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Abstract 
One of the interesting subjects that amuse the mind of researchers is surmising the correct 

classification of a new sample by using available data. Data Envelopment Analysis (DEA) 

and Discriminant Analysis (DA) can classify data by each one alone. DEA classifies as 
efficient and inefficient groups and DA classify by historical data. Merge these two methods 

is a powerful tool for classifying the data. Since, in the real world, in many cases we do not 

have the exact data, so we use imprecise data (e.g. fuzzy and interval data) in these cases. So, 

in this paper, we represent our new DEA-DA method by using Mixed-Integer Nonlinear 
Programming (MINLP) to classify with imprecise data to more than two groups. Then we 

represent an empirical example of our purpose method on the Iranian pharmaceutical stock 

companies' data. In our research, we divided pharmaceutical stock companies into four groups 
with imprecise data (fuzzy and interval data). Since, most of the classical DA models used for 

two groups, the advantage of the proposed model is beheld. The result shows that the model 

can predict and classify more than two groups (as many as we want) with imprecise data so 

correct. 
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1. Introduction 

To predict the group membership of a 
new observation frequently is used 

Discriminant Analysis (DA). In DA, the 

observations classify to the specified 

group by some defined factors. By using 
the memberships of these observations, we 

can predict the membership of new 

observations. 
Data Envelopment Analysis (DEA) is a 

powerful tool in optimization, 

management, and decision science for 
classifying the units to two groups such as 

efficient and inefficient. DEA has lots of 

applied models such as BCC (Banker et al. 

[1]), CCR (Charnes et al. [2]), Additive, 
and so on. In (1999) the additive model of 

DEA compared with represented GP 

approach for DA. The comparison showed 
their likeness and discrepancy. Sueyoshi 

believed that incorporate DA and DEA in 

the framework of GP is so useful and helps 

us to specify the group membership of new 
observation, more precise. So, he 

presented his DEA-DA method by using 

GP in 1999 then he completed his model 
in 2001 (Sueyoshi [3, 4]). 

In real cases, often we have not accessed 

exact data, so we use imprecise data in 
these situations. Moreover, some data 

should be presented as an interval or fuzzy 

because of their nature. On discriminant 

analysis, there are numerable papers for 
interval data (Jahanshahloo et al. [5], 

Duarte Silva et al. [6, 7], Angulo et al. [8]) 

and fuzzy data (Hosseinzadeh Lotfi et al. 
[9, 10], Khalili-Damghani et al. [11], 

Omrani et al. [12], Ji et al. [13]).  

There are lots of fuzzy methods have been 
presented to solve the fuzzy DEA model 

[14], the fuzzy DEA methods can be 

categorized into these groups: the 

tolerance approach [15], the 𝛼-cuts 
approach [16, 17], the fuzzy ranking 

approach [18, 19], the possibility approach 

[20, 21], other developments [22, 23, 24] 
and cross-efficiency fuzzy DEA [25]. 

Sueyoshi [26] represented another 
procedure to classify observations more 

correctly. He extended the GP approach by 

Mixed Integer Programming (MIP) 

models. A binary variable is counting the 
number of misclassified observations. 

Sueyoshi in 2004 represented the two-

stage MIP version of DEA-DA and 
methodologically compared it with the 

extended GP model. Sueyoshi [27] in 2005 

reformulated his two-stage MIP model 
into one stage. Most of the presented 

methods are just useful for classifying 

observation into two groups, Sueyoshi 

[28] in 2006 completing his model and 
presented his one stage MIP version of 

DEA-DA for more than two groups. 

DEA is one of the best tools for portfolio 
selection and portfolio optimization. There 

are lots of researchers that want to find an 

easier and accurate method in this field 
(Navidi et al. [29, 30], and Banihashemi et 

al. [31, 32]). In portfolio cases, some data 

are imprecise (Peykani et al. [33]). 

The DEA-DA method is used in lots of 
management cases. Most of the presented 

DEA-DA methods classify the observation 

into two groups. But, in the real world, we 
have more than two groups. e.g. customer 

clubs usually separate their customers with 

the platinum card (loyal customers), gold 

card (good customers), silver card 
(average customers), and blue card (new 

customers). This classification helps the 

manager to present the best services 
appropriate to each customer. Another e.g. 

assume that the financier who wants to 

inaugurate a company use discriminant 
analysis to decide what is best. By using 

discriminant analysis can distribute 

available stock companies by their 

historical data to defined groups such as 
great, good, average, and weak stock 

companies. So, in this paper, we distribute 

available pharmaceutical stock companies 
by their attainable data to defined groups 

(that are more than two groups) with 
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imprecise data; then by using this 
information we predict the group 

membership of new pharmaceutical stock 

companies. 

The remainder of this paper is organized 
as follows: In section 2, we reviewed some 

previous works in the DEA-DA method. 

Our proposed method is described in 
section 3. The empirical example of our 

purpose method on the Iranian 

pharmaceutical stock companies is 

represented in section 4. The conclusion is 
represented in section 5. 

 

2. Background 

In this section, we define previously 

presented models. 

Sueyoshi [27] in 2005 represented his 

MIP model of the DEA-DA method for 
two groups.  

Assume that there are 𝑛 observations 

(1,..., )j n  that belong to two groups 

(𝐺1 𝑎𝑛𝑑 𝐺2), Each observation defines by 

𝑘 independent factors (1,..., )i k  

indicated by 𝑍𝑖𝑗. 

The MIP model of DEA-DA is 

formulated as follows:  

 
1 2

1

1

2

1

1

1

1

. . ( ) 0,

( ) ,

( ) 1

, 1,...,

, 1,...,

1, 1,...,

( )

: , 0 /

j j

j G j G

k

i i ij j

i

k

i i ij j

i

k

i i

i

i i i

i i i

i i

k

i i

i

i

min y y

s t Z c My j G

Z c My j G

i k

i k

i k

k

c unrestricted

 

  

 

  

  

 

 



 

 



 



 



  

  

 

 







    

     

 

  

  

  

 



 









1 , 0 /1 ,

0 /1 , 0.

i

jy all other variable

  

   

All the observed factors 𝑍𝑖𝑗 are 

connected by 
1

k

i ij

i

Z


  where 𝜆𝑖 is a 

weight for the 𝑖𝑡ℎ factor. These weights 

are limited in the way that the sum of total 

values of ( )i i i      for all 

1,...,i k  is unity. The binary variable 𝑦𝑗 

in the objective function minimizes the 

total number of incorrect classifications of 

the observations. The discriminant score 

declares by 1( )c j G  and 2( )c j G 

, respectively. 𝑀 is a given large number 

and 𝜀 is a given small number. Various 

choosing of 𝑀 and 𝜀 cusses producing 

different weight estimates (𝜆𝑖
∗, 𝑐∗ (the 

optimal solutions of (1))). That is the 

defect of the MIP versions of DEA-DA. 

These numbers attain by a try and error 

approach (e.g. Sueyoshi [28] used 𝑀 =

1000 , 𝜀 = 0.0001 and 𝑀 = 1000000 

, 𝜀 = 0.001). 

The constraints number 4, 5, and 6 in the 

model (1) are nonlinear conditions (NLC). 

i i i       specify the upper and 

lower bounds of 𝜆𝑖
+ and 

i i i       

specify the upper and lower bounds of 𝜆𝑖
−. 

If 0i     and 0i     at the 

same time, then 2i i     and the 

result becomes infeasible. So, these 3 

conditions together, make the results 

feasible. 

The constraint number 7 in the model (1) 

is the nonzero condition (NZC). If we use 

model (1) without 
1

( )
k

i i

i

k  



  also 

we have 0i
  and 0i

  at the same 

time, the results will have many zeros in 
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the weight estimation therefore the 

classification will not be correct. 

The new sample that is 𝑟𝑡ℎ observation, 

whose value is defined by 𝑍𝑖𝑟, can be 

classified by the following principle: 

I. 1

1

k

i ir

i

If Z c then r G 



   

II. 2

1

k

i ir

i

If Z c then r G  



    

Sueyoshi [28] in 2006 expanded his MIP 

model of the DEA-DA method for more 

than two groups. 

The MIP model of DEA-DA for more than 
two groups is formulated as follows:  

 
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1
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1

2
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(

g

h

j

g j G

k

i i ij g j

i

g

k
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i

g

k
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i
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Z c My
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j G g h
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

 
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


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
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
   


    


   

 

  

  

  









1

)

( 1,..., 1) : , 0 /1 ,

0 /1 , 0 /1 , 0

k

i i

i

g i

i j

k

c g h unrestricted

y all other variable







 







 

  

  


 

The different ℎ groups separate with 

discriminant scores ( 1,..., 1)gc g h  . 

The new sample that is 𝑟𝑡ℎ observation, 

whose value is defined by 𝑍𝑖𝑟, can be 

classified by the following principle: 

I. 
1 1

1

c
k

i ir

i

If Z then r G 




 

II. 1

1

( 2,..., 1)

k

g i ir g

i

g

If c Z c

then r G g h

   





  

  

  

III. 1

1

k

i ir h h

i

If Z c then r G  





    

( ( 1,..., 1)gc g h   and

( , 1,..., )i i i i k  
       are the 

optimal solutions of (2)) 

 

3. Proposed method 

As in the real world, we do not have certain 
data and the data might be an imprecise. 

Also, some data express as an interval or 

fuzzy because of their features. Based on 

the Sueyoshi [28] method, we propose our 
method that classifies observations into 

more than two groups for imprecise data. 

Assume that 𝑋 is a set. The fuzzy subset 𝐴 

of 𝑋 is specified by a membership function 

( )
A

x  which associates with each x X a 

number in [0,1] indicating to what degree 

𝑥 is a member of 𝐴: 

  .|, ( )
A

A x x x X    

The 𝛼-cuts of a fuzzy set 𝐴 is defined as

 (| )
A

A x X x     .  

Assume that there are 𝑛 observations

(1,..., )j n  that are belong to ℎ groups

( 1,..., )g h , Each observation defines 

by 𝑘 independent factors (1,..., )i k  

indicated by ijZ . ijZ is presented as fuzzy 

sets with membership function 
ijZ

 . The 

𝛼-cut set of ijZ  is the interval [ , ]L U

ij ijz z  

where L

ijz  and U

ijz are the lower and upper 

bounds of any 𝛼-cut sets, respectively. So, 

for the specified [0,1]  we can suppose 

that ijZ  are interval data as 
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[ , ]L U

ij ij ijZ z z . Therefore, we can assume 

that all 
ijZ  are interval data (fuzzy data 

are interval data with 𝛼-cut), 

[ , ]L U

ij ij ijZ z z  with permanent lower and 

upper bounds of the interval (for more 

explanation of imprecise data in DEA, see 

Cooper et al. [34]). Then we will have: 

 
1

1

1

1

1

3

[ , ] 0,
. .

, 1,..., 1

[ , ] ,

, 1,..., 1

| | 1
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g

h

j

g j G

k
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i ij ij g j

i

g

k
L U

i ij ij g j

i

g

k

i

i

g
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z z c My
s t

j G g h

z z c My
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



 




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


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 
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


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All the observed factors [ , ]L U

ij ij ijZ z z  

are connected by 
1

[ , ]
k

L U

i ij ij

i

z z


  where 𝜆𝑖 

is a weight for the 𝑖𝑡ℎ factor. These 
weights are limited in the way that the sum 

of total values of | |i  for all 1,...,i k  

is unity. The different ℎ groups separate 
with discriminant scores 

( 1,..., 1)gc g h  . The binary variable 𝑦𝑗 

in the objective function minimizes the 
total number of incorrect classifications of 

the observations. 

𝑀 is a given large number and 𝜀 is a given 

small number. Various choosing of 𝑀 and 

𝜀 cusses producing different weight 

estimates ( , )i gc  . That is the defect of 

the MIP versions of DEA-DA. These 
numbers attain by a try and error approach 

(See, Sueyoshi [28]).  

For solving model (3), we can solve 
models (4) and (5) that are it’s upper and 

lower bound: 
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The objective function [ , ]L U    

minimizes the total number of incorrect 

classifications of the observations.   
The new sample that is 𝑚𝑡ℎ observation, 

whose value is defined by [ , ]L U

im im imZ z z

, can be classified by the following 

principle:  
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I. 1 1

1

k
L L L

i im

i

If z c then m G
 



   

II. 1 1

1 1

( 2,..., 1)

&
k k

L L L L U U U U

g i im g g i im g

i i

g

If c z c c z c

then m G g h

 
     

 

 

   

  

   

III. 1 1

1 1

( 2,

&

..., 1)

k k
L L L L U U U U

g i im g g i im g

i i

g

If c z c c z c

then m G g h

 
     

 

 

   

  

   

IV. 1

1

k
U U U

i im h h

i

If z c then m G
 





    

(
L

i


and 
L

gc


 are the optimal solutions of 

model (4), 
U

i


and 
U

gc


 are the optimal 

solutions of model (5)) 
Theorem 1. The optimal value of the 

objective function of the model (3) is 

finite. 

Proof. Let 

1e    

0 , ( 1,..., 1)gc g h    

0 , ( 1,..., )jy j n  ` 

Then, with this select model (3) has a 
feasible solution. On the other hand, we 

always have: 

1

0
g

h

j

g j G

min y
 

    

Therefore, model (3) has a bounded 
optimal solution, and the proof is 

completed. 

Theorem 2. Let 
* **, ,L U   be the 

optimal solution for model (3), (4), (5) 

respectively. Then 
* **L U    . 

Proof. Let 
* ,

gc  be the optimal solution 

of model (3). Because of U

ij ijz z  and 

1

k

i ij g j

i

Z c My 


     
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1

*

1

1

1

*

g

U

j

k

i ij j

i

k

k

U
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i
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k
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j
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U
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U
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


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       






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So 

1

k

i ij j

i

U

gZ c My 


     

Therefore 
* U  , we can prove 

*L   likewise. 

 
4. Empirical example 

4.1. Data collection 
The dataset was collected from the 23 
Iranian pharmaceutical stock companies, 

from 2015 till 2019. The dataset was 

obtained from http://www.fipiran.com. All 
of the stock companies are shown by their 

company’s symbol. Table 2 represents 

ijZ  from Iranian pharmaceutical stock 

companies. In this research, we used 10 

financial indexes (𝑖1, . . . , 𝑖10) that express in 
Table 1, to distribute the 23 Iranian 

pharmaceutical stock companies to 4 

groups. More details are in section 4.2.  
Table 1. The financial indexes 

𝑖1 Total Current Assets 𝑖6 Total Assets 

𝑖2 Total Current 

Liabilities 
𝑖7 Total Liabilities 

𝑖3 Total Stockholder 

Equity 
𝑖8 Capital 

𝑖4 Profit Margin 𝑖9 Retained Earnings 

𝑖5 Gross Profit Ratio 𝑖10 Cash 
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Table 2. Financial data of Iranian pharmaceutical stock companies 
Obs 

 
𝑧1𝑗 𝑧2𝑗 𝑧3𝑗 𝑧4𝑗 

(𝑙, 𝑚, 𝑢) (𝑙, 𝑚, 𝑢) (𝑙, 𝑚, 𝑢) (𝑙, 𝑚, 𝑢) 

DSOB1 (0.103,0.108,0.113) (0.007,0.012,0.017) (0.383,0.431,0.478) (0.377,0.435,0.493) 

FTIR1 (0.059,0.06,0.06) (0.022,0.026,0.03) (0.107,0.117,0.127) (0.125,0.126,0.126) 

PDRO1 (0.179,0.201,0.223) (0.164,0.165,0.166) (0.116,0.138,0.159) (0.216,0.326,0.436) 

JAMD1 (0.018,0.019,0.019) (0.008,0.009,0.009) (0.023,0.024,0.024) (0.02,0.025,0.03) 

DRZK1 (0.282,0.295,0.307) (0.245,0.26,0.275) (0.165,0.166,0.167) (0.238,0.253,0.268) 

IRDR1 (0.071,0.078,0.084) (0.058,0.063,0.068) (0.046,0.053,0.06) (0.03,0.031,0.031) 

AMIN1 (0.117,0.134,0.151) (0.091,0.102,0.113) (0.146,0.155,0.163) (0.099,0.115,0.13) 

ROZD1  (0.046,0.06,0.073) (0.066,0.067,0.067) (0.069,0.073,0.077) (0.005,0.012,0.019) 

DSIN1 (0.14,0.142,0.144) (0.079,0.129,0.178) (0.15,0.153,0.155) (0.193,0.227,0.26) 

ABDI1 (0.247,0.302,0.356) (0.216,0.249,0.282) (0.183,0.241,0.298) (0.182,0.231,0.279) 

DSNZ1 (0.138,0.14,0.142) (0.14,0.15,0.159) (0.085,0.091,0.096) (0.025,0.026,0.027) 

DALZ1  (0.242,0.329,0.416) (0.129,0.225,0.32) (0.257,0.314,0.37) (0.345,0.372,0.398) 

DJBR1 (0.288,0.306,0.324) (0.193,0.214,0.235) (0.265,0.27,0.275) (0.218,0.296,0.373) 

KIMI1 (0.135,0.137,0.139) (0.109,0.114,0.118) (0.106,0.124,0.141) (0.147,0.152,0.156) 

KSPZ1 (0.158,0.165,0.171) (0.151,0.156,0.161) (0.086,0.09,0.093) (0.14,0.14,0.14) 

DTDZ1 (0.099,0.104,0.108) (0.087,0.092,0.096) (0.056,0.065,0.074) (0.05,0.056,0.062) 

DDPK1 (0.083,0.089,0.095) (0.08,0.084,0.088) (0.035,0.04,0.045) (0.033,0.036,0.038) 

DLGM1 (0.078,0.088,0.098) (0.08,0.093,0.105) (0.064,0.08,0.095) (0.026,0.028,0.03) 

EXIR1 (0.294,0.311,0.328) (0.288,0.298,0.308) (0.086,0.09,0.094) (0.083,0.087,0.091) 

BRKT1 (0.097,0.115,0.132) (0.237,0.262,0.286) (0.457,0.582,0.706) (0.239,0.252,0.265) 

DPAK1 (0.333,0.363,0.393) (0.397,0.436,0.475) (0.147,0.164,0.181) (0.162,0.212,0.262) 

DFRB1 (0.266,0.295,0.323) (0.312,0.313,0.314) (0.173,0.187,0.2) (0.186,0.205,0.223) 

DZAH1 (0.317,0.318,0.318) (0.453,0.463,0.473) (0.099,0.103,0.107) (0.014,0.07,0.125) 

 

Table 2. Continued 
Obs 

 
𝑧5𝑗 𝑧6𝑗 𝑧7𝑗 

(𝑙, 𝑚, 𝑢) (𝑙, 𝑚, 𝑢) (𝑙, 𝑚, 𝑢) 

DSOB1 (0.001,0.059,0.117) (0.16,0.189,0.217) (0.007,0.012,0.016) 

FTIR1 (0.115,0.116,0.117) (0.058,0.064,0.069) (0.021,0.026,0.03) 

PDRO1 (0.581,0.586,0.59) (0.145,0.158,0.171) (0.15,0.159,0.167) 

JAMD1 (0.016,0.018,0.019) (0.014,0.015,0.015) (0.007,0.008,0.008) 

DRZK1 (0.218,0.226,0.233) (0.211,0.217,0.222) (0.222,0.231,0.24) 

IRDR1 (0.05,0.053,0.055) (0.052,0.059,0.065) (0.052,0.059,0.065) 

AMIN1 (0.101,0.112,0.122) (0.113,0.129,0.145) (0.083,0.097,0.111) 

ROZD1  (0.028,0.03,0.032) (0.077,0.08,0.083) (0.075,0.077,0.079) 

DSIN1 (0.185,0.198,0.211) (0.121,0.148,0.174) (0.091,0.128,0.164) 

ABDI1 (0.366,0.409,0.451) (0.202,0.255,0.307) (0.196,0.231,0.266) 

DSNZ1 (0.075,0.083,0.09) (0.122,0.126,0.13) (0.133,0.135,0.137) 

DALZ1  (0.272,0.312,0.352) (0.176,0.264,0.352) (0.112,0.199,0.286) 

DJBR1 (0.158,0.195,0.232) (0.238,0.239,0.239) (0.176,0.191,0.205) 

KIMI1 (0.078,0.087,0.096) (0.11,0.11,0.11) (0.103,0.104,0.104) 

KSPZ1 (0.127,0.141,0.155) (0.123,0.123,0.123) (0.131,0.138,0.145) 
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DTDZ1 (0.066,0.078,0.089) (0.085,0.089,0.092) (0.083,0.096,0.108) 

DDPK1 (0.045,0.046,0.047) (0.061,0.067,0.073) (0.071,0.076,0.081) 

DLGM1 (0.033,0.038,0.042) (0.088,0.1,0.112) (0.094,0.105,0.116) 

EXIR1 (0.212,0.213,0.214) (0.216,0.223,0.23) (0.25,0.257,0.264) 

BRKT1 (0.001,0.001,0.001) (0.49,0.559,0.627) (0.444,0.487,0.53) 

DPAK1 (0.275,0.305,0.334) (0.294,0.311,0.328) (0.373,0.396,0.418) 

DFRB1 (0.191,0.195,0.199) (0.219,0.237,0.255) (0.274,0.275,0.276) 

DZAH1 (0.16,0.172,0.184) (0.273,0.286,0.299) (0.404,0.421,0.437) 

 
Table 2. Continued 

Obs 

 
𝑧8𝑗 𝑧9𝑗  𝑧10𝑗 

(𝑙, 𝑚, 𝑢) (𝑙, 𝑚, 𝑢) (𝑙, 𝑚, 𝑢) 

DSOB1 (0.265,0.28,0.294) (0.428,0.436,0.444) (0.032,0.04,0.048) 

FTIR1 (0.071,0.084,0.097) (0.114,0.116,0.118) (0.078,0.087,0.096) 

PDRO1 (0.038,0.047,0.056) (0.21,0.216,0.221) (0.144,0.226,0.307) 

JAMD1 (0.012,0.017,0.022) (0.023,0.024,0.025) (0.073,0.079,0.084) 

DRZK1 (0.105,0.107,0.109) (0.213,0.227,0.24) (0.443,0.475,0.506) 

IRDR1 (0.043,0.069,0.094) (0.022,0.024,0.026) (0.031,0.075,0.119) 

AMIN1 (0.147,0.151,0.154) (0.075,0.117,0.158) (0.172,0.241,0.309) 

ROZD1  (0.124,0.147,0.169) (0.002,0.021,0.04) (0.063,0.097,0.13) 

DSIN1 (0.054,0.063,0.071) (0.224,0.235,0.246) (0.341,0.439,0.536) 

ABDI1 (0.089,0.193,0.296) (0.182,0.229,0.276) (0.142,0.213,0.283) 

DSNZ1 (0.101,0.127,0.152) (0.028,0.029,0.03) (0.076,0.157,0.237) 

DALZ1  (0.12,0.224,0.327) (0.368,0.377,0.385) (0.102,0.198,0.293) 

DJBR1 (0.101,0.118,0.134) (0.346,0.377,0.407) (0.064,0.073,0.081) 

KIMI1 (0.043,0.054,0.064) (0.133,0.154,0.174) (0.016,0.024,0.031) 

KSPZ1 (0.027,0.034,0.041) (0.134,0.14,0.145) (0.156,0.262,0.368) 

DTDZ1 (0.062,0.064,0.066) (0.032,0.042,0.052) (0.024,0.026,0.028) 

DDPK1 (0.023,0.035,0.046) (0.037,0.038,0.038) (0.025,0.036,0.047) 

DLGM1 (0.06,0.07,0.08) (0.05,0.054,0.057) (0.036,0.045,0.054) 

EXIR1 (0.101,0.105,0.109) (0.064,0.074,0.083) (0.102,0.105,0.107) 

BRKT1 (0.598,0.747,0.896) (0.232,0.239,0.245) (0.03,0.077,0.124) 

DPAK1 (0.111,0.122,0.133) (0.129,0.184,0.239) (0.139,0.203,0.267) 

DFRB1 (0.08,0.085,0.09) (0.26,0.265,0.269) (0.332,0.357,0.381) 

DZAH1 (0.058,0.249,0.44) (0.038,0.089,0.14) (0.081,0.082,0.083) 

By using 𝛼 − cut = 0.001, we assume 

that all 
ijZ  are interval data as 

[ , ]L U

ij ij ijZ z z .  

 

4.2. Apply the proposed method 

In this section, we apply our 

represented method that contains 

models (4), (5) to our imprecise data. 

Table 3 present the , ( 1,...,10)i i   

and , ( 1, 2,3)gc g  . 
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Table 3. Weight estimates and discriminant 

scores 

𝑐1
∗𝐿

 0.01 𝑐1
∗𝑈

 0.02 

𝑐2
∗𝐿

 0 𝑐2
∗𝑈

 0 

𝑐3
∗𝐿

 -0.02 𝑐3
∗𝑈

 -0.01 

𝜆1
∗ 𝐿

 -0.02 𝜆1
∗ 𝑈

 0.01 

𝜆2
∗ 𝐿

 -0.03 𝜆2
∗ 𝑈

 0.05 

𝜆3
∗ 𝐿

 0 𝜆3
∗ 𝑈

 0.06 

𝜆4
∗ 𝐿

 -0.09 𝜆4
∗ 𝑈

 0.03 

𝜆5
∗ 𝐿

 0.03 𝜆5
∗ 𝑈

 0.06 

𝜆6
∗ 𝐿

 -0.33 𝜆6
∗ 𝑈

 0.36 

𝜆7
∗ 𝐿

 -0.4 𝜆7
∗ 𝑈

 0.07 

𝜆8
∗ 𝐿

 -0.01 𝜆8
∗ 𝑈

 0.14 

𝜆9
∗ 𝐿

 -0.05 𝜆9
∗ 𝑈

 0.13 

𝜆10
∗ 𝐿

 -0.01 𝜆10
∗ 𝑈

 0.06 

 

In this research we used 10 financial 
indexes to distributed the 23 Iranian 

pharmaceutical stock companies to 4 

following groups:  

 𝐺1= {Great pharmaceutical stock 
companies} 

 𝐺2= {Good pharmaceutical stock 
companies} 

 𝐺3= {Average pharmaceutical stock 

companies} 

 𝐺4= {Weak pharmaceutical stock 

companies} 

Table 4 present the group membership and 

prediction of the group membership of 

Iranian pharmaceutical stock companies. 

As you see in Table 4, all of the 23 
pharmaceutical stock companies are 

classified as 100% correct. Models (4), (5) 

are the simple and convenient models that 
are used instead of solving model (3) that 

can correctly predict group membership. 

By using these models, we can predict the 
group membership of new pharmaceutical 

stock companies easily. 

 
 

 

 

 

 

 

Table 4. Classification 

 

5. Conclusion 

As we know, one of the important and 

useful subjects is surmising the correct 

classification of a new sample by using 
available data. Most of the methods 

represented in this field can classify 

observation into two groups with certain 
data, and there are a few of them that are 

used for more than two groups with 

imprecise data. In this paper, we 
represented our method by using the DEA-

DA method with MINLP that can be 

classified observation into more than two 

groups as many groups as we want for 
imprecise data (fuzzy and interval data). 

We applied our purpose method on the 

Iranian pharmaceutical stock companies 
with imprecise data. As shown in Table 4, 

our represented method predicted all of the 

pharmaceutical stock companies' group 
membership 100% correct. 

Future work can expand our 

framework to other alterations of the 

Obs Group Prediction 

DSOB1 𝐺1  𝐺1  

FTIR1 𝐺1  𝐺1  

PDRO1 𝐺1  𝐺1  

JAMD1 𝐺2  𝐺2  

DRZK1 𝐺2  𝐺2  

IRDR1 𝐺2  𝐺2  

AMIN1 𝐺2  𝐺2  

ROZD1  𝐺2  𝐺2  

DSIN1 𝐺2  𝐺2  

ABDI1 𝐺2  𝐺2  

DSNZ1 𝐺2  𝐺2  

DALZ1  𝐺2  𝐺2  

DJBR1 𝐺2  𝐺2  

KIMI1 𝐺3  𝐺3  

KSPZ1 𝐺3  𝐺3  

DTDZ1 𝐺3  𝐺3  

DDPK1 𝐺3  𝐺3  

DLGM1 𝐺3  𝐺3  

EXIR1 𝐺3  𝐺3  

BRKT1 𝐺3  𝐺3  

DPAK1 𝐺4 𝐺4 

DFRB1 𝐺4 𝐺4 

DZAH1 𝐺4 𝐺4 
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DEA methods. Furthermore, it can be 

expanded into integrated numerical 

optimization use of our framework. 
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