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Abstract 

Cross-efficiency is a ranking technique based on the peer-evaluation that can increase the 

discriminating power between efficient decision-making units. This paper intends to assess 
the two-stage processes consisting of undesirable outputs by applying the cross-efficiency 

evaluation. Given undesirable outputs, the directional distance function under the weak 

disposability assumption is utilized. The proposed model under variable returns to scale is 
designed, which makes it different from the previous models. Furthermore, it can reduce the 

zero optimal coefficients. By measuring the inputs and outputs inefficiency, the whole system 

and each of its two stages rank, simultaneously. To analyze the suggested method, an 
application on the industrial productions of 30 regions of China is used. 
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1. Introduction 

Data envelopment analysis (DEA) is a 

non-parametric method to evaluate the 
relative efficiency of a set of homogeneous 

decision-making units (DMUs) with 

multiple inputs and outputs that, for the 
first time, introduced by Charnes et al. [1] 

and extended by Banker et al. [2]. DEA 

assigns an efficiency score of 1 to efficient 
units, and inefficient DMUs have a score 

of less than unity. From experience, we 

know that in many cases, more than one 

unit is efficient. It means the conventional 
DEA models cannot discriminate between 

efficient DMUs. In the last four decades, 

to deal with this problem, various ranking 
approaches have been proposed by 

researchers. 

Cross-efficiency is one of the ranking 
methods initially introduced by Sexton et 

al. [3] and then improved by Doyle and 

Green [4]. Contrary to classical DEA 

models, this method makes it possible to 
evaluate the performance of each unit with 

the weights of others. The non-uniqueness 

of the optimal solution of the multiplier 
form is one of the weaknesses of the cross-

efficiency method. Researchers have 

proposed ways to overcome this problem 

in the last two decades. For example, 
Liang et al. [5] utilized various objective 

functions to measure the cross-efficiency. 

After that, Liang et al. [6] examined the 
cross-efficiency score for each DMU using 

the Nash bargaining game theorem. Their 

essential goal was to solve the non-
uniqueness problem of the optimal 

multipliers. They showed the best game 

cross-efficiency is a Nash equilibrium 

point. Since the assumption of variable 
returns to scale in data envelopment 

analysis models generates negative cross-

efficiency values, Wu et al. [7] presented a 
modified model based on the model 

proposed by Liang et al. [6]. 

Ruiz [8] provided the cross-efficiency 

evaluation based on the directional model. 
Moreover, they explored the duality 

relations regarding the directional models 

and defined the cross-efficiency as a ratio. 
To resolve the problem of negative cross 

efficiency due to the assumption of 

variable returns to scale, Lim and Zhu [9] 

developed a novel method. They 
interpreted the relationship between 

variable returns to scale (VRS) and 

constant returns to scale models (CRS) and 
presented a method based on it. Cook and 

Zhu [10] used the Cobb-Douglas function 

and introduced a multiplicative model to 

calculate the cross-efficiency scores that 
are unique and have the highest value. Wu 

et al. [11] considered the Pareto 

improvement and presented a new cross-
efficiency evaluation. Lin et al. [12] 

proposed the iterative method to 

simultaneously solve two problems of zero 
and alternative optimal coefficients. 

Furthermore, Wei et al. [13] presented a 

method to calculate the cross-efficiency 

utilizing the combination of the directional 
distance function and Nash equilibrium. 

Lin [14] estimated the cross-efficiency 

based on the domain direction measure 
(RDM) under the assumption of variable 

returns to scale while the data set 

contained negative values. 
The aforementioned studies show that 

most existing works on cross-efficiency 

are for single-stage systems while, in 

reality, most systems are multiple stages 
and considering their internal structure is 

very important. Therefore, Kao and Liu 

[15] applied the relational model with the 
assumption of constant returns to scale to 

measure the cross-efficiency for series and 

parallel structures. Indeed, they used the 

geometric average and showed the total 
efficiency is obtained from the weighted 

sum of the efficiencies of its sub-sections. 

Next, Örkcü et al. [16] introduced a neutral 
cross-efficiency model under constant 

returns to scale for the basic two-stage 

network systems. They showed the 
obtained efficiency scores from their 

proposed model are more realistic than the 

suggested model by Kao and Liu [15]. 

Another advantage of their model is 
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reducing the number of zero coefficients. 
According to Lin’s approach [14], Lin and 

Tu [17] provided a method to assess the 

cross-efficiency of series and parallel 

systems.   
The above literature review shows that the 

cross-efficiency evaluation of network 

structures without the presence of 
undesirable factors has been done. 

Therefore, the main goal of this paper is to 

provide a method for assessing the two-
stage network structures based on cross-

efficiency such that undesirable factors are 

also considered. In this regard, the 

directional distance function is used with 
the weak disposability assumption. A 

function that allows reducing and 

increasing all inputs and outputs of the unit 
under evaluation in the direction of an 

appropriate vector. The proposed model is 

formulated with the assumption of variable 
returns to scale, which differentiates it 

from previous methods presented for two-

stage structures. In addition to the above, 

the number of zero multipliers is also 
reduced in the new model and is 

considered a strong point for it. 

The remainder of this paper is organized as 
follows. Section 2 briefly reviews the 

directional efficiency in the presence of 

undesirable outputs and cross-efficiency. 

Section 3 introduces the suggested model 
to evaluate the two-stage structure with 

undesirable intermediate measures. To 

describe the proposed method, a real 
example in the field of industrial 

production is used in Section 4. 

Conclusions appear in Section 5.   
 

2. Preliminaries 

In this section, the directional efficiency in 

the presence of undesirable outputs and the 
cross-efficiency are briefly reviewed. 

 
2.1. Directional efficiency with 

undesirable outputs   

Assume that there are K  DMUs, where 

each : 1,...,kDMU k K  consumes the 

input vector 1( ,..., ) 0k k Ikx x x  , and 

produces the desirable output vector 

1( ,..., ) 0k k Rkv v v  , and undesirable 

output vector 1( ,..., ) 0k k Mkz z z  . 

Consider, the production possibility set as 

follows:  

{( , , ) | ( , ) can be produced by }T x z v z v x  
Definition 1. Outputs ( , )z v  are weakly 

disposable if and only if ( , , )x z v T  and 

0 1  , imply ( , , )x z v T    

(Shepherd [18]). 

Kuosmanen [19] introduced the following 

technology under variable returns to scale 
satisfying weak disposability assumption: 

 

1

1

1

1

{( , , ) : 1

, 1,..., ,

, 1,..., ,

, 1,..., ,

1,

0, 1,..., ,

0 1, 1,..., .}

K

k ik io

k

K

k k mk mo

k

K

k k rk ro

k

K

k

k

k

k

T x z v

x x i I

z z m M

v v r R

k K

k K



 

 

















 

 

 



 

  









 

which, k  is a distinctive abatement 

factor of kDMU  that resulted in the non-

linearity of the mentioned technology. 

Therefore, using the k k k     

whereby, (1 )k k k     , and 

k k k   , the foregoing technology is 

rewritten in the following linear form: 
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1

1

1

1

{( , , ) :

( ) , 1,..., ,

, 1,..., ,

(2)

, 1,..., ,

( ) 1,

, 0, 1,..., .}

K

k k ik ko

k

K

k mk mo

k

K

k rk ro

k

K

k k

k

k k

T x z v

x x i I

z z m M

v v r R

k K

 





 

 











  

 

 

 

 









 

In the above technology, k  and 
k  are 

unknown variables. Using the manner of 

Färe and Grosskopf [20], the efficiency of 

oDMU  in the direction of the vector 

opposite to zero  
( ) ( ) ( )( , , )x z vd d d d  is 

evaluated as follows:  

*

1 1 1

( )

1

( )

1

( )

1

1

. .

( ) ,  1,..., ,

,  1,..., , (3)

,  1,..., ,

( ) 1,

, , , , 0, , , , . 

I M R

o i m r

i m r

K
x

k k ik io i i

k

K
w

k mk mo m m

k

K
v

k rk ro r r

k

K

k k

k

i m r k k

Max

s t

x x d i I

w w d m M

v v d r R

i m r k

   

  

 

 

 

    

  









 
   

 

   

  

  

 

 

  









 

The purpose of model 3 is to determine the 

amount of inefficiency based on the 
simultaneous contraction and expansion of 

the inputs and desirable and undesirable 

outputs with factors i , m  , and r . 

Definition 2.  If the optimal value of the 

directional model (3) is equal to zero  

(
* 0o  ), then

oDMU  is said to be 

efficient; otherwise, it is not efficient. 
 

2.2. Cross-efficiency evaluation 

Suppose there are K  DMUs so that each 

: 1,...,kDMU k K  consists of the input 

vector 1( ,..., ) 0k k Ikx x x  , and 

desirable output vector 

1( ,..., ) 0k k Rky y y  . Therefore, the 

efficiency of 
oDMU  can be calculated by 

the following model (Charnes et al. [1]): 

* 1

1

1

1

. .
       (4)

1,  1,..., ,

, 0, , . 

R

r ror
o I

i ioi

R

k rkr

I

i iki

r i

u y
E Max

v x

s t

u y
k K

v x

u v r i











 

 









 

Model (4) is an input-oriented fractional 

problem that using the Charnes-Cooper 
transformation is transformed into the 

following model (See Charnes and Cooper 

[21]): 

 

*

1

1

1 1

. .

1,              5

0,  1,..., ,

, 0, , . 

R

o r ro

r

I

i io

i

R I

r rk i ik

r i

r i

E Max u y

s t

v x

u y v x k K

u v r i





 





  

 





 

 

In the above linear model, 
*

oE  shows the 

efficiency score of 
oDMU obtained with 

its optimal multipliers 
* *( , )io rov u . As a 

result, 
oDMU  is called to be efficient, if 

* 1oE  , and all the optimal multipliers are 

positive (
* *( , ) 0io rov u  ). 

Also, the efficiency score of 

: 1,..., ,kDMU k K k o   with the 

optimal multipliers of oDMU  is defined 

as, 

*

* 1

*

1

                          (6)

R

ro rk

r
ok I

io ik

i

u y

E

v x









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Figure 1. The two-stage network structure 
 

According to equation (6), the value of 

cross-efficiency for : 1,...,kDMU k K  

is defined as 
*

1

1
( 1,..., )

K

k ok

k

E E k K
n 

  , 

which is the average of all the efficiency 

obtained based on the optimal weights of 

kDMU . 

 

3. Cross-efficiency evaluation of the 

two-stage process 

The main purpose of this section is to 

provide a proposed model for evaluating 
the cross-efficiency of two-stage processes 

including undesirable outputs.  

Now, suppose there are K  DMUs, and 

each  ( 1,..., )kDMU k K  has a two-

stage structure as can be seen in Figure 1. 
Stage one consumes the input vector 

1( ,..., ) 0k k Nkx x x   and produces 

desirable and undesirable output vectors 

1( ,..., ) 0k k Mkv v v  , and 

1( ,..., ) 0k k Jkw w w  , respectively. In 

addition to consuming the undesirable 

vector kw  as an input, stage two uses 

another input vector as 

1( ,..., ) 0k k Tkz z z  . Moreover, it 

produces the desirable output vectors 

. 

The linear direction distance function 

model for the two-stage process 
introduced in Figure 1 under the weak 

disposability assumption is as follows: 

 

*

1 1 1 1 1

( )

1

( )

1

( )

1

. .      7

Stage 1 constraints:

( ) , 1,..., ,

, 1,..., ,

, 1,..., ,

(

N M J T R
Overall

o n m j t r

n m j t r

K
k k k o x

n n n n

k

K
k k o v

m m m m

k

K
k k o w

j j j j

k

k k

E Max

s t

x x d n N

v v d m M

w w d j J

    

  

 

 

 

    







 
     

 

   

  

  



    







1

( )

1

( )

1

( )

1

1

) 1,  

Stage 2 constraints:

, 1,... ,

( ) , 1,..., , 

, 1,..., ,

( ) 1,

Generic constraints:

,  , ,  0, 1,..., ,  

,  

K

k

K
k k o w

j j j j

k

K
k k k o z

t t t t

k

K
k k o y

r r r r

k

K
k k

k

k k k k

n

w w d j J

z z d t T

y y d r R

k K

 

  

 

 

   















  

   

  

 

 











,  ,  ,  0,    ,  ,  ,  ,  m j t r for all n m j t r    

 

The model's first and second four 

constraints (7) are related to the first and 

second components of the desired two-
stage structure. The linear model (7) is 

written under variable returns to scale 

assumption. In the above formulation, 

,  ,k k k    and 
k  are in terms of 

unknown variables and 

,  ,  ,  ,  0, , , , ,n m j t r n m j t r        are 

the abatement and expansion factors. The 
objective function model (7) measures the 

inefficiency score for the specific oDMU . 

1( ,..., ) 0k k Rky y y 

Stage 1 Stage 2 
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In such a way that the reduction and 
increase of inputs, undesirable and 

desirable outputs are done simultaneously 

in the direction of the appropriate vector
( ) ( ) ( ) ( ) ( )( , , , , )x v w z yd d d d d d . 

In this manner, if the optimal value of zero 

obtained (
* 0Overall

oE  ), then the whole 

system is said to be efficient; otherwise, it 

is not efficient. Additionally, the 

inefficiency score of both stages for the 
two-stage process as Figure 1 is measured 

by two terms
* 1 * * *

1 1 1

N M JStage

o n m jn m j
E   

  
   
    , 

and

* 1 * * *

1 1 1

J T RStage

o j t rj j j
E   

  
   
    , 

which 
* * * * *, , , , , , , ,n m j t r n m j t r       

represent the obtained optimal solutions of 

the model (7). Therefore, similarly, if the 

optimal value 
* 1Stage

oE , and 
* 2Stage

oE are 

equal to zero, then the first and the second 

stage are said to be efficient; otherwise, 

they are inefficient. 

Note that : 1,...,jw j J  is an 

undesirable dual-role factor in the model 
(7). It means it plays the roles of output and 

input for stages 1 and 2, simultaneously. In 

this way, it should be decreased in both 
stages. For linking two stages of the 

mentioned network process, a common 

decrease factor ( j ) for the intermediate 

measure of jw .  

Theorem 1. The linear model (7) is a 

feasible problem. 
Proof. Considering 

( ) ( ) ( ) ( ) ( )( , , , , )x v w z yd d d d d d  as a 

directional vector, and the following 

solution: 

0, 1,o o k k o k        , 

0 : 1,...,k k k K    , and 

0n m j t r         for all 

, , , ,n m j t r . Clearly, the model (7) is a 

feasible problem.  

The dual to the linear model (7) is as 

follows: 

 

1 1 1*

1 2

1 1

1

1 1 1

2

1 1 1

1

1

2

Min

. . 8

0, 1,..., ,

0, 1,..., ,

0, 1

N M J
o o o

n n m m j j

n m j

o T R
o o

t t r r

t r

N M J
k k k

n n m m j j

n m j

J T R
k k k

j j t t r r

j t r

N
k

n n

n

h x u v f w

q z g y

s t

h x u v f w k K

f w q z g y k K

h x k



 







  

 

  

  



 
  

 
 
    
 

    

    

  

  

 

  

  



2

1

1

1

2

1

( )

( )

( )

( )

( )

,..., ,

0, 1,..., ,

0, 1,..., ,

0, 1,..., ,

1, 1,..., ,

1, 1,..., ,

1, 1,..., ,

1, 1,..., ,

1, 1,..., ,

, , , 0,

T
k

t t

t

M
k

m m

m

R
k

r r

r

x

n n

v

m m

w

j j

z

t t

y

r r

n m t r

K

q z k K

u v k K

g y k K

h d n N

u d m M

f d j J

q d t T

g d r R

h u o g f













  

  

  

 

 

 

 

 









1 2

, , , ,

, , .j

or all n m t r

f j are free in sign 

 

It is noteworthy that two constraints 

11
0

M k

m mm
u v 


   and 

21
0

R k

r rr
g y 


   

in the model (8) were considered to 
prevent the negative cross-efficiency 

score. Also, the constraints 
( ) 1x

n nh d  , 

( ) 1v

m mu d  , 
( ) 1w

j jf d  , 
( ) 1z

t tq d  , 

( ) 1y

r rg d   are a guarantees to avoid zero 

weights. The optimal objective value of 

the model (8), i.e. 
*

o , is more than zero. 

Let 
*( ) *( ) *( ) *( ) *( ), , , , , , , ,o o o o o

n m j t rh u f q g n m j t r  

be the obtained optimal weights from the 

model (8) for oDMU . Therefore, the 

cross efficiency for the whole two-stage 
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process of : 1,...,kDMU k K and its 

components are defined as: 

 

*( ) *( ) * *

1 2
*( ) 1 1

*( ) *( ) *( )

1 1 1

9

2

M R
o k o k

m m r r
o Overall m r

k N J T
o k o k o k

n n j j t t

n j t

u v g y

    

h x f w q z

 

  

  

  



 

 

  

 

 

*( ) *

1
*( ) 1 1

*( ) *( )

1 1

10

M
o k

m m
o Stage m

k N J
o k o k

n n j j

n j

u v

h x f w



 

 









 

 

 

*( ) *

2
*( ) 2 1

*( ) *( )

1 1

     11

R
o k

r r
o Stage r

k J T
o k o k

j j t t

j t

g y

f w q z



 

 









 

 

According to the constraints, 

11
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we have 
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

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 





 
. 

Therefore, for definition (10), we get 
*( ) 10 1o Stage

k   for , 1,...,o k K . 

Similarly, regarding the second, fourth and 

sixth constraints of the model (8), for 
definition (11), we have 

*( ) 20 1o Stage

k   for , 1,...,o k K . For 

the overall efficiency, according to the 

constraints set of the model (8), we have 
*( )0 1, ,o Overall

k o k   .  

Therefore, 
oDMU  will be efficient in 

general if 
*( ) 1o Overall

k  ; otherwise, it will 

be inefficient. Moreover, the first and the 

second stages of oDMU  will be efficient 

if 
*( ) 1 1o Stage

k  , and 
*( ) 2 1o Stage

k  . 

An interesting point to note 

is the relationship between 

the overall efficiency and each of 
the components of a two-stage process. In 

other words, a two-stage process 
is efficient as a whole when both of 

its components are efficient. 

So, the overall cross-efficiency for 

: 1,...,kDMU k K  is defined as 

follows: 

 * *( )

1

1
12

K
Overall o Overall

k k

ok
 



   

Also, the cross-efficiency value for each 

component of : 1,...,kDMU k K  is 

defined as follows: 

 * 1 *( ) 1

1

1
13

K
Stage o Stage

k k

ok
 



   

 * 2 *( ) 2

1

1
14

K
Stage o Stage

k k

o

 
k

 


   

According to the above definitions, 
*Overall

k , 
* 1Stage

k , and 
* 2Stage

k  are the 

average cross-efficiencies obtained with 

the weights of all decision-making units. 

Therefore, the cross-efficiencies defined 

above also belong to (0,1] . 

 

4. An application to industrial 

production in China 
Nowadays, one of the most significant 

problems that many countries encounter is 

increasing industrial pollution. This 

problem leads to environmental pollution 
and causes harmful effects on the health of 

people in society. Therefore, in the past 

decade, researchers have drawn engaged 
in recycling issue in the manufacturing 

industry. China is one of the countries that 

has made great efforts in this direction. 
Regarding the importance of the recycling 

process, an appropriate model that can 

properly evaluate such systems and detect 

their strength and weakness is critically 
important. Now, to analyze the proposed 

method, the performance of 30 industrial 

production centers in China which have a 
two-stage structure following Figure 2 is 

evaluated in this section. 
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Figure 2- Structure of the industrial productions process 

 

The inputs and outputs of each of the 

components of the two-stage process 

depict as follows:  

 Stage 1: Production stage 
Inputs:  

Labor ( 1x ), Energy ( 2x ), Capital ( 3x ), 

Undesirable outputs: 

Wastewater ( 1w ), Solid waste (
2w ), 

Waste gas (
3w ), 

Desirable output: 

Gross industrial products ( v ), 

 Stage 2: Pollution treatment stage 
Inputs:  

Investment ( z ), Wastewater ( 1w ), 

Solid waste (
2w ), Waste gas (

3w ), 

Desirable output: 

Recycled materials ( y ). 

 

It should be noted that intermediate 

measures wastewater ( 1w ), waste gas  

(
2w ) and solid waste (

3w ) have a dual role 

(input and output). 

In what follows, the input and output 

values of each component of industrial 
production processes in 31 regions of 

China are given in Table 1. (See Wu et al. 

[22]). 
According to data in Table 1, the 

directional efficiency and the cross-

efficiency for each  ( 1,..., )kDMU k K

were evaluated by models (8), (12), (13) 
and (14) and the results obtained are given 

in Table 2. In this example, the vector of 

direction ( , , , , )o o o o od x v w z y  is 

considered. In other words, the results 

were obtained in direction of reducing 

inputs and undesirable outputs and 

increasing desirable outputs. 
 

Table 1- Data for the industrial production processes in China 

DMUs 1x  2x  3x  v  
1w  

2w  
3w  z  y  

1 124.15 6954 22750.58 13699.84 8198 4750 1269 1.9026 3.43658 

2 148.91 6818 14584.31 16751.82 19680 7686 1862 8.32203 19.26504 

3 344.67 27531 24943.75 31143.29 114232 56324 31688 10.67334 107.1801 

4 219.88 16808 18505.94 12471.33 49881 35190 18270 23.47653 42.63718 

5 125.19 16820 14691.38 13406.11 39536 27488 16996 11.70925 27.23754 

6 401.74 20947 29076.78 36219.42 71521 26955 17273 14.25687 32.80902 

7 139.81 8297 10196.15 13098.35 38656 8240 4642 6.2945 39.16633 

8 147.6 11234 10471.17 9535.15 38921 10111 5405 4.22225 32.34714 

9 291.62 11201 27555.88 30114.41 36696 12969 2448 4.11153 17.03791 

10 1153.88 25774 66134.06 92056.48 26376 31213 9064 15.52205 218.9749 

11 857.58 16865 47282.79 51394.2 217426 20434 4268 11.39896 286.3867 

12 264.87 9707 15930.28 18732 70971 17849 9158 4.51817 56.69216 

13 411.75 9809 16058.7 21901.23 124168 13507 7487 12.84866 37.50288 

14 199.16 6355 8637.45 13883.06 72526 9812 9407 5.95067 59.34731 

15 931.5 34808 53761.28 83851.4 208257 43837 16038 36.4491 187.1898 

Productio

n 

Pollution 

Treatment  

Labor  

Energy  

Capital 

Gross industrial products 

Recycled materials 

Waste water 

Solid waste 
Waste gas 

 

Investment 
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16 479.27 21438 23467.42 3495.53 150406 22709 10714 12.07734 74.39088 

17 294.97 15138 20894.32 21623.12 94593 13865 6813 24.24997 82.28357 

18 272.44 14880 13038.95 19008.83 95605 14673 5773 13.43145 90.12068 

19 1568 26908 62626.9 85824.64 187031 24092 5456 20.90697 62.42653 

20 150.51 7919 8667.45 9644.13 165211 14520 6232 9.16614 51.02334 

21 12.44 1359 1621.38 1381.25 5782 1360 212 0.41153 3.16232 

22 146.56 7856 8099.01 9143.25 45180 10943 2837 6.83182 29.1366 

23 351.67 17892 22564.76 23147.38 93444 20107 11239 7.00433 45.78465 

24 80.3 8175 5960.13 4206.37 14130 10192 8188 6.51415 17.91425 

25 92.6 8674 9611.09 6464.63 30926 10978 9392 10.33956 65.45546 

26 151.08 8882 14688.7 11199.8 45487 13510 6892 25.22795 29.34996 

27 71.34 5923 6487.35 4882.68 15325 6252 3745 13.63106 22.41208 

28 20.09 2568 3053.61 1481.99 9031 3952 1783 0.97472 5.51878 

29 29.04 3681 3293.16 1924.39 21977 16324 2465 2.9096 10.07503 

30 60.18 8290 7911.97 5341.9 25413 9310 3914 6.67628 22.21873 

 
Table 2- Directional Efficiency and Cross-Efficiency Results 

Units 

Directional Efficiency Cross-Efficiency 

Overall Stage 

1 

Stage 

2 

Overall Rank Stage 1 Rank Stage 2 Rank 

1 0.6150 1 0.2396 0.6283 6 0.7740 6 0.1400 25 

2 0.7572 1 0.2782 0.6507 5 0.9263 2 0.2163 17 

3 0.4379 0.5143 0.3139 0.3613 20 0.4227 21 0.2363 14 

4 0.2012 0.3073 0.1192 0.2120 29 0.2880 28 0.1153 28 

5 0.3051 0.4847 0.1557 0.2700 26 0.3790 24 0.1087 30 

6 0.5012 0.7577 0.1211 0.4423 13 0.6253 10 0.1103 29 

7 0.8033 0.9002 0.3846 0.5560 9 0.6703 8 0.3467 7 

8 0.3927 0.4313 0.3350 0.4093 16 0.4520 19 0.3020 10 

9 0.7611 1 0.2254 0.7063 4 0.8990 4 0.1877 20 

10 1 1 1 0.9617 1 0.9977 1 0.8753 2 

11 0.8875 0.8080 1 0.7377 3 0.6390 9 0.9450 1 

12 0.4609 0.5185 0.3745 0.4783 12 0.5383 14 0.3297 8 

13 0.7216 0.8606 0.1735 0.4010 18 0.5383 15 0.1557 24 

14 0.9042 1 0.3997 0.4910 11 0.5530 12 0.3580 6 

15 0.8936 1 0.3423 0.6107 7 0.7793 5 0.3163 9 

16 0.1383 0.1070 0.2320 0.1423 30 0.0783 30 0.2450 13 

17 0.454 0.5216 0.3527 0.4333 14 0.5443 13 0.2833 11 

18 0.7625 0.8590 0.4186 0.5107 10 0.5657 11 0.4000 4 

19 0.6512 1 0.1743 0.6070 8 0.7707 7 0.1763 22 

20 0.3381 0.4304 0.2237 0.2913 24 0.3370 26 0.2093 18 

21 1 1 1 0.7673 2 0.9077 3 0.4397 3 

22 0.3995 0.4895 0.2646 0.4183 15 0.5133 16 0.2533 12 

23 0.3597 0.4538 0.2373 0.4010 17 0.4880 17 0.2083 19 

24 0.2844 0.3583 0.2062 0.2493 27 0.3070 27 0.1587 23 

25 0.4131 0.3768 0.4675 0.3683 19 0.3377 25 0.3900 5 

26 0.3486 0.4529 0.1931 0.2810 25 0.4443 20 0.1193 27 

27 0.3976 0.4794 0.2696 0.3153 23 0.4540 18 0.1847 21 

28 0.4311 0.4826 0.3666 0.3550 21 0.4147 22 0.2287 15 

29 0.2874 0.3509 0.2215 0.2123 28 0.2623 29 0.1357 26 

30 0.3574 0.4372 0.2472 0.3287 22 0.3990 23 0.2203 16 
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By referring to definitions (9), (10), and 

(11),  ( 1,..., )kDMU k K is said to be 

efficient if and only if its efficiency score 

is equal to one. Therefore, the efficiency 

score of one in columns two, three and 
four, respectively, show which DMU is 

overall efficient or each of its subsections 

is efficient. For example, the first stage of 
units 1, 29, 10, 14, 15, 18, and 21 are 

efficient while the second stage of units 

10, 11, and 21 are efficient. It should be 

noted that a unit is overall efficient when 
both its subsections are efficient. For this 

reason, the second column shows that only 

two units 10 and 21 among the others are 
overall efficient. Columns two and three 

show that unit 16 has the least efficiency 

score among other units while unit 4 has 
the least efficiency score in the fourth 

column. 

By using the obtained optimal weights, the 

cross-efficiencies were calculated. The 
fifth to tenth columns show cross-

efficiency scores and ranks for the whole 

two-stage structure of 

 ( 1,..., )kDMU k K and each of its sub-

sections. The cross-efficiencies results 

show that unit 10 has the first rank on the 

whole. It means that it has the best 
evaluation among others. Unit 10 has the 

first rank in stage 1 while it has the 

second rank in stage 2. Unit 11 has the 

first rank in the second stage. In the other 

words, generally, unit 10 has good 

performance among all units. Columns six 
and eight show that unit 16 has the last 

rank while the tenth column shows that 

unit 5 has the last rank. It means that the 
mentioned units do not have good 

performance among 30 units.    

The scattering of the cross-efficiency score 

for the intended two-stage process and 
each of its components is well in Figure 3. 

As we know, the overall efficiency of two-

stage structures is always a value between 
the efficiencies of its components. The 

graphs in Figure 3 show this well. 

The optimal weights corresponding to 
model (8) are provided in Table 3. 

As you can see in Table 3, the optimal 

weight of none of the units is zero. This is 

one of the strengths of the proposed model 
that was mentioned earlier. 

Variables 1  and 1 , which correspond to 

the convexity restrictions of stages 1 and 2 

in the model (7), except for a 
few cases, have negative values. The 

positive or negative nature of this variable 

means increasing or decreasing returns to 
scale, which is not the subject of 

discussion in this research. 

 
Figure 3- The score of Cross-efficiencies 
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Table 3- The set of optimal weights  

Units 1xh
( )

 
2x

h
( )

 3x
h

( )
 u  q  1w

f
( )

 
2w

f
( )

 
3w

f
( )

 g  
1
  2

  

1 0.027427 0.000144 0.000044 0.000615 2.963176 0.290987 0.000198 0.000211 0.000788 -0.607900 -1.219400 

2 0.019404 0.000147 0.000069 0.000439 0.120163 0.055188 0.000051 0.000130 0.000537 -0.529600 -0.049500 

3 0.004341 0.000036 0.000040 0.000104 0.093691 0.011357 0.000009 0.000018 0.000032 -0.106400 -0.038600 

4 0.004548 0.000059 0.000054 0.000131 0.202920 0.023454 0.000020 0.000028 0.000055 -0.210300 0.074200 

5 0.009375 0.000059 0.000068 0.000206 0.377452 0.036714 0.000025 0.000036 0.000059 -0.231600 -0.155300 

6 0.013929 0.000048 0.000034 0.000240 0.280768 0.030479 0.000020 0.000037 0.000058 0.332000 0.096400 

7 0.038373 0.000121 0.000776 0.001135 0.158869 0.037605 0.000026 0.000121 0.000215 -0.692900 -0.065400 

8 0.006775 0.000089 0.000096 0.000234 0.236841 0.038407 0.000026 0.000099 0.000185 -0.359600 -0.097500 

9 0.020161 0.000089 0.000036 0.000383 0.370631 0.058693 0.000043 0.000077 0.000409 0.076500 -0.152500 

10 0.000867 0.000039 0.000015 0.000064 0.064424 0.018146 0.000038 0.000032 0.000110 -0.088000 -0.026500 

11 0.001166 0.000059 0.000021 0.000104 0.087727 0.016613 0.000005 0.000049 0.000420 -0.129400 -0.036100 

12 0.003775 0.000103 0.000063 0.000152 0.221329 0.024814 0.000014 0.000056 0.000109 -0.259300 -0.091100 

13 0.002429 0.000102 0.001028 0.000876 0.077829 0.026665 0.000008 0.000218 0.000134 -0.997300 -0.032000 

14 0.005021 0.000157 0.001859 0.001402 0.168048 0.025771 0.000014 0.000102 0.000106 -1.595200 -0.069200 

15 0.001074 0.000029 0.000293 0.000244 0.027436 0.007255 0.000005 0.000023 0.000062 -0.261600 -0.011300 

16 0.002087 0.000047 0.000312 0.000286 0.093296 0.013443 0.000007 0.000044 0.000093 -0.318500 0.042500 

17 0.003390 0.000066 0.000048 0.000135 0.041237 0.016942 0.000011 0.000072 0.000147 -0.209500 -0.017000 

18 0.003671 0.000067 0.000709 0.000610 0.074452 0.018242 0.000010 0.000068 0.000173 -0.633100 -0.030600 

19 0.000638 0.000037 0.000016 0.000086 0.047831 0.016019 0.000006 0.000042 0.000416 -0.084300 0.050700 

20 0.006644 0.000126 0.000115 0.000239 0.200652 0.019599 0.000006 0.000069 0.000160 -0.273300 -0.082600 

21 0.080386 0.000736 0.000617 0.002391 18.104836 0.948671 0.000173 0.000735 0.004717 -2.697800 -7.450700 

22 0.006823 0.000127 0.000123 0.000278 0.146374 0.034321 0.000022 0.000091 0.000352 -0.402600 -0.060200 

23 0.002844 0.000056 0.000044 0.000110 0.230469 0.021841 0.000011 0.000050 0.000089 -0.179800 -0.094800 

24 0.012453 0.000122 0.000168 0.000370 0.409473 0.055821 0.000071 0.000098 0.000122 -0.593200 -0.168500 

25 0.010799 0.000115 0.000104 0.000289 0.096716 0.027960 0.000032 0.000091 0.000106 -0.394300 -0.039800 

26 0.010494 0.000113 0.000068 0.000282 0.039639 0.034072 0.000025 0.000156 0.000145 -0.393900 -0.016300 

27 0.017711 0.000169 0.000154 0.000472 0.073362 0.046774 0.000065 0.000160 0.000267 -0.699700 -0.030200 

28 0.049776 0.000389 0.000327 0.001121 1.843319 0.181199 0.000111 0.000253 0.000561 -1.234400 -0.758600 

29 0.034435 0.000272 0.000304 0.000790 0.947830 0.099255 0.000069 0.000061 0.000406 -0.768300 -0.390100 

30 0.017523 0.000121 0.000126 0.000412 0.208405 0.045007 0.000039 0.000107 0.000255 -0.445200 -0.085800 

 

 
5. Conclusions 
Evaluating cross-efficiency and solving its 

two fundamental problems, i.e. non-

uniqueness of efficiency value and zero 

coefficients, has been the basis of various 

studies by researchers in recent years. This 

paper studies the evaluation of the two-

stage network structures and their 

components based on cross-efficiency. For 

this purpose, the directional distance 

function under the assumption of variable 

returns to scale has been used, which is the 

point of distinction between the proposed 

model and the previously introduced 

methods. The intended two-stage system 

consists of undesirable factors. Therefore, 

for handling the desirable and undesirable 

outputs, the weak disposability assumption 

was used. Two restrictions were also 

considered to prevent negative cross-

efficiency. The proposed model can 

reduce the zero coefficients which is one 

of its significant advantages. For further 

analysis, the performance of the industrial 

productions of 30 regions in China based 

on the cross-efficiency is examined. 
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