought at the beginning of the period and then either consume or reinvest. Since 

portfolio is a collection of assets, it is better that to select an optimal portfolio from a set of possible 

portfolios. Hence the investor should recognize the returns (and portfolio returns), expected (mean) 

return and standard deviation of return. This means that the investor wants to both maximize expected 

return and minimize uncertainty (risk). Rate of return (or simply the return) of the investor’s wealth 

from the beginning to the end of the period is calculated as follows: 

 

Return =
(end−of−period wealth)—(beginning−of−period wealth) 

beginning−of−period wealth 
         (1) 

 

Since Portfolio is a collection of assets, its return 
p

r can be calculated in a similar manner. Thus 

according to Markowitz, the investor should view the rate of return associated to any one of these 

portfolios as what is called in statistics a random variable. These variables can be described expected 

the return (min or 
p

r ) and standard deviation of return. Expected return and deviation standard of 

return are calculated as follows: 

1/2

1 1 1

, (2)   
  

 
   

 
 

n n n

p i i p i j ij

i i j

r r

 

Where: 

n=the number of assets in the portfolio 

p
r =The expected return of the portfolio 

i
 =The proportion of the portfolio’s initial value invested in asset i 

i
r =The expected return of asset i 

p
 = The deviation standard of the portfolio 


ij

= The covariance of the returns between asset i and asset j  

In the above, optimal portfolio from the set of portfolios will be chosen that maximum expected return 

for varying levels of risk and minimum risk for varying levels of expected return(Sharp [17] ).  

Data Envelopment Analysis is a nonparametric method for evaluating the efficiency of systems with 

multiple inputs and multiple outputs. In this section we present some basic definitions, models and 
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concepts that will be used in other sections in DEA. They will not be discussed in details. Consider

j
DMU , ( 1,...,j n ) where each DMU consumes m inputs to produce s outputs. Suppose that the 

observed input and output vectors of 
j

DMU  are ( , ..., )
1

X x xj mjj
  and 

1
( ,..., )

j j sj
Y y y  

respectively, and let 0
j

X  and 0
j

X  , 0
j

Y  and 0.
j

Y   A basic DEA formulation in input 

orientation is as follows: 

min ( )

1 1

. 1, ..., , (3)

1

1, ..., ,

1

,

, 0,

0

 

 







 
  

 


  




  



 

 




s m
s s
r i

r i

n
s t x s x i m

j ij i io
j

n
y s y r s

j rj r ro
j

s s

 

Where is a n-vector of  variables, s


as-vector of output slacks, s


an m-vector of input slacks 

and set  is defined as follows: 

with constant returns to scale,

with non-increasing returns to scale ,

with variable returns to scale

{

{ ,1 1}

{ ,1 1}

(4)

n
R

n
R

n
R



 

 

 

 

 




  



 

 

Note that subscript ‘o’ refers to the unit under the evaluation. A DMU is efficient iff 1  and all slack 

variables ,s s
 

equal zero; otherwise it is inefficient (Charnes et al. [4]). In the DEA formulation 

above, the left –hand sides in the constraints define an efficient portfolio. 𝜃 is a multiplier defines the 

distance from the efficient frontier. The slack variables are used to ensure that the efficient point is 

fully efficient. This model is used for asset selection. The portfolio performance evaluation literature 

is vast. In recent years these models have been used to evaluate the portfolio efficiency. Also in the 

Markowitz theory, it is required to characterize the whole efficient frontier but the proposed models 

by Joro & Na do not need to characterize the whole efficient frontier but only the projection points. 

(4) 
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The distance between the asset and its projection which means the ratio between the variance of the 

projection point and the variance of the asset is considered as an efficiency measure ( ) . In this 

framework, there is n assets, 
j

 is the weight of asset j in the projection point, 
j

r is the expected 

return of asset j ,
o

 and 
2

o
  are the expected return and variance of the asset under evaluation 

respectively. Efficiency measure   can be solved via following model: 

 

 

min ( )
1 2

. . ,
11

2 2
( ( ))

21

1 0
1

5

 

 

  

 

 

 


  


  


 
 
 

 
 
 

s s

n
s t E r s oj j

j

n
E r s oj j j

j

n

j
j

 

 

Model (5) is revealed by the non-parametric efficiency analysis Data Envelopment Analysis (DEA). 

Joro and Na [8] extended the described approach in (5) into mean-variance-skewness framework 

where o
 is the skewness of the asset under evaluation. The efficiency measure   can be solved 

through using the following model:   

 

 

min ( )
1 2 3

. . ,
11

2 2
( ( ))
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3
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Model (6) projects the asset with the efficient frontier by fixing the expected return and skewness 

levels and minimizing the variance. 
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Fig 1. Different projections (input oriented, output oriented, combination oriented) 

 

Fig 1 illustrates different projection that consist of input oriented, output oriented and combination 

oriented in models of data envelopment analysis. C is the projection point obtained via fixing 

expected return and minimizing variance, B via maximizing return and minimizing variance 

simultaneously, and D via fixing variance and maximizing return. 

In the conventional DEA models, each ( 1,..., )
j

DMU j n is specified by a pair of non-negative 

input and output vectors ( , )
m s

j j
x y R




 , in which inputs ( 1,..., )

ij
x i m are utilized to produce 

outputs, ( 1,..., )
rj

y r s . These models cannot be used for the case in which DMUs include both 

negative and positive inputs and/or outputs. Poltera et al.[14] consider a DEA model which can be 

applied in the cases where input/ output data take positive and negative values. Rang Directional 

Measure (RDM) model proposed by Polera et al. goes as follows: 

 

1

1

1

max

1,..., ,

1,..., , (7)

1,

0 1,..., .


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 
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Ideal point ( I ) within the presence of negative data, is : 

(max { : 1,..., },min { : 1,..., }
j rj j ij

I y r s x i m   where 
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,

min { : 1,..., }, 1,..., ,

max { : 1,..., } 1,..., . (8)

   

   

io io j ij

ro j rj ro

R x x j n i m

R y j n y r s
 

The other models solve negative data such as Modified slacks-based measure model (MSBM), 

Emrouznejad [6], semi-oriented radial measure (SORM), Sharp et al. [15] and etc. 

 

3. Modified models in the presence of negative data 

   In model (6) if return and skewness is considered positive then the results are correct, hence the 

problem can happen only if return and skewness can take both positive and negative values. As we 

know that unlike return and skewness, variance is only a non-negative number. Also, Bhattacharyya et 

al. [2] predicted that for assets with negative expected returns, expected return will be a declining and 

convex function of skewness. Assume the basic problem is to select a portfolio from n financial 

assets. A portfolio
1 n

( ,..., )   is a vector of proportions in each of these n financial assets with 

n

i

i 1

1


 . Excluding short sales, one must impose the condition i
0  for all i {1,..., n} . In general, 

the set of admissible portfolio is written as follows: 

n
n

i i

i 1

{ R : 1, 0}  


     . 

Assets are characterized by an expected return E[ i
r ]. By a covariance matrix with 

ij i j i i j j
cov(r , r ) E[(r E[r ])(r E[r ])] (9)      

And by a co-skewness tensor of rank three  with: 

ij i i j j k k
E[(r E[r ])(r E[r ])(r E[r ])] (10)     . 

Then, we have: 

n

i i

i 1

n
2

i j ij

i, j 1

n
3

i j k ij

i, j,k 1

E[r( )] E[r ]

V ar[r( )] E[(r( ) E[r( )]) ] (11)

Sk[r( )] E[(r( ) E[r( )]) ]

 

    

     









   

   







 

To condense notation, the function 
3

: R  defined by: 

( ) (E[r( )], V ar[r( )],Sk[r( )])      
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is introduced to represent the expected return, variance and skewness of a given portfolio  .In the 

reminder, an element of 
3

R is called a MVS point. Thus, a MVS point can be the image by  of a 

portfolio, or any arbitrary point in this three-dimensional space. It is useful to define the MVS image 

of  as the image ( )  , with  

( ) { ( ); }.       

This set can be extended by defining a MVS disposal representation set via: 

DR ( ) (R R R ).
  

      

For the purpose of gauging portfolio efficiency, a subset of this representation set the weakly and 

strongly efficient frontier must be defined as: 

Definition 1: In the MVS space, the weakly efficient frontier is defined as: 

w ' ' ' ' ' '
( ) {(M, V,S) DR;( M , V , S ) ( M, V, S) (M , V ,S ) DR}           . 

Definition 2: In the MVS space, the strongly efficient frontier, is defined as: 

s ' ' ' ' ' ' ' ' '
( ) {(M, V,S) DR;( M , V , S ) ( M, V, S)and ( M , V , S ) ( M, V, S) (M , V ,S ) DR}               

 

Extremely, we present following non-linear mean-variance RDM model on the basis of negative data: 

2
o

n

j j o o

j 1

n
2 2

j j j o

j 1

n

j

j 1
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s.t. E r R

E ( (r )) R (12)
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 
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Ideal point ( I ) within the presence of negative data, is 

2
o

2

j j j j

o j j o

2 2

o j j

I (min { }, max { }) where,

R max { : j 1,..., n} (13)

R min { : j 1,..., n}.





 

 

 
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  
 

 

The above model can be expressed as following: 

 

  2
o

o o

2

o
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j
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Also, we present following non-linear mean-variance-skewness RDM model on the basis of negative 

data: 
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Ideal point ( I ) within the presence of negative data, is 

2

j j j j j
I (min { }, max { , })    
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The above model can be expressed as following: 

 

 

 
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. . ( )
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The methodology in this paper starts with asset selection via performance evaluation in presence of 

negative data. The data used for this methodology is from 20 Iranian stock companies. In many cases 

similar to this example there are a lot of assets. It is better that starts with asset selection via 

performance evaluation. The choice of the asset can be random or discrete. The random choice of 

assets is usually biased and do not promise an optimum portfolio; hence it is more rational to have an 

objective choice while selecting the assets to be included in the portfolio. Performance evaluation is 

calculated by using models 14 and 17.   

(15)  
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4. Application in Iranian Stock Companies 

   We illustrate our approach in non-linear mean-variance-skewness model for a data set 20 Iranian 

stock companies. A list of stocks used is provided in Table 1. In this report, there is expected return, 

variance, skewness of stocks which expected return and skewness are considered as output and 

variance is as input. The example is received from Iranian stock companies and is about portfolio 

performance evaluation in a mean-variance-skewness RDM framework. Thus, we know that unlike 

return and skewness, variance is the only variable in the model that takes non-negative values. In the 

analysis, the variance of the stocks is used as an input to the DEA and expected return and skewness 

are used as output. 

Table1. Descriptive statistics of the Iranian stock companies 

Iranian stock companies Expected return Variance Skewness 

VNVIN 7.285 6.534 -1.503 

VPARS 7.388 10.474 0.789 

VBHMN -2.193 3.720 -0.470 

VPASAR 10.853 4.256 0.813 

DGABR 12.517 32.259 0.540 

STRAN 9.052 70.764 1.488 

FBAHNR 52.511 57.497 -0.6 

FMLI -3.676 19.609 -0.851 

FVLAD 3.537 21.496 -1.03 

KCHINI 7.57 67.378 0.591 

VTVSA 6.896 14.171 -0.270 

VLSAPA 1.888 29.002 -.964 

VNFT 18.737 42.133 -1.314 

VTGART 1.302 12.419 -0.947 

VKHARZM 1.231 1.611 -1.048 

VSAKHT 14.741 11.429 -0.922 

KHSAPA 3.896 25.358 -0.853 

VSINA 2.967 4.856 0.499 

RTKG 32.677 28.464 0.487 

VBMLT 2.022 1.56 -0.589 

 

Linear MV and linear MVS with RDM model are calculated at table 2. Also, non linear MV 

efficiency measure and non-linear MVS efficiency measure using models 14 and 17 are calculated at 

table 2.  
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Table2. Efficiency measure of the Iranian stock companies 

Iranian stock companies  Non-linear mean-

variance RDM model 

(model 14) 

MV RDM 

linear 

Non-linear mean-variance-

skewness RDM model  

(model 17) 

MVS 

RDM 

linear 

VNVIN 0.46 0.89 0.46 0.89 

VPARS 0.41 0.83 0.43 0.91 

VBHMN 0.39 0.81 0.43 0.81 

VPASAR 0.5 1 0.54 1 

DGABR 0.31 0.65 0.38 0.78 

STRAN 0.21 0.41 0.34 1 

FBAHNR 1 1 1 1 

FMLI 0.31 0.62 0.33 0.62 

FVLAD 0.31 0.66 0.34 0.66 

KCHINI 0.22 0.43 0.32 0.66 

VTVSA 0.37 0.77 0.40 0.77 

VLSAPA 0.28 0.59 0.31 0.59 

VNFT 0.32 0.63 0.39 0.65 

VTGART 0.35 0.72 0.37 0.72 

VKHARZM 0.43 1 0.46 1 

VSAKHT 0.45 0.94 0.48 0.94 

KHSAPA 0.3 0.63 0.33 0.63 

VSINA 0.4 0.83 0.43 0.83 

RTKG 0.51 1 0.68 1 

VBMLT 0.43 0.65 0.47 0.65 

 

Table 2 represents the calculated and compared the results of efficiency of model 14 and model 17 to 

linear MV RDM model and linear MVS RDM model. As seen in Table 2, model 14 and model 17 

scores are as a conservative estimate of the linear MV RDM and linear MVS RDM scores. In this 

example all the linear DEA scores are greater than the non-linear model.Also, we compare the results 

linear MV RDM and linear MVS RDM. Because of, skewness equation is increased the results are not 

better. But, we know that the RDM model gives inefficiency score. Therefore, the efficiency score 

linear MVS RDM model is greater than linear MV RDM. But, those having positive skewness, have 

more efficiency increasing. For example, STRAN having the most positive skewness, Firstly linear 

MV RDM efficiency score has 0.41 and linear MVS RDM efficiency score ,secondly becomes 1. But 

those having negative skewness, don’t change in efficiency score. Non-linear MVS RDM efficiency 
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scores are become nearly better than non-linear MV RDM efficiency scores. But those having positive 

skewness, have more efficiency increasing. For example, STRAN and KCHINE. 

The results are obtained by General Algebraic Modeling System (GAMS) software. 

 

5. Conclusion 

   This paper introduced a measure for portfolio performance using non-linear mean-variance-

skewness RDM model. Joro and Na had proposed models for evaluating portfolio efficiency in which 

Data Envelopment Analysis model was employed. In these models was used a non-linear DEA-like 

framework where the correlation structure among the units was taken into account. We have applied 

model 14, and model 17 with return and skewness as output and the variance as the input to 20 stocks. 

The detailed results are presented in Table 2.  In the numerical example is also observed that 

compared with linear, these models are highly exact in all the units, that is, all the linear DEA scores 

are greater than the non-linear models. This means that the DEA frontier is always dominated via the 

non-linear modified mean-variance frontier. But, those having positive skewness, have more 

efficiency increasing. For example, STRAN having the most positive skewnes. Firstly, linear MV 

RDM efficiency score has 0.41 and linear MVS RDM efficiency score, Secondly becomes 1. But 

those having negative skewness, don’t change in efficiency score. Non-linear MVS RDM efficiency 

scores are nearly better than non-linear MV RDM efficiency scores. But, those having positive 

skewness, have more efficiency increasing. For example, STRAN and KCHINE. 
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