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Abstract 

Finding the Most Efficient Decision Making Unit (DMU) provides more information about 

efficient DMUs in data envelopment analysis (DEA). Hence, in recent years, many mixed 

integer linear programming (MILP) models based on a common set of weights have been 

proposed to determine the most efficient DMU. This paper introduces another MILP model 

to find the most efficient DMU. In this model, we use a numerical parameter to increase the 

discrimination power of the proposed model. To illustrate the various potential applications 

of the proposed model, we compare the performance of our model with the other three models 

using two real numerical examples. 
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1- Introduction      
Data envelopment analysis (DEA) is a 
mathematical approach that introduced by 

Charnes et al [1]. to assess the relative 

efficiency of a homogeneous group of 

decision-making units (DMUs). DEA 
successfully divides them into two 

categories; efficient DMUs and inefficient 

DMUs. One of the important issues 
discussed in DEA literature is ranking 

efficient units since the efficient units 

obtained in the efficiency score of one 
cannot be compared with each other on the 

basis of this criterion any more. Therefore, 

it seems necessary to provide models for 

further discrimination. Hence, many 
different approaches were proposed to 

rank the efficient DMUs. Some include 

ranking with multivariate statistics in DEA 
context, including linear discriminant 

analysis (Torgersen et al. [2]), 

discriminant analysis of ratios (Sinuany-
Stern et al. [3]), super efficiency ranking 

methods (Andersen and Petersen [4]), 

benchmark ranking methods (Sueyoshi 

[5]), cross efficiency ranking methods 
(Dyson et al. [6]).   

In some cases, the decision-maker must 

select only one DMU throughout a set of 
considered DMUs. There have been 

several studies to extend some integrated 

DEA models for determining a single 

efficient DMU, namely the most efficient 
unit. Karsak and Ahiska [7] proposed an 

integrated multi-criteria decision making 

(MCDM) DEA model in order to evaluate 
the most efficient DMU in advanced 

manufacturing technology (AMT). Amin 

et al. [8] introduced a counterexample to 
show that the model does not always 

converge and then improved it. Amin and 

Toloo [9] formulated a new mixed integer 

linear programming (MILP) model to find 
the most efficient unit with common set of 

weights (CSW). Toloo and Nalchigar [10] 

extended this model into variable returns 
to scale (VRS) situation for selecting the 

most BCC-efficient DMU. Amin [11,12] 

explained some drawbacks of previous 

MILP models and introduced a new mixed 

integer non-linear programming (MINLP) 

model to modify these flaws. It was 
mathematically proved that these models 

can determine the best efficient unit; 

however, the suggested models were 
nonlinear in nature and consequently hard 

to solve. The problem of finding the most 

association rule by considering multiple 

criteria, which is an important task in data 
mining, was addressed in Toloo et al [13]. 

Besides the novel application, they also 

designed an algorithm for prioritizing 
association rules. However, Toloo and 

Nalchigar [14] pointed out some 

drawbacks in the proposed algorithm of 
Toloo et al. [13] and improved it. Foroughi 

[15] proposed a new integrated maximin 

MILP model that finds the most efficient 

unit by maximizing the minimum possible 
distance between a selected unit and the 

next ranked unit. It was shown that the 

suggested approach can also be extended 
to rank all extreme efficient DMUs. Wang 

and Jiang [16] clarified that Foroughi’s 

model is very complicated and involves 

many redundant constraints and proposed 
a new approach to identify the most 

efficient DMU. Toloo [17] formulated an 

MILP model for finding the most efficient 
unit without explicit input and utilized it to 

determine the best efficient professional 

tennis player. By excluding the non-
Archimedean epsilon, Toloo [18] 

proposed an approach which finds the 

most efficient DMU with fewer 

computations. Toloo [19] addressed the 
problem of selecting and full ranking 

suppliers with imprecise data which is an 

important issue in supply chain 
management. Toloo [20] formulated a new 

minimax MILP model for finding the most 

efficient DMU with the CSWs. Lam [21] 
introduced a new MILP model for finding 

the most efficient DMU in DEA. 

Compared to existing models, the Lam 

proposed model features an objective that 
is more intuitively allied to finding the 

most efficient DMU. 
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This paper provides a new mixed integer 

programming (MIP) as a good alternative 

model for finding the most efficient DMU 

in DEA. In order to increase the 

discriminatory power of the proposed 

model, we use a scalar parameter.  

The rest of the paper is classified as 

follows: Section 2 briefly reviews existing 

models for finding the most efficient 
DMU. Section 3 proposes the alternative 

MILP model to determine the most 

efficient DMU. Section 4 examines two 

numerical examples to show the potential 
applications of the proposed alternative 

MILP models and their effectiveness in 

finding the most efficient DMU. The paper 
concludes in Section 5. 

 

2. Preliminaries 
Throughout this paper, we assume that 

there are n independent and homogenous 

units, ( 1,2,..., )jDMU j n , which 

consume m various inputs, 

( 1,2,..., )ijx i m , to produce s different 

outputs, ( 1,2,..., )rjy r s . The relative 

efficiency score of a unit is defined as the 
ratio of total weighted outputs to the total 

weighted inputs. Let ( 1,2,..., )iv i m and 

( 1,2,..., )ru r s be the weights of ith input 

 and rth output, respectively. 

Mathematically, the efficiency score of 

( 1,2,..., )jDMU j n can be calculated 

as[22]:  

1

1

, 1,2,...,

s

r rj

r
j m

i ij

i

u y

e j n

v x





 



 

Sueyoshi et al.[23] proposed the following 

linear programming model for obtaining 
optimal weights and estimating the best 

relative efficiency score of pDMU , the 

DMU under evaluation: 
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The pDMU  is efficient if and only if

* 1pe  , otherwise is inefficient. Let 
*

iv  

and 
*

ru  be the optimal weights of ith input 

and rth output, respectively. If the 

pDMU  is efficient, then by definition

* *

1 1

0
s m

r rp i ip

r i

u y v x
 

   ; otherwise there 

exists at least one other index 

 1,2,...,j n  such that 

* *

1 1

0
s m

r rj i ij

r i

u y v x
 

   . The subset of such j 

is called the reference set or the peer group 

to the pDMU . Indeed, this collection of 

efficient DMUs forces them pDMU to be 

inefficient.  

Definition 1. If there is a common set of 

optimal weights,  * *, 0u v , such that 

* * 0p p u y v x  and moreover 

* * 0,j j j p  u y v x , then pDMU  is 

called the most (best) efficient unit[20]. 

Wang and Jiang proposed the 

following model for finding the most 
efficient DMU under constant returns to 

scale [16]. 
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Where 1(( )max{ })u

r rj
j

l m s y   and 

1(( )max{ })v

i ij
j

l m s x   lower bounds 

borrowed from model(1). The objective of 

the model (2) is to maximize the overall 
efficiency of all of the DMUs. In this 

model, pDMU  is determined as the best 

efficient unit if and only if
* 0pI  . 

Toloo [18], proposed the following model 
to identify the most efficient DMU as 

follows: 

 
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Where M and N are large positive 

numbers. In this model, pDMU  is 

determined as the best efficient unit if and 

only if
* 0p  . The Objective function in 

model(3) minimizes the maximum 

inefficiencies of all of the DMUs except 
the most efficient one selected by the 

model. Toloo [20], proposed the following 

minimax model as an alternative MILP for 

identifying the most efficient unit under 
constant returns to scale (CRS).  

 
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Toloo have been proved that model (4) is 

always feasible and the optimal objective 

value of model (4) is bounded. In model 

(4), the most efficient DMU has highest 

efficiency score that can be greater than 1, 

whereas those of the other DMUs are 

bounded by 1.  

 

3. The proposed model 
Assume that all inputs and outputs are 

strictly positive. We propose the following 

model (5) for determining the most 

efficient DMU: 
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Where M is a large positive number and 

  is a small positive number.  

Suppose that in optimal solution of model 

(5), if 
* 0p  then 

* 0ps  , so pDMU has an 

efficiency score equal to one that is 

selected as the most efficient DMU, and 

the other DMUs have efficiency scores 

less than one. In this model, we can 

increase the value of   by a reasonable 

amount to ensure that several DMUs are 

not placed on the same hyperplane. Thus 

the discriminatory power of the proposed 

model increases. The objective function in 

model (5) maximizes the overall 
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efficiency of all of the DMUs. So, Model 

(5) uses a more relevant objective when 

choosing the most efficient DMU than the 

objectives applied in the other MILP 

models. Model (5) also uses lower bounds 

from slack-adjusted DEA models [28], as 

the lower bound for all of the input and 

output weights. The following theorems 

show some of the properties of the 

proposed model.  

Theorem 1. Model (4) always has a 

feasible solution. 

Proof. Let ( , )o o
u v be the feasible solution 

of model (1), Note that sueyoshi et al [23] 

proved that such solution exits. Suppose 

that 

 
1 1

( , ) 1,2,...,
s s

j r rj i ij

r r

F u y v x j n
 

   u v , 

 therefore  ( , ) 0 1,2,...,o o

jF j n u v . 

Since ( , )jF u v is an affine function then 

there exists a neighborhood, ( , )o oN u v , 

such that  

 

 
 

, ( , )

( , ) | , 1,2,..., , , 1,2,..., ,

( , ) 0 1,2,...,

o o

u v

r r i i

j

N

u l r s v l i m

F j n

 

   

  

u v u v

u v

u v

 

So model (5) always has feasible solution. 

Theorem 2. The optimal objective value 

of model (4) is bounded. 

Proof. Let 
0 0 0 0( , , , )u v s δ  be any 

arbitrarily feasible solution to model (5). 

From constrains of this model  
00 ( 1,2,..., )js j n  which means the 

objective function value of any feasible 

solution is bounded from below. This fact 

that model (5) is a minimization problem 
completes the proof. 

 

4. Numerical examples 

In all the numerical examples 
discussed below, models (2), (3), (4), and 

(5) are applied to determine the most 

efficient DMU. The datasets utilized in 

this section are used from previous studies 

in the DEA literature, as noted in each 

case. 
Example 1. Facility layout design (FLD) 

in manufacturing systems. 

Ertay et al [24] explored a dataset 
containing 19 FLDs. Table 1 indicates the 

data set containing 19 FLDs with two 

inputs and four outputs: 
x1= material handling cost,  

x2 = adjacency score, 

y1 = shape ratio,  

y2 = flexibility, 
y3 = quality. 

y4 = hand-carry utility 
The following optimal solution is obtained 

by solving model (5) with 0.001  : 
* *

1 2

* *

1 2

* *

3 4

* *

12

v =0.000040786351894, v =0.000009577443206, 

u =0.258238999819774, u =1.947040498442445, 

u =1.970055161544624,u = 0.015429861507027,

0, 1( 12),j j   

 

The following optimal solution is obtained 

by solving model (5) with 0.0001  : 
* *

1 2

* *

1 2

* *

3 4

* *

12

v =0.000041161694003, v =0.000009577443206

 u =0.262154449519854, u 1.947040498446610

 u =1.970055161548814, u 0.015650183295409

 0, 1( 12),j j 





  

 

Table 2 summarizes different efficiency 

scores obtained by models (1), (2), (3), (4) 
and (5), respectively. The largest 

efficiency scores achieved by the different 

integrated MILP models are highlighted in 
bold. Model (5) reveals that FLD12 is the 

most efficient DMU, while the results of 

model (2) and model (4) tell that FLD10 is 
the most efficient DMU and the result of 

model (3) discloses FLD14 is the most 

efficient DMU
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Table 1: Data set for 19 FLDs . 
DMUs x1 x2 y1 y2 y3 y4 

FLD1 20309.56 6405 0.4697 0.0113 0.041 30.89 

FLD2 20411.22 5393 0.438 0.0337 0.0484 31.34 

FLD3 20280.28 5294 0.4392 0.0308 0.0653 30.26 

FLD4 20053.2 4450 0.3776 0.0245 0.0638 28.03 

FLD5 19998.75 4370 0.3526 0.0856 0.0484 25.43 

FLD6 20193.68 4393 0.3674 0.0717 0.0361 29.11 

FLD7 19779.73 2862 0.2854 0.0245 0.0846 25.29 

FLD8 19831 5473 0.4398 0.0113 0.0125 24.8 

FLD9 19608.43 5161 0.2868 0.0674 0.0724 24.45 

FLD10 20038.1 6078 0.6624 0.0856 0.0653 26.45 

FLD11 20330.68 4516 0.3437 0.0856 0.0638 29.46 

FLD12 20155.09 3702 0.3526 0.0856 0.0846 28.07 

FLD13 19641.86 5726 0.269 0.0337 0.0361 24.58 

FLD14 20575.67 4639 0.3441 0.0856 0.0638 32.2 

FLD15 20687.5 5646 0.4326 0.0337 0.0452 33.21 

FLD16 20779.75 5507 0.3312 0.0856 0.0653 33.6 

FLD17 19853.38 3912 0.2847 0.0245 0.0638 31.29 

FLD18 19853.38 5974 0.4398 0.0337 0.0179 25.12 

FLD19 20355 17402 0.4421 0.0856 0.0217 30.02 

 

Table 2: Efficiency of the FLDs by different models 

DMUs CCR Model(2) Model(3) Model(4) 
Model(5) 

 

Model(5) 

 
FLD1 0.985 0.9649 0.6085 0.7351 0.7876 0.7905 

FLD2 0.988 0.9715 0.7373 0.805 0.8569 0.8592 

FLD3 0.997 1 0.715 0.8446 0.8759 0.8779 

FLD4 0.949 0.8945 0.6587 0.7744 0.8174 0.8192 

FLD5 1 0.9253 0.9425 0.8708 0.8693 0.8698 

FLD6 0.973 0.9108 0.9173 0.8253 0.8718 0.8733 

FLD7 1 0.7908 0.6341 0.7679 0.8131 0.8139 

FLD8 0.857 0.8682 0.5488 0.6083 0.6303 0.6332 

FLD9 0.889 0.8345 0.7954 0.8334 0.854 0.8543 

FLD10 1 1.4403 0.9999 1.1503 0.9989 0.9999 

FLD11 0.998 0.9402 0.9768 0.9229 0.9578 0.9584 

FLD12 1 1 0.9998 1 1 1 

FLD13 0.776 0.6757 0.5997 0.6063 0.684 0.6856 

FLD14 1 0.941 1 0.9312 0.9937 0.9945 

FLD15 1 0.9513 0.7451 0.7924 0.8674 0.8699 

FLD16 1 0.914 0.9739 0.9158 0.9989 0.9999 

FLD17 1 0.7693 0.6911 0.7358 0.8613 0.8632 

FLD18 0.852 0.9137 0.6551 0.686 0.6944 0.6968 

FLD19 1 0.9238 0.6774 0.7463 0.7893 0.7916 

                                                           

The meanings of these four methods are 

different and it is understandable that 

different designs may lead to different 
selection. To be more specific, model (4) , 

similar to the proposed approach in model 

(2), allows the efficiency score of one unit 
to be larger than one and the efficiency 

scores of the other DMUs are all less than 

or equal to one and selects it as the most 

efficient. Meanwhile, in the model (3) and 

model (5) the efficiency scores of all 

DMUs are less than or equal to one. As 
shown in Table 2, while the epsilon value 

tends to be zero, efficiency score of FLD10 

tends to 1, thus the power of 
discrimination in the proposed model 

declines. So we can use this feature to 
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increase the discrimination power of the 
model (5). 

Example 2. Banking industry [25]. 

Table 3 provides a real data set of twenty 

bank branches of one of the largest private 

bank in Iran. Three inputs and three 
outputs are recorded for each branch: 

x1 = employees, x2 = assets, x3 = costs, 

y1 = number of translations, y2 = deposits, 

y3 = loans. 
 

Table 3: inputs and outputs of 20 branches 
DMUs X1 X2 X3 Y1 Y2 Y3 

1 11 1753 10020 5214 72149 57537 

2 17 2604 11440 5343 89781 51114 

3 7 1155 8427 5145 42654 52485 

4 12 1899 11816 3249 97812 67298 

5 14 2215 12426 6706 77031 43487 

6 14 2357 9907 6259 75923 41442 

7 9 1370 10365 3652 47763 43262 

8 5 829 5283 3913 45732 14237 

9 6 985 11061 3566 55222 41062 

10 6 1023 5856 4559 53323 37418 

11 8 1311 8745 4441 69734 57883 

12 9 1536 7326 5031 49153 47139 

13 8 1367 8326 5053 92365 55543 

14 7 1193 6525 4762 64235 22347 

15 9 1359 8158 6876 89104 45717 

16 7 1111 11135 4307 42012 73925 

17 7 1182 6920 5331 69360 27246 

18 7 1069 5864 4004 51438 26531 

19 6 992 5039 2342 39948 20223 

20 7 1180 8378 4238 154284 43928 

 

Table 4: Efficiency of bank branches by different models. 

DMUs Model(1) Model(2) Model(3) Model(4) 

Model(5) 

 

 
1 0.86 0.736 0.5817 0.7434 0.7165 

2 0.7 0.5336 0.5483 0.5424 0.5666 

3 1 0.9067 0.9325  0.8291 

4 0.85 0.6641 0.5867 0.618 0.5991 

5 0.64 0.6008 0.4576 0.6222 0.6091 

6 0.75 0.5975 0.5537 0.6231 0.6459 

7 0.65 0.5997 0.3953 0.5982 0.542 

8 1 0.8084 0.5519 0.8244 0.7974 

9 0.88 0.7356 0.3886 0.6888 0.5789 

10 1 0.9821 0.7191 1 0.9594 

11 0.99 0.8907 0.6451 0.8732 0.8121 

12 0.98 0.7683 0.6129 0.8053 0.7902 

13 1 0.993 0.7832 0.9585 0.9236 

14 0.89 0.7952 0.6248 0.8026 0.802 

15 1 1 0.769 1.0236 0.9998 

16 1 0.8981 0.4647 0.8837 0.7276 

17 0.99 0.8841 0.658 0.8923 0.8748 

18 0.81 0.7615 0.619 0.7848 0.78 

19 0.66 0.596 0.534 0.5907 0.5976 

20 1 1.1521 1 1 1 
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We apply model (5) on the given data set 

with 0.0001   and 0.001   to 

obtain the following optimal solution: 
*

1

*

2

*

3

v =0.009803921568627, 

v =0.000064004096262,

v 0.000031831465462,

*

1

*

2

*

3

* *

20

u =0.000034245474977, 

u =0.000001080258916, 

u = 0.000002254537256,

0, 1( 20),j j   

  

Table 4 demonstrates different efficiency 

scores obtained by models (1), (2), (3), (4) 
and (5) respectively. Results in Table 4 

shows that 7 out of 20 branches are 

efficient. Models (2), (3) and (5) find 
DMU20 as the most efficient branch, 

while DMU15 is selected as the most 

efficient branch by model (4). The 
efficiency score of these DMUs are 

highlighted in bold in Table 4. 

 

5. Conclusion 

The identification of the most efficient 

DMU is sometimes the main concern of 

decision makers. Toward this end, 
numerous integrated DEA models have 

been formulated and these models usually 

find a common set of optimal weights. The 
main advantage of such integrated models 

is that the evaluation will be carried out by 

solving only one optimization problem. In 
this paper, we have proposed an alternative 

mixed integer linear programming model 

based on common weight set for 

identifying the most efficient DMU. In this 

model, a parameter, , is used  to increase 

discrimination power of proposed model. 
The results of the numerical examples 

presented herein clearly demonstrate the 

various potential applications of the 
proposed approach. 
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