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Abstract 

Today, the network has an important role in a system. Determining the efficiency of the 

system as well as the efficiency of the sub-sections of a network helps to effectively manage 

the network.  If the optimal value of the sub-sections is not unique, an efficiency range can be 
obtained for them. In this paper, the performance of a network is analysis with the help of data 

envelopment analysis and performance intervals are determined for each of the sub- sections 

of the network. With help decomposition the performance of a network structure, the 
performance of its components was obtained. The relationship between component 

performance and interval value was calculated with the overall efficiency network. 

 

Keywords: Data Envelopment Analysis, Efficiency Decomposition, Efficiency Interval, 
Network. 

 

 

 

 

 

 

 

 

 

 

 

                                                
* Corresponding author: Email: 

 

 

 

 

 

 

 

 

 

 

 

 

International Journal of Data Envelopment Analysis                                                              Science and Research Branch (IAU)    

 



B. Rahmani Parchikolaei/ IJDEA Vol.8, No.4, (2020), 55-66 

 

56 

1. Introduction  
Today, the network plays a very important 

role in a system. Network management 

coordinates and controls relevant activities 

so that customers can receive fast and 
decent services and products or quality at 

the lowest cost. Network management 

should manage the flow between different 
stages and in each stage only in the 

network so that you get the most profit. 

Data Envelopment Analysis (DEA) is a 

method for measuring the relative 
efficiency of decision-making units 

(DMUs) consistent with multiple inputs 

and outputs. In classical DEA, the network 
was considered a black box, with an initial 

input and a final output to measure its 

performance, and the internal structure of 
the DMU is not taken into consideration. 

In network management, all possible 

efficiency plays an important role in 

achieving the dual goal of reducing costs 
and increasing profits. 

Note that an independent decision maker 

at each stage of the network maximizes its 
technical efficiency regardless of other 

components and the network as a whole. 

For this reason, network models are useful 
models for modeling the overall network. 

The non-parametric DEA method was first 

proposed by Charans for performance 

estimation, who introduced the CCR 
model for measuring multi-input and 

multi-output performance [1]. This model 

has under constant returns to scale (CRS) 
assumption. The BCC model was 

proposed by Banker and has variable 

returns to scale (VRS) assumption [2]. 

Over the years, the DEA method has 
become an efficient method for evaluating 

performance (see [3]). As discussed in 

many DEA studies, DMUs can have a two-
stage structure that uses first-stage inputs 

to generate outputs, which become 

second-stage inputs. In the second stage, 
these inputs are used to product output. 

Seiford presented a two-step process for 

measuring the performance of US 

commercial banks, including 55 

commercial banks, that aimed to measure 
the profitability and marketability of these 

banks [3]. In this paper, profitability was 

measured using manpower and assets as 

input and profit and income as output. In 
the second stage, the ability to supply the 

profit market and income as input and 

market value, returns and earnings per 
share were selected as output. However, 

they did not make any assumptions about 

the sequential relationship between the 

two stages. Kao used a two-step process 
for 24 non-life insurance companies in 

Taiwan. The usual method for two-step 

problems is to apply the standard DEA 
model separately for each step [4]. Kao 

applied the same method and considered 

each step in the two-step process as an 
operation independent of the other [4]. 

They modified the standard DEA model 

and considered sequential two-step 

relationships throughout the process. They 
used the following assumptions in their 

model: 

a) is a constant return to scale (CRS), 
b) The weights of the intermediate 

measures are the same for both stages. 

Assumption (b) means that the weights of 
the outputs in the first stage are equal to the 

weights of the inputs in the second stage. 

The reason for using this assumption is to 

convert the original nonlinear programing 
to a linear programing.  

Chen mentioned a model that can also be 

used for variable return to scale [5]. They 
mentioned the efficiency of the whole two-

step process as the weighted average of the 

two separate steps. Wang [6] extended the 

model of Chen [5] by introducing relative 
weights for two separate steps. 

There is a fact that the network usually has 

more than two components. Three-stage 
network or more. For example, the 

supplier-manufacturer-distributor 

network, which cannot be evaluated using 
a two-stage DEA. Tavana used the two-

stage DEA model to measure performance 

in a three levels network including 

supplier-manufacturer-distributor and 
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extended the algorithm to more than three 
stages [7]. Their model can be used under 

the assumption of constant returns to scale 

as well as variable scale. It can be used for 

comprehensive analysis of multilevel 
networks. They evaluated the performance 

of DMUs in the three-level network in 

three steps. In the first step, two-level 
sections were evaluated. They used the 

two-stage model of [6]. In the second step, 

they calculated the efficiency of the three-
level network, and in the third step, they 

decided on the comprehensive 

performance of the entire three-level 

network. Because two-stage DEA models 
or linear programming models usually 

have multiple optimal solutions, in this 

paper we obtain the efficiency interval for 
each of the subsections based on the 

performance of the whole system. The 

structure of the paper is as follows: Section 
2 describes the two-step DEA models, 

Section 3 presents the model, Section 4 

provides numerical example, and finally, 

Section 5 contains the conclusion. 
 

2. Description of two-stage DEA models 
Suppose there are n decision-making units 
(DMUs) that each consume m inputs to 

product s output. We assign weights to 

each of the inputs and outputs. The 

following symbols are used for 
formulation. 

jDMU : Represents the j unit of the 

decision-making unit, 1,...,j n  

ijx : Indicates the i-th input of the j-th 

decision-making unit in the first step, 

 i = 1,…, m, j = 1,…, n 

zdj: represents the dth output of the j-th 
decision-making unit in the first stage and 

the d-th input of the j-th decision-making 

unit in the second stage, 
 d = 1,…, D, j = 1,…, n 

yrj: represents the output of the rth of j the 

second decision-making unit in the second 

stage, r = 1,…, s, j = 1,…, n 
vi: Indicates the input weight of the i in the 

first stage, i = 1,…, m 

 
1

d  : Indicates the output of d in the first 

stage d = 1,…, D, 

 
2

d  : Indicates the input of d in the second 

stage d = 1,…, D, 

ur: represents the output of r in the second 
step r = 1,…, s, 

In a two-step process, there are 

intermediate values between the two steps. 
In the first stage, inputs are used to product 

outputs that are considered as intermediate 

values. In the second stage, these 
intermediate values are used to product the 

final outputs. The basic assumption is that 

the outputs of the first stage are only the 

inputs of the second stage. Figure 1 shows 
a two-stage DEA model.

 

Figure 1. Two-stage DEA model 

 

According to the serial relationship 
between the two phases, Kao expressed the 

total efficiency with constant returns to 

scale for DMUs as a product of the 

efficiency of the first and second phases, 
ie, as mentioned earlier, the assumption 

that they used for [4]. Their total 

performance model is as follows: 

First 

stage 

Second 

stage 
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If the total efficiency is calculated, the 

efficiency of one stage can be calculated 

and the efficiency of the other stage can be 
found using the above relation. For 

example 

*
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models calculate the efficiency of stages 

one and two, respectively: 
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(3)  

Chen assigned a weight to each step to 
obtain total efficiency and showed that the 

two methods are equivalent under the 

assumption of constant returns to scale [5]. 

The advantage of Chen model is that it can 
also be used to variable returns to scale 

(VRS) assume [5]. 

Wang [6] developed the model of Chen [5] 

by assigning weights 1 10, 0     with 

1 2 1    two stages one and two, 

respectively, and defining total efficiency 

as 
* 1* 2*

o 1 o 2 o        . Their model can be 

used for both constant and variable returns 
to scale. Their models for calculating total 

efficiency are the efficiency of the first and 

second stages, assuming CRS as follows: 

*
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To the variable returns to scale assume, 

the models are converted as follows: 
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Tavana [7] measured the three-levels chain 

operation using the two-step DEA idea. 

Based on Wang and Chen (2010) model, 
they presented the following model for 

total efficiency for CRS.  
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They used other Wang and Chen equations 

to obtain the efficiency of each step. For 
VRS assumption, they used the following 

model to calculate the performance of the 

whole system. 
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3. The model presented 

Consider a three-step network presented in 
Figure 2. 

 

 

 

 

 

 

 

 

 

Figure 2. A three-stage network 

 

 

First, we state and prove the following 
theorem. 

Theorem: If there are two fractions 
a

b
 

and 
c

d
 where a,b,c,d 0 , then 
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( )
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
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According to Figure 1: 
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12  is the efficiency of the first and second 

stages and 
23 shows the efficiency of the 

second and third stages together. 
12  and 

23  are convex 
1 2,  and

2 3,   , 

respectively. that's mean 

 
12 1 2(1 )       that 0 1   ,    

23 2 3(1 )       that 0 1    

If   
12   and 

23  are unique, then the 

desired answer is in hand and 
a 12 23(1 ) , 0 1 (1 1)         

If   
12   and 

23  are not unique, so they 

can all be changed in one interval. That is  
23 23l 23 u 12 12l 12 u[ , ], [ , ]         

we put 
* *

o

    which is obtained from 

the following formula: 
 

Supplier  Distributor  Manufacture      
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a  is unique, so 

12  when is minimum, where 
23 is maximum, and also 

23  when is 

minimum, where 
12  is maximum. In this 

case, we find the maximum 
12u with the 

following model. 
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Having the optimal answer of model (2),  
* * * * *( , ,u ,v , )    and with the help of the 

stated theorem, the value 
*  in relation (1-1) 

is obtained. So we have 
 

a 12 u 23 l(1 )      

So 
a * 12 u

23 l

*1

  
 


 

Using the following model, we find 
23 u . 
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By solving model (3), the optimal answer 
* * * * *( , ,u ,v , )   is obtained. Again, with 

the help of the stated theorem, the value 
*  in 

relation (1-1) is obtained. So we have 

 
a 12 l 23 u(1 )      

Therefore 
a * 23 u

12l

*1

  
 


 

23 23l 23 u 12 12l 12 u[ , ], [ , ]         

.Therefore intervals 
12l 12 u[ , ]   and 

23l 23 u[ , ]  are obtained. But because  
12 1 2(1 )         where  0 1    ,  
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23 2 3(1 )        where 0 1   .  We 

need to find the intervals 
1l 1 u[ , ]  ,

2 l 2 u[ , ]   and 
3 l 3 u[ , ]  . For this purpose, 

we consider the following two models: 
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we put  
1u * *

1 2max{ , }      . By placing 

the optimal answer 
* * * * *( , ,u ,v , )  

related to 
1u and with the help of the stated 

theorem, the value 
* in relation (1-1) is 

obtained. So we have  
12 * * 2(1 )       . Because 

12  is 

interval, that is  
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.  

Because the difference of an interval from a 

fixed number is an interval, and also the 
division of an interval by a fixed number is an 

interval. Then 
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We put 
2u * * *

1 2max{ , }       . By 

placing the optimal answer
* * * * *( , ,u ,v , )    related to 

2u and with 

the help of the stated theorem, the value 
*  in relation (1-1) is obtained. So we 

have 
12 * 2u * 1(1 )

 
        .  Similar to 

the above mode for 
1   we have 

1 [a ,b ]    .  Because there is no 

guarantee that a  is less than
*

1  and 
*

2  , 

so we put 
21 * *

1 2min{a , , }    . The same 

reason, we have  
1l * *

1 2min{a , , }    . 

The rest of the Intended intervals can be 
found in the same way. 

4. Practical example 

An example is taken from the paper [7]. 
Assume that the inputs and outputs of each 

network component in a cement company 

are as shown in Figure 2 below. 

Suppliers' inputs include capital (million 
dollars), cooperation experience (years) 

and shipping costs (one hundred thousand 

dollars). Suppliers' output, which is 
considered as producer input, includes on-

time delivery (٪) and technology level (٪). 

Finally, it is assumed that manufacturers 
deliver the amount of order and inventory 

to distributors for profit. The data are 

presented in the following tables. 

Table 1. Input values 

DMU capital Collaboration experience shipping costs on-time delivery technology level 

1 14 3 9 90 86 

2 12 2 14 63 75 

3 10 3 32 86 73 

4 1.6 2 15 75 83 

5 10 2 25 69 90 

6 7 3 52 78 84 

7 3 3 37 82 90 

 

Table2. output values 

DMU profit on-time delivery technology level inventory amount of order 

1 14 3 9 90 86 

2 12 2 14 63 75 

3 10 3 32 86 73 

4 1.6 2 15 75 83 

5 10 2 25 69 90 

6 7 3 52 78 84 

7 3 3 37 82 90 
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The example for 
1

1

2
   and 

2

1

2
   was solved using GAMS software, the results of which are 

shown in Table 3. 

 

Table 3. Efficiency results 

DMUs 
a  12

u  23

u  12

l  23

l  1

u  1

l  122

u  122

l  232

u  232

l  3

u  3

l  

DMU1 0.9999 1.0000 0.9997 0.9999 0.9999 0.5000 0.5000 0.9980 0.9980 0.9980 0.9980 0.5151 0.5150 

DMU2 1.0000 1.0000 1.0000 1.0000 1.0000 0.5000 0.5000 0.9985 0.9985 0.9985 0.9985 0.5400 0.5400 

DMU3 0.9781 0.9752 0.9779 0.9781 0.9788 0.4253 0.4253 0.9557 0.9557 0.9765 0.9765 0.3924 0.3920 

DMU4 0.9093 0.8385 0.9086 0.9093 0.9113 0.0248 0.0248 0.8330 0.8330 0.9082 0.9082 0.0309 0.0299 

DMU5 0.9998 1.0000 0.9997 0.9998 0.9998 0.5000 0.5000 0.9982 0.9982 0.9982 0.9982 0.4357 0.4356 

DMU6 0.9997 1.0000 0.9994 0.9997 0.9997 0.4535 0.4535 0.9982 0.9982 0.9982 0.9982 0.1830 0.1823 

DMU7 0.9995 1.0000 0.9989 0.9995 0.9995 0.2998 0.2998 0.9981 0.9981 0.9981 0.9981 0.0698 0.0694 

 

Note that in order to obtain 12

l  based on 

the relation (*), first μ is found and then 

calculated. Based on the above table, the 

desired intervals can be obtained. 
 

5. Conclusion 
The network plays an important role in life 
today. Determining the efficiency range of 

the whole system and the efficiency of its 

sub-components will make the network 

management less likely to make decisions 
and determine the organization's policy. 

When there is no unique answer for the 

sub-divisions of a network, it is important 
to determine the efficiency interval in 

which the value of the objective function 

of that step is located. In this paper, using 

data envelopment analysis models for each 
sub- divisions of a network, we obtain 

efficiency intervals, which in fact, the 

efficiency of the whole system and the 
efficiency of each sub-division are broken 

down into efficiency based intervals.  In 

this paper, a three-stage network was 
considered. The logic of this article can be 

extended to networks with any number of 

stages. 
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