Available online at http://ijdea.srbiau.ac.ir

Int. J. Data Envelopment Analysis (ISSN 2345-458X)
Vol.2, No.2, Year 2014 Article ID IJDEA-00221, 11 pages
/] T Research Article

International Journal of Data Envelopment Analysis Science and Research Branch (1AU)

Efficient Selection of Design Parameters in Multi-
Objective Economic-Statistical Model of Attribute C
Control Chart

S. Jafarian-Namin?, A. Amiri®*, E. Najafi°

(a) Department of Industrial Engineering, South Tehran Branch, Islamic Azad University,
Tehran, Iran
(b) Industrial Engineering Department, Shahed University, Tehran, Iran
(c) Industrial Engineering Department, Islamic Azad University, Science and Research Branch,

Tehran, Iran.

Received 23 February 2014, Revised 10 June 2014, Accepted 29 June 2014

Abstract

Control chart is the most well-known chart to monitor the number of nonconformities per inspection
unit where each sample consists of constant size. Generally, the design of a control chart requires
determination of sample size, sampling interval, and control limits width. Optimally selecting these
parameters depends on several process parameters, which have been considered from statistical and/or
economic aspects in the literature. This study presents a multi-objective economic-statistical design
(MOESD) of the C control chart. An algorithm using data envelopment analysis (DEA) is employed to

solve this model. A numerical example is used to illustrate the algorithm procedure.
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1. Introduction

Statistical Process Control (SPC) is an industry-standard methodology for measuring, controlling and
improving the quality and productivity of manufacturing and service enterprises. Control chart is one
of the seven basic tools of SPC. A control chart is a graphical exhibition of plotted quality data obtained
from a process in time order that can be used to maintain the process in the in-control status and improve
it through reduction in the variability of the process through analyzing the process changes over time.
Broadly, there are two classes of control charts: the variable and the attribute. Attribute control charts
are used to monitor discrete and/or categorical data (for a comprehensive review see [1]). Among them,
the classic Shewhart’s C control chart is applied to monitor the number of nonconformities per
inspection unit, distributed according to a Poisson distribution [2]. Despite the wider application in real
practice for the relative simplicity in dealing with attributes than variables, the C control charts have
been largely neglected unfortunately. Thus, in this study, the design of attribute C control charts is
considered through corresponding parameters.

Generally, the design of a control chart requires the specification of three parameters, namely, sample
size (n), sampling interval (h), and control limits width (k). Many researchers have considered optimally
selecting these parameters. Traditionally, control charts are designed without taking into account
economic aspects that experience substandard performances. Since the quality of a product and the cost
of process control are affected by design parameters, it is of great importance to search for the best
possible parameters. This in turn motivates many researchers to consider optimally selecting of the
design parameters.

The first economic model to monitor the mean of a normal process under a single assignable cause was
developed by Duncan [3]. This pure economic design was criticized for poor statistical properties. Thus,
Saniga [4] introduced an economic-statistical model in which minimized the Duncan’s cost model
subject to statistical constraints. Since the importance of statistical properties is of the same as economic
aspects, this approach seems ineffective and simultaneous optimization of both properties is required.
As a multiple criteria decision-making, Chen and Liao [5] applied an approach to design X control chart
in which the efficient solutions were selected using DEA. Recently, this approach has been considered
for the design of the np control chart [6].

DEA is a powerful optimization approach to evaluate the relative efficiency of decision making units
(DMUs) with multiple inputs and outputs. Charnes et al. [7] developed DEA via generalization of the
Farrell’s single input, single output efficiency measurement. In recent years, a large number of
applications of DEA have been done by defining DMUs in various forms as needed. Two main reasons
that make DEA more attractive are 1) the general and supple definition of a DMU, and 2) fairly few

assumptions involved in the modeling. The first DEA approach gained a lot of attention is known as
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the CCR model. In this mathematical programming model, the performance of a specific DMU is
assessed with respect to the performance of the remaining DMUSs.

By defining proper DMUs, in this paper, we present multi-objective economic-statistical design of the
C control chart. The rest of the paper is organized as follows: In section 2, the C control chart is
introduced. The multi-objective model is proposed in Section 3. In the next section, a brief description
of the data envelopment analysis approach is given. In section 5, an algorithm using the DEA, proposed
by Chen and Liao [5], is employed with some modifications to solve the proposed model. Section 6
includes a numerical example to illustrate the solution procedure and to perform some Comparisons.

Finally, conclusions complete the paper.

2. The C Control Chart

It is often important to construct control charts for the number of defects, where each inspected unit
of the same size may have several countable nonconformities. In such cases, the classic Shewhart C-
chart is applied to monitor the number of nonconformities per inspection unit, distributed according to
a Poisson distribution as follows:

P(x)= X!C x=01... , 1)

where c¢>0 is the Poisson distribution parameter which represents its mean and variance in a
preliminary inspection unit of constant size.

Commonly, a control chart has a central line (CL) to define the central tendency, and an upper control
limit (UCL) and lower control limit (LCL) to exhibit the scope of expected variation of the plotted data.
Hence, if the known value of ¢ (obtained using historical information) is considered as the central line,
the k-sigma upper and lower control limits are statistically computed for a C control chart as given in

the following equations [2]:
UCL =c+k4/c, (2)
LCL =c—k+/c. @3)

In this way, the production process is permanently sampled in specific time intervals, inspected and the
results are interpreted to see whether the outcomes are from one consistent and homogeneous process
or not. Under the attitude of quality improvement, the assignable cause or causes of variation in the
process must be discovered and eliminated so as to reach a stable and predictable process (i.e., ‘in-
control’ state). In this study, a single assignable cause is assumed to occur.

If designing of a C control chart based on n inspection units (not necessarily integer) is of interest, new
inspection unit is obtained with n multiplied by primary inspection unit. Therefore, the control limits

are converted into (notice that the number of items inspected remains the same among all the new
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subgroups):
UCL =nc+k+/nc, 4)
LCL = nc —k~/nc. 5)

In some cases, when the calculations yield zero or a negative value for LCL, researchers often set it to
zero. However, this violates the definition of a lower control limit and Use of run rules. Because of the
importance of points plotting below the LCL, indicating a possible reduction in the number of defects,

we define a constraint to consider situations in which it is positive.

3. The Proposed Model

The proposed C-MOESD model is based on Duncan’s economic model [3] by some adjustments to
adapt with the C control chart and consider economic and statistical properties simultaneously. To
simplify the mathematical manipulation and analysis, the following assumptions are considered to be
hold:

1. The quality characteristic follows a Poisson distribution,

2. The process is either in-control or out-of-control state only and is initially in the ‘in-control’ state;

that is, c=c,,

3. When a random assignable cause of magnitude 6 occurs, leads the process mean to shift from co

to ¢, =cy +84/cq s

4. The occurrence of an assignable cause possesses an exponential distribution with mean time 1/4,
5. The process is allowed to continue during the search and repair.

A. Economic Cost Function

Duncan’s [3] definition of the expected hourly cost is based on a single quality control cycle of
monitoring the production process.
This cycle length consists of four components: 1) the period in which the process is in-control, 2) the
time to signal during the out-of-control period, 3) the time to sample, inspect and interpret, and 4) the
time to discover and repair the assignable cause.
Accordingly, an expected cycle length and an expected cost of the cycle can be formulated in economic
model construction. As a ratio between the expected cost during a cycle and the expected cycle time
length, the expected hourly cost in [3] is adapted to the C control chart:

f+vn AW +TA+MB)
E.= +
h 1+ 1B

(6)

where:
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o fis the fixed cost of sampling an inspection unit,
e v is the variable cost of sampling an inspection unit,
o W is the average cost to detect an assignable cause,
o T is the cost of verifying a false alarm,
o M is the hourly loss due to poor quality of units,
o A is the average number of false alarms per cycle:
A=ale™ 1), )
e o is probability of false alarm ([UCL] and <LCL> denote the integer round down and round up

functions of control limits):

[ucL]

a=1- Z(co)xe*%/x!, (8)

x=<LCL>

B is the average time of the process being in out-of-control state:
B=h/P-z+gn+D , C))

P is detection power:

[ucL]

P =1- Z(cl)xe"cl/x! , (10)

x=<LCL>

7 is average time of occurrence of an assignable cause between samples:

r= (1— (L+ 2h)e )/(/1 _ e~y (11)

g is time to sample and interpret the results,

D is time required to find the assignable cause.

B. Multi-Objective Design of the C Control Chart

The goal of multi-objective decision making is to find a solution giving the best compromise between
multiple objectives. In addition to statistical perspective, designing a control chart has several economic
consequences as presented before. Thus, taking into account both properties, the C-MOESD model is

formulated as follows:
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Min E_(S)

Max ATS,(S)

Min ATS,(S)

st. E_<E,’ , (12)

ATS, > ATS "

ATS, < ATS,"

LCL >0
where, E. is the expected hourly cost, S=(n, h, k) is a possible set of design parameters, ATSo=h/a is the
average time to signal when a false alarm occurs, and ATS:=h/P is the average time to signal when an
assignable cause occurs. In addition, E.Y, ATSo" and ATS;" are the desired bounds determined by DM,
and LCL is the lower control limit.
The design of a control chart requires the specification of three decision variables, i.e. n, h and k. One
of the most powerful methods to solve (12) is DEA method. Although DEA is applied for various
control charts, it has not been used for design of C control chart yet. In this study, DEA method is used

to search the optimal solution(s) in the model.

4. Data Envelopment Analysis

DEA is a powerful non-parametric approach to evaluate the relative efficiency of a group of decision
making units (DMUs) with multiple inputs and outputs. The first DEA approach is known as the CCR
model via generalization of the Farrell’s single input, single output efficiency measurement [7]. This
linear programming formulation can be either input-oriented or output-oriented. Assuming n DMUs,
each with m inputs and s outputs, the efficiency of a specific DMU can be obtained by solving the input-
oriented CCR model:

s
Max EO(D) = ZurYrO

=i (13)

=1 i=1

r=1...,s

, i1=1..,m

where u is the weight of output r, v; is the weight of input i, Y,; is the value of output r for jth DMU,
and Xj is the value of input i for jth DMU. The performance of each DMU measured is relative to the
remaining DMUs. A DMU is relatively inefficient if Eo"<1 and relatively efficient, strictly or weakly,
if Eo"=1. In designing control charts, DMUs refer to feasible combinations of design parameters.

In the C-MOESD model, the objectives including E. and ATS; are considered as inputs because of
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their minimizing nature, and ATSy is probed as output. The model should be formulated for each DMU
to find the set of weights, as decision variables, that maximize the relative efficiency of considered
DMU. As a result, at least one of the DMUs will be efficient.

5. Solution Procedure

We intend to achieve a well-balanced trade-off between the economic and the statistical features.
For this reason, Chen and Liao’s [5] algorithm is employed by some adjustments for optimizing our
proposed model. In fact, the modifications are as follows: 1) optimizing the model for the C control
chart, 2) changing some of the objective functions and constraints by introducing h into them, 3) setting
upper bound for expected hourly cost, 4) considering situations not to violate the definition of a LCL
based on the nature of Poisson distribution. The solution algorithm for optimizing the proposed model

is explained as follows:

Step 0. Determining the possible combinations of design parameters. Set various combinations of
design parameters by putting bounds on them according to DM’s needs. Due to the discrete optimization
nature of the DEA method used in this algorithm, and to avoid additional computations related to
dominated solutions, the analyzer can limit the solution space in advance. Then, the values of objective
functions must be computed for each DMU.

Step 1. Determination of feasible combinations. By using the constraints in (12), gather the feasible
combinations with the same sample size n into a set Q.

Step 2. Partial solution selection. Determine the non-dominated solution points for each set of Q.
Step 3. Global Pareto solution selection. Merge all determined solutions from step 2 into a set W and
then select efficient design(s) among the scores calculated for all designs by CCR model (Although
there are some DEA softwares, in this study, all calculations have been facilitated under a program
coded in the MATLAB (version R2013b) environment).

6. A Numerical Example

In order to illustrate the results of the C-MOESD model, the number of nonconformities in a unit of
size n is supposed to follow a Poisson distribution with mean co=4. Moreover, when an assignable cause
with the rate of 1=0.01 occurs, it provides a shift of size =2 in the process mean (and so ¢:=8). The

values of other parameters are listed in Table 1.
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Table 1

Input values of parameters

Cost factors Time factors

M T W f V 9 D
20 25 125 1 01 005 2

Firstly, the solution space is limited according to the bounds on design parameters: 1<n<30 increases
by 0.5, 0.1<h<4 increases by 0.1, and 0.5<k<4 increases by 0.5. Therefore, the number of possible
combinations will be 59x40x8=18880. For all of the possible combinations, the values of objective
functions are computed. Then, the feasible combinations are specified by applying the following
constraints: E, <7, ATS,>100, ATS, <4, and LCL>0. Next, the NDS points for each set of Q, are

selected. Finally, the relative efficiency score of each NDS is calculated.

As shown in Table 2, two combinations of design parameters have received efficiency score 1 and thus
are offered to the DM for final selection. In consequence, Table 3 shows the determined efficient units
in addition to comparison with the pure economic design in which only the expected hourly cost in (12)
is minimized (see Duncan’s [3] model). Selected two efficient units by the proposed model have
improved ATS, about 880.3% and 715.9%, and ATS: about 35.1% and 48.9%, respectively. However,
E. is increased about 109.9% and 162.2%, respectively. Despite the increase in cost, statistical
performance is improved substantially using C-MOESD model. Moreover, in our designs, all the
objectives are in the desired limits, while, the statistical objectives of pure economic design are not
satisfactory.

In terms of efficiency values, our designs show significant difference against the pure economic design.
This can totally confirm the improved performance of the Multi-Objective Economic-Statistical design

and reveal the insufficiency of the pure economic design in such space.

Table 2.
Non-dominated solution points in the set W
n h k ATS, ATS: EL n h k ATS, ATS: EL
25 04 3 10117 1.89 422 7 0.7 3 159.34 331 3.70
25 05 3 12646 237 3.62 7 0.8 3 182.11 3.79 3.46
25 06 3 15176 284 3.25 75 04 3 118.66 2.09 5.52
25 07 3 177.05 332 3.01 75 05 3 148.32 262 4.69
25 08 3 20234 379 284 75 06 3 17799 314 4.16
3 04 3 11206 198 434 75 0.7 3 207.65 3.66 3.81
3 0.5 3 140.07 247 3.73 8 04 35 48154 3.67 5.78
3 0.6 3 168.08 297 3.35 8 0.5 3 111.04 235 4.80
3 0.7 3 196.10 346 3.10 8 0.6 3 133.25 282 4.24
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Table 2. (continued)

n h k ATSy ATS: E. n h k ATSy ATS: Ev
3 08 3 22411 396 2093 8 0.7 3 15545 329 3.86
35 03 35 46325 298 562 8 0.8 3 17766 377 3.59
35 04 3 12979 210 4.46 85 04 3 116.11 2.08 5.78
* 35 04 35 61766 398 4.65 85 05 3 14514 260 4.90
35 05 3 16224 263 384 85 06 3 17417 313 434
35 06 3 19469 315 345 85 07 3 20320 3.65 3.96
35 07 3 22714 368 3.19 9 0.4 3 15132 231 590
4 03 3 11587 169 5.72 9 0.5 3 189.15 289 5.01
* 4 03 35 51407 313 582 9 0.6 3 22698 346 4.45
4 04 3 15450 225 459 95 04 3 11740 210 6.04
4 05 3 19312 282 3.95 95 04 35 57027 398 6.21
4 06 3 23175 338 3.56 95 05 3 14675 262 511
4 07 3 27037 394 330 95 06 3 17610 3.15 451
45 03 35 28738 244 590 95 07 3 20546 367 411
45 04 35 38317 325 481 10 05 3 11637 241 521
45 05 3 11430 234 4.06 10 0.6 3 139.65 289 4.59
45 06 3 13717 281 361 10 0.7 3 16292 337 4.17
45 07 3 160.08 327 3.32 10 0.8 3 186.20 3.85 3.87
45 08 3 18289 374 311 105 04 3 12153 213 6.29
5 03 35 34263 264 6.09 105 04 35 55120 3.95 647
5 04 3 11537 204 486 105 0.5 3 15192 267 532
5 04 35 45685 351 497 105 0.6 3 18230 320 4.69
5 05 3 14422 255 416 105 0.7 3 21269 373 4.27
5 06 3 17306 3.06 371 11 05 3 12286 246 542
5 07 3 2019 357 342 11 06 3 14743 296 4.77
55 03 3 10953 168 6.24 11 07 3 17200 345 4.32
55 03 35 41337 287 6.29 11 08 3 19657 394 401
55 04 3 14604 224 499 115 04 3 12802 218 6.55
55 04 35 55116 382 515 115 04 35 54734 395 6.73
55 05 3 18255 280 427 115 05 3 160.03 273 553
55 06 3 219.06 335 3.82 115 0.6 3 19204 327 4.88
55 07 3 25557 391 353 115 0.7 3 22404 382 4.43
6 03 35 50303 314 6.50 12 04 3 10518 2.03 6.69
6 05 3 12299 242 437 12 05 3 13147 253 5.63
6 06 3 14758 291 3.88 12 06 3 15777 3.04 495
6 07 3 17218 339 356 12 0.7 3 18406 355 4.48

365
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Table 1. (continued)

n h k ATSy ATS: E. n h k ATSy ATS: Ev
6 08 3 19.78 3.88 3.33 125 04 3 136.65 225 6.81
6.5 03 35 32888 262 6.61 125 04 35 555.07 4.00 6.99
65 04 3 12710 214 525 125 0.5 3 17082 281 574
6.5 04 35 43850 349 536 125 0.6 3 20498 337 5.06
65 05 3 15887 2.67 4.48 125 0.7 3 23914 393 4.60
65 06 3 19064 320 3.99 13 04 3 11373 209 6.95
65 07 3 22242 374 3.66 13 05 3 14217 262 584
7 03 35 41107 289 681 13 06 3 17060 3.14 5.13
7 04 35 548110 385 554 13 07 3 199.03 366 4.65
7 05 3 11382 237 4.58 135 0.5 3 18421 290 5.96
7 06 3 13658 284 4.06 135 0.6 3 22105 348 525
14 05 3 15498 271 6.05 185 0.5 3 138,67 261 6.99
14 06 3 18597 325 532 185 0.6 3 16641 314 6.10
14 07 3 21697 380 481 185 0.7 3 19414 366 548
145 05 3 13178 255 6.16 19 06 3 21217 346 6.21
145 06 3 15813 3.06 5.39 195 0.6 3 18748 329 6.29
145 0.7 3 18449 357 4387 195 0.7 3 21872 384 565
15 05 3 170.03 282 6.27 20 0.6 3 16659 314 6.36
15 06 3 204.03 3.38 5.50 20 0.7 3 19436 367 571
15 07 3 23804 394 4098 205 0.6 3 21149 346 6.48
155 05 3 14573 265 6.37 21 06 3 18853 331 6.55
155 06 3 17487 318 557 21 0.7 3 21995 386 5.88
155 0.7 3 20402 372 5.03 215 0.6 3 168.88 3.17 6.63
16 05 3 18749 293 6.48 215 0.7 3 197.03 369 594
16 06 3 22499 352 5.69 22 0.6 3 21351 348 6.74
165 05 3 16180 277 6.58 225 0.6 3 19174 333 6.82
165 06 3 19416 332 576 225 0.7 3 22370 389 6.11
165 07 3 22652 388 520 23 0.6 3 17294 320 6.89
17 05 3 14072 262 6.68 23 07 3 20176 3.73 6.17
17 06 3 16886 3.15 584 24 0.7 3 22962 394 6.35
17 07 3 19701 367 526 245 07 3 20831 379 641
175 05 3 18023 290 6.80 255 0.7 3 23749 400 6.58
175 06 3 216.28 3.48 5.95 26 0.7 3 21653 385 6.64
18 05 3 15757 275 6.89 265 0.7 3 198.06 372 6.70
18 06 3 189.09 3.30 6.02 275 07 3 22636 393 6.88
18 07 3 22060 3.85 543 28 0.7 3 20789 380 6.94

* denotes the parameter combination with relative efficiency score of 1
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Table 3.
Efficient design parameters for C-MOESD model
in comparison with pure economic model
Design n h k ATSo ATS; EL
35 04 35 061766 3.98 4.66
03 35 51407 3.13 5.82
Pure Economic 1 2.5 2 63.01 6.13 2.22

C-MOESD

7. Conclusion and Future Researches

In this study, we proposed a multi-objective economic-statistical model for the C control chart. The
DEA approach was applied to specify efficient design parameters. Through a numerical example, the
algorithm procedure was investigated in addition to comparison with pure economic design. According
to the results, Multi-Objective Economic-Statistical design showed statistically improved performance
compared to the pure economic design for the C control chart.

Using the other multi-objective decision making methods, and using the proposed model in occurrence
of multiple assignable causes can be considered as future researches. In addition, models including
assignable causes with random shifts and for variable sample sizes in addressing various control charts

worth to be investigated.
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