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Abstract 

   Data Envelopment Analysis (DEA) is a mathematical programming-based approach for evaluates the 

relative efficiency of a set of DMUs (Decision Making Units). The relative efficiency of a DMU is the 

result of comparing the inputs and outputs of the DMU and those of other DMUs in the PPS (Production 

Possibility Set). Also, in Data Envelopment Analysis various models have been developed in order to 

evaluate the performance of decision-making units with negative data. The Modified Slack Based 

Measure (MSBM) model is from collective models family. This modified model is based on slack-

based measure (SBM). Also the early models of data envelope analysis considered inputs and outputs 

as precise data. However, in studies about the data envelope analysis, some methods presented for 

applying imprecise data. Based on this, data envelope analysis models with interval data have been 

developed. In this paper, the MSBM model is investigated in presence of interval negative data, and 

then the efficiency of the model with imprecise data (interval) is evaluated. The efficiency of ten 

decision-making units is evaluated. 

 

Keywords:  Data envelopment analysis, modified model, interval data, evaluating the efficiency of 

negative data. 

1.  Introduction 

     Data Envelopment Analysis (DEA) is a non-parametric technique for measuring and evaluating the 

relative efficiency of a set of Decision Making Units (DMU) with alternative inputs and outputs. The 

DEA was firstly proposed by Charnes, Cooper, and Rhodes [2] in the well-known paper CCR, and 

further continued in literature by others like Banker [1]. In all original models of DEA, the default 

assumption is that all input/output values are positive. This strict constraint first applied by Charnes et 

al. on CCR model in 1987, and then by other scientists on other models. However, in practical problems, 

there are many cases where this constrained is violated, and there exist negative inputs and outputs. In 
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aspect of theoretical and practical development of DEA, in recent years many researchers have focused 

on issue of DEA with negative data. The works of Seiford and Zhu [4] are among the most important 

methods presented. Another useful method belongs to Silva Portela [6] in RDM paper. Another method, 

which so far has had the greatest share of dealing with negative data, is the method developed by Sharp 

[5] named MSBM. Sharp made this model applicable to negative data by modifying SBM model. 

Emrooznejad [3] obtained an acceptable efficiency measure by this method with precise data.  

In recent years imprecise data is important, because in many real problems decision maker encounters 

risk and uncertainty conditions where it is not possible to determine precise and reliable values for each 

input or output. To overcome this shortcoming, Wang [7] proposed the pattern of Interval Data Envelop 

Analysis (IDEA) i.e. a case of imprecise data. Applying some theoretical changes to data envelop 

analysis models, such data can be used and the results from efficiency evaluation can be obtained.  

method, then the model is presented with imprecise data. Furthermore, the efficiency of ten DMUs is 

evaluated by applying the presented model. 

 

2.  A review on the method of Modified Slack Based Measure (M.S.B.M) 

     Sharp et al. made a balance in order to calculate the efficiency measure in presence of negative 

variables by using the Portela method and substituting enhancement vectors (R
io

,R
ro

) with observation 

values in the target function of SBM model  so that it would be applicable for negative data. This model 

is known as MSBM as follow: 

 p�̃� =  min 
1 − ∑

w𝑖s𝑖
−

𝑅𝑖𝑜

m
i=1

1 + ∑
v𝑟s𝑟

+

𝑅𝑟𝑜

s
r=1

                                                                                      

S. t       ∑ λj

n

j=1

xij̃ + si
− = xiõ ,                         i = 1, … , m                                       

             ∑ λj

n

j=1

yrj̃ − sr
+ = yrõ ,                        r = 1, … , s                                                    (1)  

             ∑ λj

n

j=1

= 1  

             λj ≥ , s𝑖
− ≥ 0, sr

+ ≥ 0 ,                    j = 1, … , n  , r = 1, … , s  , i = 1, … , m 

where: 

s
i

−
: the value of ith input slack 

s
r

+
: the value of ith output slack 

w
i

 ،  v
r
: the weights predetermined by decision maker (DM).  
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In addition, vectors in the model are as below: 

 Rro = Max
j

{yrj} − yro         ,          Rio = xio − Min
j

{xij} 

When R
io

 and R
ro

 are equal to zero, it is assumed that 
WiSi

−

Rio
 and 

VrSr
+

Rro
  terms are eliminated from 

nominator and denominator. The efficiency measure of MSBM falls in the interval of  

[0 , 1]. Furthermore, the model is not only unit stable but also shift stable too, and is applicable with 

negative data.  

2.1. The efficiency of MSBM model with imprecise data (interval) 

   The classic models of data envelop analysis are used for measuring the efficiency of units 

with precise data. However, since in real world decision-making is accompanied with 

uncertainty conditions and imprecise information, precise values cannot be determined for data. 

This questions the precision and accuracy of measurements. The method of interval data 

envelope analysis takes advantage of new applicable techniques for measuring efficiency in 

case of uncertainty. In IDEA model, the value of each input and output falls in an interval and 

can be variable in that interval too. If each of the n units uses m different units for producing s 

outputs, then DMUj , j = 1, … , n makes use of  Xj = [x1j, x2j, … , xmj]
t i = 1, … , m inputs to 

output Yj = [y1s, y2s, … , ysj]
t ،r = 1, … , s. These inputs and outputs are not precisely available 

only their lower and upper bounds are available as follow: 

 

𝑦𝑟𝑗 ∈ [𝑦𝑟𝑗
𝑙 , 𝑦𝑟𝑗

𝑢 ]    ,    𝑥𝑖𝑗 ∈ [𝑥𝑖𝑗
𝑙 , 𝑥𝑖𝑗

𝑢 ]    

 

xij
l  and  yrj

l  are lower bounds, and xij
u  and  yrj

u  are upper bounds for inputs and outputs. 

 

Table1.Input and output structure for interval data envelopment analysis model 

In the following, two models are proposed so that the optimum values of their target functions 

give the lower and upper bounds of the optimum value of the target function of model (1). This 

will be proven in theorem 1.   

DMU 𝑋1 … 𝑋𝑚 𝑌1 … 𝑌𝑚 

𝐷𝑀𝑈1 [𝑥11
𝑙 , 𝑥11

𝑢 ] … [𝑥1𝑚
𝑙 , 𝑥1𝑚

𝑢 ] [𝑦11
𝑙 , 𝑦11

𝑢 ] … [𝑦1𝑚
𝑙 , 𝑦1𝑚

𝑢 ] 

𝐷𝑀𝑈2 [𝑥21
𝑙 , 𝑥21

𝑢 ] … [𝑥2𝑚
𝑙 , 𝑥2𝑚

𝑢 ] [𝑦21
𝑙 , 𝑦21

𝑢 ] … [𝑦2𝑚
𝑙 , 𝑦2𝑚

𝑢 ] 

. .  . .  . 

. .  . .  . 

. .  . .  . 

𝐷𝑀𝑈𝑛 [𝑥𝑛1
𝑙 , 𝑥𝑛1

𝑢 ] … [𝑥𝑛𝑚
𝑙 , 𝑥𝑛𝑚

𝑢 ] [𝑦𝑛1
𝑙 , 𝑦𝑛1

𝑢 ] … [𝑦𝑛𝑚
𝑙 , 𝑦𝑛𝑚

𝑢 ] 



  
                                                                              F. seyed Esmaeili,et al /IJDEA Vol.2, No.1, (2014). 343-350433 

 

Model (2) shows a lower bound of unit efficiency J
o
 interval: 

p𝑜
𝐿 = min 

1 − ∑
wisi

−

R𝑖𝑜

m
i=1

1 +  ∑
vrsr

+

R𝑟𝑜

s
r=1

     

S. t       ∑ λj

n

j=1

xij
L + si

− = xio
u  ,                       i = 1, … , m                                       

             ∑ λj

n

j=1

Yrj
u − sr

+ = yro
L  ,                     r = 1, … , s                                            (2) 

             ∑ λj

n

j=1

= 1  

            λj ≥ 0 , s𝑖
− ≥ 0 , sr

+ ≥ 0 ,                                   j = 1, … , n  , r = 1, … , s  , i = 1, … , m 

 

Rro = yr
Maxu − yi

Minl         and          Rio = xr
Maxu − xi

Minl 

 

Model (3) shows an upper bound of unit efficiency J
o
 interval: 

p𝑜
𝑢 = min 

1 − ∑
wisi

−

R𝑖𝑜

m
i=1

1 +  ∑
vrsr

+

R𝑟𝑜

s
r=1

     

S. t       ∑ λj

n

j=1

xij
u + si

− = xio
l  ,                       i = 1, … , m                                       

             ∑ λj

n

j=1

Yrj
l − sr

+ = yro
u  ,                     r = 1, … , s                                          (3) 

             ∑ λj

n

j=1

= 1  

            λj ≥ 0 , s𝑖
− ≥ 0 , sr

+ ≥ 0 ,                                   j = 1, … , n  , r = 1, … , s  , i = 1, … , m 

 

Rro = y𝑟
𝑀𝑎𝑥𝑢 − y𝑖

𝑀𝑖𝑛𝑙          and          Rio = x𝑟
𝑀𝑎𝑥𝑢 − 𝑥𝑖

𝑀𝑖𝑛𝑙  
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In model 3, DMU is in the best case for evaluation and pps boundary is in the worst case. On 

the other hand, in model 2, DMU is in the worst case for evaluation and pps boundary is in 

the best case. Now, it is illustrated in the following theorem that Põ ∈ [Po
l , Po

u]. 

Theorem 1: if Po
U, Po

L, and Põ are the optimums of target functions of models (1), (2), (3) 

respectively, then: Po
L ≤ Põ ≤ Po

U 

Proof: assume that λ̃ and s̃ is the optimum of model (1).  ∑ 𝜆�̃�
𝑛
𝑗=1 x𝑖𝑗

𝑙 ≤  ∑ 𝜆�̃�
𝑛
𝑗=1 x𝑖𝑗

𝑙 + λ�̃�x𝑖𝑜
𝑢  

Since,  ∑ 𝜆�̃�
𝑛
𝑗=1 x𝑖𝑗

𝑙 + λ�̃�x𝑖𝑜
𝑢 = 𝑥𝑖𝑜

𝑢 − 𝑠𝑖
−̃, therefore we have:  ∑ 𝜆�̃�

𝑛
𝑗=1 xij

l + 𝑠𝑖
−̃ ≤ x𝑖𝑜

𝑢  

Now, ∃ si
−̂ ≥ si

−̃ thus we have:   ∑ 𝜆�̃�
𝑛
𝑗=1 xij

l + si
−̂ = x𝑖𝑜

𝑢  

Now, for output variables we have:  ∑ 𝜆�̃�
𝑛
𝑗=1 y𝑟𝑗

𝑢 ≥  ∑ 𝜆�̃�
𝑛
𝑗=1 y𝑟𝑗

𝑢 + λ�̃�y𝑟𝑜
𝑙   

Since, ∑ 𝜆�̃�
𝑛
𝑗=1 y𝑟𝑗

𝑢 + λ�̃�y𝑟𝑜
𝑙 = y𝑟𝑜

𝑙 + 𝑠𝑟
+̃, therefore we have:   ∑ 𝜆�̃�

𝑛
𝑗=1 y

𝑟𝑗
𝑢 − 𝑠𝑟

+̃ ≥ y
𝑟𝑜
𝑙  

Now, ∃ sr
+̂ ≥ sr

+̃, thus we have:   ∑ 𝜆�̃�
𝑛
𝑗=1 y

𝑟𝑗
𝑢 − sr

+̂ = y
𝑟𝑜
𝑙  

The value of its target function is as below: 

Since     

      s𝑖
−̂ ≥ s𝑖

−̃   so  ∑
w𝑖s𝑖

−̂

𝑅𝑖𝑜

m
i=1 ≥ ∑

w𝑖s𝑖
−̃

𝑅𝑖𝑜

m
i=1    then   1 − ∑

w𝑖s𝑖
−̂

𝑅𝑖𝑜

m
i=1 ≤ 1 − ∑

w𝑖s𝑖
−̃

𝑅𝑖𝑜

m
i=1                     (4) 

Since 

s𝑟
+̂ ≥ s𝑟

+̃   so   1 + ∑
vrsr

+̂

R𝑟𝑜

s

r=1

≥ 1 + ∑
vrsr

+̃

R𝑟𝑜

s

r=1

   then   
1

1 + ∑
vrsr

+̂

R𝑟𝑜

s
r=1

≤
1

1 + ∑
vrsr

+̃

R𝑟𝑜

s
r=1

                 (5) 

  we have (5)و(4)
1 − ∑

w𝑖s𝑖
−̂

𝑅𝑖𝑜

m
i=1

1 + ∑
vrsr

+̂

R𝑟𝑜

s
r=1

≤
1 − ∑

w𝑖s𝑖
−̃

𝑅𝑖𝑜

m
i=1

1 + ∑
vrsr

+̃

R𝑟𝑜

s
r=1

= 𝑝 

Regarding that s̃ and λ̃  is a feasible solution of minimization problem (1), therefore the 

optimum of target function of model (2) equals to p𝑙, and is smaller or equal to the value of 

target function for the feasible solution of s̃ and λ̃.  
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In other words, p𝑙 ≤ p̃. 

Similarly, it is proven that p𝑢 ≥ p̃. 

Now, with respect to the proven theorem, an efficiency interval can be obtained for each of the 

decision making units by solving the two nonlinear programming models (2) and (3). 

In order to determine and measure the efficiency of each decision-making unit, the following  

sets are introduced: 

E++ = { j ∈ J | Pj
L = 1 } 

E+ = { j ∈ J │ Pj
L < 1 , Pj

U = 1} 

E− = { j ∈ J │ Pj
U < 1 } 

In the above sets, if Pj
L = 1, then the jth decision-making unit is efficient for all values of 

input/output intervals. However, if Pj
L < 1  and  Pj

U = 1, the jth decision-making unit is only 

efficient for the upper bounds of input/output intervals. If Pj
U < 1, the jth decision-making unit 

is not efficient for any values in the input/output intervals. 

3. A numerical example 

Assume that there are ten DMUs with one input and two outputs intervals according to the 

table below.  

Table 2: Ten DMU with one input and two outputs 

 

 

 

 

 

 

 

 

 

 

𝒚𝟐𝒋
𝒖  𝒚𝟐𝒋

𝒍  𝒚𝟏𝒋
𝒖  𝒚𝟏𝒋

𝒍  𝒙𝟏𝒋
𝒖  𝒙𝟏𝒋

𝒍  𝑼𝑴𝑫
𝑱
 

22.11 27.01 15.25 14.50 21.17 22.1 1 

6.12 5.80 18.23 17.99 35.25 34.75 1 

21.27 12.40 20.25 19.75 25.50 24.50 1 

19.95 20.10 12.12 11.97 22.25 21.75 4 

25.02 24.50 -9.80 -10.21 40.25 39.25 1 

27.10 26.80 -7 -9 50.50 49.50 6 

6.25 5.50 -17.75 -18.25 35.50 34.50 0 
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In table 2, inputs and outputs are given in form of intervals for each DMU. For more 

investigation, the MSBM model with interval data in table 2 is ran by GAMS software. The 

upper and the lower bounds of efficiency are investigated, and the efficiency of each unit is 

presented in table 3.  

Furthermore, the model 2 and 3 are solved by software assigning the weight of 0.50 for each  v
r
 

and the weight of 1 for each w
i
. 

Table 3: Efficiency results for interval data 

 

 

 

 

 

 

 

 

 

 

 

 

In the table above, for DMUs that are located in the best conditions outside PPS and become 

super-efficient, the efficiency value is shown with 1+. Thus, as it is observed in the above table, 

according to the obtained results, DMU1 , DMU3 , DMU4, DMU5 , DMU6 , DMU10 are efficient 

in their owns best condition and  DMU2, DMU7 , DMU8, DMU9 given that the upper bound of 

their efficiency is smaller than 1, are inefficient and also all DMUs are inefficient in their own 

22.06 21.99 -9.50 -10.50 40.21 39.99 8 

19.05 18.75 -6 -8 25.25 24.75 9 

8.19 7.75 26.50 25.50 26.50 15.50 27 

p
𝑗

𝑢
 p

𝑗

𝑙
 𝐷𝑀𝑈

𝑗
 

1
+
 7.911 2 

7.418 7.101 1 

1
+

 7.007 1 

1
+

 7.991 4 

1
+

 7.809 1 

1
+

 7.926 6 

7.198 7.111 0 

7.646 7.621 8 

7.014 7.022 9 

1
+

 7.917 27 
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worst conditions; among which DMU4 and DMU7 have respectively maximum and minimum 

efficiency in their own the worst conditions and thus we have following category for DMUs: 

E+ = {DMU1 , DMU3 , DMU4, DMU5 , DMU6 , DMU10}، 

E− = {DMU2 , DMU7 , DMU8, DMU9}   and   E++ = ∅ 

4. Conclusion 

   The MSBM model, introduced by Sharp [5] i.e. among the most powerful proposed models 

for evaluating units with negative data, was extended in form of interval. Therewith, two 

models with lower and upper bounds target function were obtained. It was also proven that the 

optimum of lower bound was less than or equal to the optimum of upper bound. Furthermore, 

ten DMUs were evaluated in term of efficiency with respect to the obtained models in the 

studied example, 7 out of 10 units were only in the upper bound and 3 units were always 

inefficient and no DMU become efficient in its own worst conditions. 
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