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Abstract

One of the problems of the data envelopment analysis traditional models in the multiple form
that is the weights corresponding to certain inputs and outputs are considered zero in the
calculation of efficiency and this means that not all input and output components are utilized
for the evaluation of efficiency, as some are ignored. The above issue causes the efficiency
score of the under evaluation unit not to be calculated correctly. One of the ways to deal with
the pseudo-inefficiency is to use data envelopment analysis models with multi-criteria
structure. In this regard, we first investigate the models of data envelopment analysis with
multi-criteria structure and further, with regard to the ability of the ratio-based data
envelopment analysis models, we develop data envelopment analysis models with a multi-
criteria structure for ratio data and the feasibility and the bounded condition of the above
models and their efficiency intervals are described. By presenting a numerical example, we
compare the efficiency scores obtained from the models presented with the previous models
and we show that the proposed models can be used to deal with the pseudo-inefficiency and
efficiency underestimation. Finally, we present the results.
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1. Introduction

DEA is a technique based on mathematical
programming, used for evaluating the
relative efficiency of a set of decision-
making units (DMUs). The efficiency of
each DMU is determined by the efficiency
frontier. The units on the efficiency
frontier are assumed efficient, and the
others are considered inefficient.
Technically, DEA sets up a production
possibility set (PPS) and considers its
frontier as the efficient frontier, formed
under the condition of non-domination.
Extended by Charnes et al. (1978). DEA
enjoys the advantage of weight selection,
which was one of the most frequently
studied topics in DEA literature.

Many studies have been conducted in the
area of weights. Meanwhile, a weakness in
DEA is lack of discrimination among
efficient DMUs, which vyields a large
number of efficient units; this occurs when
the number of units under evaluation is
less than the sum of inputs and outputs. In
such cases, the weights corresponding to
certain inputs and outputs are considered
zero for the efficient DMUs and this means
that not all input and output components
are utilized for the evaluation of
efficiency, as some are ignored. As a result
of the unrealistic weight distribution in
DEA, some units may be considered
efficient in the analysis, while not really
having an efficient performance; this is
due to assignment of an overly large
weight to an output or an overly small
weight to an input. Thompson et al. (1986,
1990) were the first to utilize weight
restrictions for improving the
discrimination power. Their work was
extended later by other authors in the field;
in this relation, the method of assurance
region (AR) was proposed by Charnes et
al. (1990) as well as Khalili et al. (2010).
Another method of weight restriction is the
cone-ratio method, presented in (Dyson
and Thanassouli, 1988; Mecit and Alp,
2013; Sarrico and Dyson, 2004;
Thanassoulis and Allen, 1998). It is worth
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mentioning that all these models were
presented in order to deal with the problem
of unrealistic weights distribution. The
problem with AR and cone-ratio methods
was their dependence on the measurement
of inputs and outputs, which sometimes
led to the infeasibility of models and
computational difficulties.
Super-efficiency models were presented in
1993 by Anderson and Peterson, aiming to
overcome the problem of discrimination
power and poor weights dispersion, as
presented in (Andersen and Petersen,
1993; Chen et al., 2013; Chen and Liang,
2011). Another method for dealing with
the issue of discrimination power was the
cross-efficiency technique presented by
Wang and Chin (2010, 2011). The problem
with super-efficiency models was the
infeasibility of some efficient units under
variable returns to scale assumption.
Though Chen studied the input- and
output-oriented models, this problem of
infeasibility was not overcome, as pointed
out in the counterexamples presented by
Soleimani-damaneh et al. (2006) regarding
Chen’s model. Lee et al. (2011, 2012)
presented a two-stage process for dealing
with the infeasibility problem through
adjustments in input savings and output
surpluses. Also, Lee et al. (2012) showed
that in cases where some inputs and
outputs had zero values, the problem still
remained infeasible.

The main problems of cross-efficiency
techniques included multiple weights and
solutions in the related models, besides the
large number of solutions, and the need to
solve numerous linear and nonlinear
programming problems (see Angiz et al.,
2010; cooks et al., 2013).

One of the techniques used for improving
the discrimination power was the
utilization of multi-objective models in
DEA, see (Chen et al., 2009; Foroughi et
al.,, 2011; Li and Reeves 1999). The
formulation presented by Li and Reeves
(1999) was a tri-objective problem, in
which the three objectives did not have any
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priority over each other; however, as
mentioned by Ghasemi et al. (2014), the
model proposed by Li and Reeves (1999)
exhibited the problem of having zero
weights in some input or output
components, which led to those
components not being involved in the
evaluation of efficiency. They showed that
multi-objective models do not solve the
problem of discrimination power.

Bal et al. (2008, 2010) used goal
programming to solve the MCDEA model
and proposed the GPDEA model. They
argued that the GPDEA model would
resolve the discrimination power issue;
meanwhile, Ghasemi et al. (2014) showed
that the model still suffers the problems of
previous models and the weights of certain
input or output components may still be
zero; so, these components may not be
involved in the efficiency measurement
and incorrect efficiency values may result.
Ghasemi et al. (2014) presented the Bio-
MCDEA model in order to deal with the
problem of discrimination power and solve
the problems with the previous models.
Providing a bi-objective model based on
the MCDEA model, they showed that the
proposed model solves the previous
problems, and it is more suitable from the
viewpoint of computation. However, their
suggested model is based on imposition of
weight restrictions on input and output
components, and if the restrictions are
removed, some input and output weights
may become zero and the above-
mentioned problem  would remain
unsolved. However, it provides more
realistic efficiency values.

Wei et al. (2011c, 2011a) presented an
input-oriented ratio-based model (DEA-R-
I model) based on the ratio of input to
output components and showed that the
model can be an eligible alternative for the
CCR models. The above-mentioned
(input-oriented) models, due to having a
larger space for weight selection, enjoy
greater efficiency levels than input-
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oriented CCR models; meanwhile; the
CCR model does not consider weight
restrictions and some weights may become
zero when evaluated by this model,
therefore, the corresponding weights
might not be involved in the evaluation of
efficiency; however, the DEA-R-I model
obviates this problem to some extent. The
above-mentioned (input-oriented) model
can be a proper substitute for the input-
oriented CCR model (CCR-1 model)
without weight restriction; thus, the
discrimination power problem is resolved
in the CCR-1 model. Later, Wei et al.
(2011a) demonstrated that the CCR model
may not properly reflect the efficiency
value of some units and face the problem
of efficiency underestimation (US), which
was proven to be more critical for efficient
units, as it mostly involves them.

Wei et al. (2011c) compared the efficiency
and super-efficiency values in CCR-1 and
DEA-R models and revealed their
differences. They showed that the
efficiency values in DEA-R-I models are
greater than or equal to the corresponding
weights in CCR-I models, which would
reduce efficiency underestimation in
DEA-R, as opposed to CCR-l. They
showed that the inherent limitation in the
CCR-I model leads to the inefficiency of
units that are efficient in practice; in this
regard, their values are ignored due to the
zero weights in input and output
components and the efficient DMUs are
considered inefficient. Subsequently, they
began analyzing their super-efficiency
models and showed that the efficiency
underestimation problem was present in
the super-efficiency model as well. In a
comparison of values obtained from CCR-
I- and DEA-R-I-based super-efficiency
models, Wei et al. (2011c) indicated that
the super-efficiency values of DEA-R-I
models are greater than or equal to their
corresponding values in CCR-I; they also
found that the super-efficiency values
obtained from CCR-I models are not real
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values for some units. Besides, by keeping
the output levels constant, super-efficiency
DEA-R-I models provide lower input
levels for the units to remain efficient, and
this shows that the super-efficiency CCR-I
models do not represent the exact super-
efficiency values for some units and the
super-efficiency values presented by
DEA-R-I are more accurate and suitable
for ranking extremely efficient units. This
feature is rooted in the nature of DEA-R-I
models, since DEA-R-I models enjoy a
greater space for selecting weights and the
mean weights of input and output
components is greater in DEA-R-I models
compared to their corresponding super-
efficiency models in CCR-I.

Wei et al. (2011b) utilized the DEA-R-I
model for evaluation of efficiency among
hospitals, and raising the problem of
pseudo-inefficiency, indicated that due to
inherent weight restrictions, some efficient
units in the CCR-1 model are determined
as inefficient; this phenomenon is called
pseudo-inefficiency. They also
demonstrated that the efficiency values of
the DEA-R-1 model are usually greater
than or equal to the corresponding values
in the CCR-I model. They showed that the
same CCR inefficient units are DEA-R-I
efficient. Therefore, using the DEA-R-I
model is a proper approach for dealing
with the phenomenon of the pseudo-
inefficiency.

Given the importance of DEA-R-I
compared to CCR-lI models, the author
decided to propose a new model based on
DEA-R-I  with a  multi-objective
programming framework in order to deal
with the issue of discrimination power. In
this regard, considering the characteristics
of DEA-R models in weight selection and
their larger space for weight selection
compared to the CCR-1 model, we can use
these models to overcome the
discrimination power issue. Therefore,
with consideration to the problems of
previous models, this article provides
several new models within a multi-
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objective programming framework based

on DEA-R-lI in order to address the
problem of discrimination  power.
Moreover, through comparison with

previous models, we will demonstrate the
advantages to these new models in dealing
with the problem of pseudo-inefficiency
and efficiency underestimation.

The rest of the paper is organized as
follows: The second section is a brief
description of GPDEA, MCDEA, bio-
MCDEA and DEA-R-I models, as well as
a discussion of their strengths and
weaknesses. Then, the new models for
improvement of discrimination power in
MCDEA are provided and in the next
section, a numerical example is set based
on previous and new models. Finally, the
results are analyzed and compared and in
the end, the conclusions are drawn.

2. Improving Discrimination Power in
Data Envelopment Analysis

2.1 Multiple Criteria Data Envelopment
Analysis (MCDEA)

Consider n decision-making units that
consume m inputs (x;;, i=1,..,m, j=
1,..,n) inorder to produce s outputs (y;
,r=1,..,s, j=1,..,n). Li and Reeves
(1999) presented the problem of MCDEA
as follows:

Model 1: Multiple criteria
envelopment analysis (MCDEA)
min (d, or max 6y = X7-1 UrVro)
min M,

min }’=1 d;,

s.t. it vixio = 1,
Z$=1urYrj - Zﬁl ViXij + dj =0,
j=1,..,n,
M—d;>0,j=1,..,n,

u- =20 r=1,..,5s,

Ui = 0, i = 1,...,m, dj = 0,
j=1,..,n

data

1)

In this model, d, is the measure of
inefficiency, while h,=1—-d,is the
measure of efficiency and Y5_; u, ¥y, IS
the efficiency value in traditional DEA
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models. M indicates the maximum
deviation and the last objective function
shows the sum of all deviations; the
constraint M-d;i=0,j=1,..,n
optimizes all functions simultaneously.
We use the adaptive weighted sum method
to solve the MOLP problem above; to this
end, we turn the problem into a single-
objective problem. In this regard, we
assume: min wy; d, + w,M +

w3 Xi-1d;.  The  weight  vectors
(wy,wy, ws3) are selected based on the
importance of each objective function
according to the decision-maker’s
preferences. If we choose the weight
vector w = (0,0,1) to solve Model (1), the
resulting model would be called Minsum.
Li and Reeves (1999) did not propose a
solution for their model which could
optimize all objective functions at the
same time. To solve the MCDEA problem,
we can use the goal-programming
approach, which optimizes the problem
with respect to the ideals of the objective
functions.

Bal et al. (2008, 2010) presented the
following goal-programming model to
solve the MCDEA problem provided by Li
and Reeves (1999):

Model 2: Goal programming data
envelopment  analysis under CRS
(GPDEA-CCR)

min a = {d] +df +d} + o1 d3; +
X7, dj}

s. t. I vixj+di —df =1,
Yi=1UrYro +d; —d3 =1,

Yr=a WrYrj — Xiza ViXy; +d; =0, j=
1,..,n, 2
M—dj+d;;—d}; =0, j=1,..,n,

u.=>20, r=1,..,5s, v;,20, i=1,..,m,
dj=0, j=1,..,n, di, df, d3,
d3 20, d3j, d3; 20, j=1,..,n.

In this model, di and dj are unwanted
deviations for the goal, where the weighted
sum of inputs under analysis equals to
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unity. Variables df and d; are wanted and
unwanted deviation variables
corresponding to the weighted sum of
outputs in the unit under evaluation, which
is less than or equal to
unity. d3; and d3; are  wanted  and
unwanted deviation variables for the goal
M —d; = 0. The weights of all deviations
in the objective function are equal and
deviations from the goal value are
minimized. It should be noted that the
main problem of GPDEA models, as
mentioned by Ghasemi et al. (2014), is the
zero values of some  weights
corresponding to some inputs and outputs
in the optimal solution. Therefore,
efficiency  values are  calculated
inaccurately for those units and efficiency
is not determined precisely. It is even
possible that the obtained efficiency values
of some units would be less than the actual
values; i.e., pseudo-inefficiency would
occur. Hence, GPDEA-CCR models
cannot be utilized for dealing with the
problem of dispersion and discrimination
power in DEA. Another model in this
relation is the bio-MCDEA model
provided by Ghasemi et al. (2014) as
follows:

Model 3: Bi-objective multiple criteria
data envelopment analysis (BiO-MCDEA)
model
min h= (Wz M + wsy Z}l=1 dj)
s.t. it vixio = 1,
Z$=1urYrj _Zﬁl ViXij + dj =0,
j=1,..,n,
M-d;>0,j=1,..,n,
u-=¢ r=1,..,s,

vpzeg i=1,..,m, d; =20,
j=1,..,n

3)

In multiple-objective linear programming
(MOLP) and multiple-criteria decision-
making (MCDM) models, the set of a
problem’s optimal solutions are efficient
or non-dominated solutions that optimize
all objective functions simultaneously.
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The aim is to provide a model with an
objective function in order to obtain the
efficiency scores and efficient solutions.

We use the weighted sum method to solve
the MCDEA model; to this end, we turn
the problem into a single-objective
problem. In this regard, we assume:
min wy d, + w,M + w3 Xj_1d;.  The

weight vectors (w,,w,, ws) are selected
based on the importance of each objective
function according to the decision-maker’s
preferences. If we choose the weight
vector W = (0,1,1) to solve Model (1),
the resulting model would be called BIO-
MCDEA. w, and ws represent the
significance of functions M and } d;,
respectively, as selected by the decision-
maker; therefore, any changes in them
would lead to changes in the efficiency
scores. Note that Model (3) is initially a
bio-objective  problem presented as
min {M,X}_, d;}, which we solve using
the adaptive weighted sum method; in this
regard, we put
min (w,M +w3Y}_;d;) and tumn
Model (3) into a single-objective problem.
Ghasemi et al. (2014) considered the
weights equal in solving the same
problem. In this model, since the
importance of the second objective
function is to further increase the
discrimination power, greater weights are
assumed for the second objective function.
The difference between bio-MCDEA and
MCDEA models is in the presence or
absence of objective dy; because when
};1 d; is minimized in the bio-MCDEA
model, d, is minimized as well. Now we
present new DEA-R-I based models which
can overcome the following problems
existing in previous models:
1. Improving the discrimination power
2. Eliminating pseudo-inefficiency

3. Overcoming efficiency
underestimation.
The following DEA-R-I model was

presented based on the ratio of inputs to
outputs for analyzing the efficiency of
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decision-making units and obtaining the
efficiency scores (Wei et al., 2011c).
Model 4: An input-oriented ratio-based
data envelopment analysis (DEA-R-I)
model.

0, = max 0,
.

t m ZS . (U/Yrj) > 9

S.1. i=1 Zr=1Wir (xiO/y ) = Up
TOo

j=1,..,n, (4)

moys_iwy=1, wy2e 6,=0.
In this model, w;.is the weight

corresponding to the ratio of the i-th input
variable to the r-th output variable.

There are two types of inefficiency in
conventional DEA models:
1-  Weak efficiency;
inefficiency.

If our model detects inefficient units as
efficient ones, we call them weakly
efficient; we use two-phase models (see:
Cooper et al., 2007) or SBM model (see:
Tone, 2001) to resolve the issue of weak
efficiency. Pseudo-inefficiency occurs
when efficient units are wrongly identified
as inefficient; this happens as a result of
the natural weight limitations in
conventional DEA models such as CCR
and BCC models. DEA-R-1 models are
used to deal with the concept of pseudo-
inefficiency. These models provide a
bigger solution space for weight selection,
which causes the input-oriented efficiency
scores calculated by them to be greater
than or equal to the scores obtained from
conventional DEA models. The inherent
weight limitations in conventional DEA
models results in an inaccurate calculation
of efficiency scores and therefore, some
units are mistaken as being inefficient; in
this regard, the decision-maker would then
be forced to make changes in the inputs
and outputs of these units to make them
efficient, which could burden the DM with
very high expenses. Therefore, it is
imperative to use models such as DEA-R-
I, which can provide us with accurate
efficiency scores. The fact that the

2-  Pseudo-
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efficiency scores obtained from input-
oriented DEA-R-I models are greater than
or equal to their corresponding values in
input-oriented CCR models doesn’t reveal
the weakness of these models; on the other
hand, these models prevent the issues of
efficiency underestimation and
discrimination power and poor weight
dispersion.

The issue of efficiency underestimation is
another important subject in data
envelopment analysis; this problem
happens when the efficiency of units is
inaccurately measured by conventional
models such as CCR and BCC; in such
cases, the efficiency scores calculated by
conventional models are lower than their
actual values based on the level of inputs
and outputs. We can use the DEA-R-I
models in studies with such outcomes.
These models consider a weight for each
inputs/outputs ratio and involve all ratios
in the efficiency measurement; whereas,
the conventional models don’t involve the
input and output components which have a
corresponding weight of zero in their
calculations and therefore, the efficiency
scores aren’t calculated correctly and the
efficiency underestimation issue occurs.
We must note that if the efficiency scores
obtained from CCR and DEA-R-I models
were the same, efficiency underestimation
wouldn’t occur; on the other hand, if the
non-zero weights related to outputs were
not the same, the efficiency scores of CCR
and DEA-R-I models will not be equal; in
this relation, the efficiency scores obtained
from the DEA-R-I models will be greater
than or equal to their corresponding values
in the input-oriented CCR models and
efficiency underestimation will not occur;
now, we arrive at the following two
assumptions (see Wei et al., 2011b ):

H1. When DEA-R-I weights are
concentrated on one output, the CCR-I
efficiency, and DEA-R-I efficiency, are
the same.
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H2. When DEA-R-I weights are not
concentrated on multiple outputs, DEA-R-
| efficiency and CCR-I efficiency are not
the same, with the exception of, every
output of the referenced DMU is the same
times of corresponding output of targeted
DMU.

According to the abovementioned reasons,
input-oriented DEA-R models are more
capable to deal with efficiency
underestimation and discrimination power
and poor weight dispersion problems;
therefore, the higher efficiency scores of
these models compared to CCR models is
not proof of weakness, but strength.

As mentioned by Wei et al. (2011b), the
efficiency and super-efficiency values
obtained from the abovementioned models
are greater than or equal to the
corresponding values in CCR-I models;
therefore, these models prevent the
problems of efficiency underestimation
and pseudo-inefficiency and are preferred
to traditional DEA models.

To determine the value of € in Model (4),
we can solve the following model and
arrive at the maximum value of €.

max €

Xij
m s = ( ]/J’rj) >
s. L. i=1 Zr=1Wir (xio/y ) =0
j=1..,n, (5)
M2 Wy =1, Wy =€, 6=0.

Theorem 1: Model (4) is feasible for
every € < €” and infeasible for every €* <
€.

Proof: Assume that (w;.", 6% ¢€"),
i=1,..,m, r=1,..,s, is the optimal
solution for the Model (5). Then (w;, ",
6*¢),i=1,...m r=1,..,5, €<e€*
is the feasible solution for the Model (5),
Since Model (5) and Model (4) have the
same feasible region, then (w;",
6*¢), i=1,...m, r=1,..,5, €e<€*
is the feasible solution for the Model (4).
We must note that Model (5) is always
feasible, it is sufficient to introduce a
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feasible solution for the model. Without

loss of generality, suppose 8 = 0, w;,- =
1 . .
—,i=1,..mr=1,..,s. Itiseasy to

mxS
verify that is a feasible solution for Model
(5).
Now, suppose that (w;', 6',¢),

i=1...m r=1,..,s, €> € is a
feasible solution to Model (4). Since the
feasible regions of Models (4) and (5) are
the same, (w;,’, 8',¢), i=1,..,m, r =
1,..,5, €> €" is therefore the feasible
solution to model (5) with a larger
objective function value than (w;’,
@', €*), which is in contradiction with the
optimality of €*. As a result, Model (4) is
infeasible for every €* <e. m

Theorem2: 0 < 6, < 1.

Proof: Since the first constraint of Model
(4) applies to every j =1, ...,n, if we let
j =0, we will have: Y7, Y5_; w;, = 65,
however, according to the second
constraint %, Y5_, w; = 1, therefore
0<6;,<1m

3. MCDEA models based on DEA-R-I
models

In this section, the models in the previous
section are developed based on DEA-R-I
models.

First, consider the MCDEA model
proposed by Li and Reeves (1999) in the
previous section. Based on models of
DEA-R-I, the multi-criteria model for
evaluating efficiency is presented as
follows:

Model 6: An input-oriented ratio-based
multiple criteria data envelopment analysis
model (MCDEA-I-R)

max 0,
min M
min 7:1 d;

()

Yrj

S. t ?;1 Zf‘:l erW - d] =
6,, Jj=1,.,n (6)
Yit1 Lrma Wir = 1, Wi 2 &,
6,=0, i=1,..m ,r=1,..,5,
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M—d;>0,j=1,.,n

In the model, 8, is the efficiency value and
d; is the distance between the efficiency
score of the DMU under evaluation and the
weighted sum of the input to output ratio
of all DMUs to that of the DMU under
evaluation. M represents the maximum
deviation. In order to solve the problem
above, we can use the MOLP problem
solving methods such as the weighted sum
of objective functions. By selecting the
proper weight vector, we can calculate the
efficiency values obtained from the model
for the unit under evaluation as h, = 1 —
d,; furthermore, by increasing the weight
corresponding to the objective
function 6,, we can increase the
efficiency values and therefore, prevent
pseudo-inefficiency  and efficiency
underestimation.

Theorem 3: Model (6) is feasible for
every €* < e and infeasible for every € <
€.

Proof: Assume that (w;,, 6,,€%),
i=1..,m r=1,..,5s, is the optimal

solution for the Model (5). Also, let &j =
(x.ij/yrj)
(xw/YTO)

—0,,j=1,...n,
(x'ij/Yrj) _ 9_ }
(xm/y'ro) °

It is clear than (M, w;,d;,0,¢€),
i=1...m r=1,.,s j=1,..,n, be
a feasible solution for Model (6). Hence
(M, V(_/L'r, c?j,éo,e), i= 1, e, m,
r=1..s j=1..,n e<e€
feasible solution for the Model (6).
Now on the contrary, suppose that
(M,Vt_/ir,(ij,éo,E), i = 1, e, m,
r=1,..,s, j=1..,n €>€"is a
feasible solution for Model (6). Hence
Wi, 0,5,€), i=1,....m, r=1,...,5,

€ > €* Is a feasible solution Model (5)
with a larger objective function value than

m s
i=1 Zr=1 Wir
M=

max
1<jsn

m s 5
{ i=1 Zr=1 Wir

is as a
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(Wi, 0,,€%), i=1,...m, r=1,..,s,
which contradicts the optimality condition.
As a result, Model (6) is infeasible for e >
€. m

Theorem 4: The optimal value of 6, in
Model (6) is always equal to or greater
than unity.
Proof: In order to show that 0 < 6, < 1,
we let j = o in the first equation of Model
(6); therefore, we arrive at
Yy iWy —d, =0,, however,
according to the second constraint of
Model (6) : X% Xs_qwiy- =1, 6, =0,
d, = 0 therefore 1-d, =6, Hence
0<1-d, =6, <1. By attention to 6,
is an arbitrary feasible solution of Model
(G)then0<6;<1. m

Theorem 5: The objective function value
of Model (6) is bounded.

Proof: We prove that Model (6) is always
feasible in Theorem (3). In accordance
with the adaptive weighted sum method
for solving Model (6), we put
min —w; 6, + w,M + w3 Y7, d; By

attention to Theorem (4),0 < 6, < 1. The
resulting objective function is non-
negative on account of a non-negative
linear combination of —6, and the other
two positive terms. Due to the fact that
Model (6) is a min-type problem the proof
completes. m

As mentioned previously, one of the
methods of solving MCDM problems is to
utilize goal programming. In the previous
section, the model provided by Bal et al.
(2008, 2010) was based on goal
programming. In this section, we attempt
to extend that model based on the models
of DEA-R-I. Our goal programming model
is presented based on the ratio of inputs to
outputs as follows:

Model 7: An input-oriented ratio-based
goal programming data envelopment
analysis model (GPDEA-I-R)
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min {d{ +df + X7, d3; +
jerdj + Xjoydyy + B d;

()
Yrij
St ?;12?-=1 WiT (xiO/y]) - d] +
dz_]—d;]: 90, j:1,...,n,
=1 2p=1 Wi +d7 — di =1, (7

Wi = €, 6,=0, i=1,..m,
r=1,..,s,

d=0, j=1,..,n di, df =

0, d3;, d3; =0,
dzj, d3; =20, j=1,..,n
In this model, d7, df are wanted and
unwanted deviations for the goal the
weight restriction equal to unity, dy;, d;‘j
(G=1,..,n) are wanted and unwanted
deviations for the goal the efficiency score
of the DMU under evaluation and distance
between d; with the weighted sum of the
ratio of inputs to outputs of all DMUs to
that of the DMU under evaluation.
Whereas d3; and d3; (j = 1, ...,n) are the
wanted and unwanted deviation variables
for the goal M — d; > 0. The objective is
to minimize deviations for holding the
main constraints.

Model 8: Alternative an input-oriented
ratio-based goal programming data
envelopment analysis model (AGPDEA -

ln?r)l {di +df +X7,d3; +
=14} .

s.t. i Xre1 Wir % —dj=
0,, j=1,..,n,

P Yioawy +df —df =1, (8)

M—d;+d3;—d3; =0, j=1,..,n,
Wi > €, 6,=0,i=1,..,m,
r=1,..,s,

di=0, j=1,..,n di, df =0,
ds;, dBT]-ZO, j=1,..,n
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As discussed in the second section,
Ghasemi et al. (2014) provided the bio-
MCDEA model in order to deal with the
topic of the discrimination power in DEA.
Their bi-objective model provided the
efficiency value. Meanwhile, when there
were no weights restrictions for input and
output weights, the problem of GPDEA
and MCDEA models was not solved and
some weights of input and output
components became zero. In this section,
we develop a Bio-MCDEA model based
on DEA-R-I models. Therefore, the
following Bio-MCDEA-R -1 model is
proposed based on the ratio of inputs to
outputs, aiming to overcome the problems
of discrimination power, efficiency
underestimation, and pseudo-inefficiency.
Model 9: An input-oriented ratio-based bi-
objective MCDEA (Bio-MCDEA) data
envelopment  analysis model (Bio-
MCDEA-R -I)

min h= (WZ M +wsg Z?=1 dj)

(xij/yrj)

.t. —
° (xw/yro)

m N —
21 Xr=1Wir —d; =

)
6, = 0.

90, j=1,...,7’l,
ﬁ12i=1 Wir = 1, Wir 2 €,
M—d;>0,j=1,.,n

In this model, d;, j=1,..,n,is the
distance between the efficiency score of
the DMU under evaluation and the
weighted sum of the ratio of inputs to
outputs of all DMUs to that of the DMU
under evaluation and 6, is the efficiency
value which is maximized with
minimizing d;s.

Theorem 6: Model (9) is feasible for
every €* < € and infeasible for every € <
€.

Proof: Since Models (6) and (9) have the
same feasible regions, the proof is similar

to our proof for Theorem (3). m

Theorem 7: The optimal value of 6, in
Model (9) is always equal to or greater
than unity.
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Proof: In order to show that 0 < 6; < 1,
we let j = o in the first equation of Model
(9); therefore, we arrive at

L= Wi —dj = 6,, however,
according to the second constraint of
Model (9): X2 251wy =1, 6, >0,
d, = 0 therefore 1-d, =6, Hence
0<1-d, =6, <1. By attention to 9,
is an arbitrary feasible solution of Model
Q) then0<6,<1.m

Theorem 8: The objective function value
of Model (9) is bounded.

Proof: We prove that Model (9) is always
feasible in Theorem (6). The objective
function of Model (9) is a non-negative
linear combination of positive functions.
Due to the fact that Model (9) is a min-type
problem the proof completes. m

In the above model, in order to increase
efficiency and prevent pseudo-inefficiency
and efficiency underestimation problems,
the weight of 8, can be increased. In the
numerical example section, the sensitivity
analysis of solutions to the above models
to the change of weights in the objective
function is provided.

4. Comparison of presented models
Versus previous ones

In this section, we engage in a comparison
of previous models with our presented
models based on DEA-R-I through
numerical examples. In this section,
aiming to discuss to deal with two inter-
related problems: weak discriminating
power and unrealistic weight distribution.
We engage in a comparison of results
published by Ghasemi et al. (2014) in
order to evaluate efficiency using the
MCDEA models, as well as the models
presented in this study. To this aim, we
made use of the data set used by Ghasemi
et al. (2014). A set of hypothetical data
produced randomly from a uniform
distribution function for 10 decision-
making units with 4 inputs and 4 outputs
are considered (Ghasemi et al., 2014). The
data are presented in Table 1.
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We select the appropriate value of e for
solving Models (4) , (6), (9) according to
the Theorems (1), (3) and (6). After
solving Model (5), we obtain
€ =0.0625 for all DMUs. As regards

ﬁlZf’:lwir =1, Wiy =€, then € <

1_0125
8

As respects Ghasemi et al. (2014) used of
€ = 0.001 for solving their models, so we
use of e = 0.001 for solving our models.
We first consider the results from the
GPDEA-CCR model. As the results in
Table 2 demonstrate, the efficiency values
provided by Bal et al. (2008, 2010) are
incorrect and given the zero input and
output multipliers of unit 1, its efficiency
is falsely determined as 0.988, while the
true value equals to zero. The same
argument stands for unit 5. The efficiency
values provided by Bal et al. (2008, 2010)

for other units, as well as the true values,
are presented in Table 2.

Table 2 presents the results obtained from
the GPDEA-CCR model. Since all optimal
weights related to input and output
components corresponding with units one
and three equal to zero, the efficiency
scores are inaccurately presented by Bal et
al. (2008, 2010) as 0.968 and 0.95,
respectively. If we calculate the efficiency
score based on the concept of economic
efficiency, meaning the ratio of a weighted
set of outputs to a weighted set of inputs,
we will arrive at the accurate efficiency
scores, as presented in the second column
of Table 2. Therefore, considering that the
optimal input and output weights related to
units one and three become zero, the
accurate efficiency score for these units
would be zero.

Table 1. Example 1 dataset

DMU Outputs Inputs
Y1 ¥, Y3 Y4 X1 X, X3 Xy

1 47 93 54 65 32 50 82 46
2 88 56 92 80 61 56 68 37
3 94 65 80 80 42 58 45 34
4 50 53 93 97 73 39 88 81
5 47 42 70 52 45 38 68 41
6 86 45 100 47 86 62 44 32
7 83 91 62 74 38 74 71 74
8 79 60 72 98 61 54 70 62
9 85 68 51 41 84 52 38 47
10 78 95 70 92 87 47 31 52

1371
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Table 2. GPDEA- CCR results based on Example 1 dataset

DMU  Output weights

[nput weights

Efficiency {true values) Efficiency provided bv Bal etal. (2010)

Uy Uy Us Ug 41 U V3 Vq

10 0 0 0 0 0 0 0 0 0.968
2 000317 000434 000464 O 0.00403 001347 0 0 0.948 0951
3 000333 000456 000488 0O 0.00424 001417 0 D 1 1
40 0.00488 0.00797 0 0.00336  0.01182  0.00039 0.00298 1 1
5000 D 0 0 0 0 0 D D 0.930
6  0.00268 0.00367 00032 0 0.00341 001140 0 D 0.788 0.794
7000070 0.00371 000564 0 0.00245 000990 0 0.00233 0.745 0.779
§ 000084 000446 000679 O 0.00295 001193 0 0.00283 0.823 0.843
9  0.00305 0.00417 0.00446 0 0.00388 001297 0 D 0.771 0.767
10 000322 000441 000471 0 0.00409 001370 0 D 1 1

. m . S .
Now, we examine the results of the non-zero: i.e.. lelwlrioy Zrzlwwqto_

GPDEA- R-I model, as presented in Table
3. As can be observed, the last column of
the table shows the efficiency values and
all units are efficient, except units 5, 6 and
7. The main reason is not meeting the main
condition of DEA in the evaluation of
efficiency; in this regard, the number of
DMUs should be 3 times as many as the
sum of inputs and outputs. Accordingly, as
there are 4 inputs and 4 outputs here, there
should be 24 decision-making units, while
the number of units under analysis is 10.
Comparing Table 3 with Table 2, it can be
observed that in both models, units 3, 4 and
10 are efficient and the efficiency values of
the GPDEA-R-I model are greater than or
equal to the corresponding values in the
GPDEA-CCR model for all units.
Considering the zero values of certain
weights in GPDEA-CCR models and the
existing problem of discrimination power,
in the corresponding GPDEA-R-I models,
the weight average corresponding to the
ratio of each input to output component is
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m S

All weights are provided in Table 3 below.
The GPDEA-R-I model prevents the
problems of efficiency underestimation
and pseudo-inefficiency. As can be seen,
the efficiency values are greater than their
corresponding values in the GPDEA-CCR
model.

Figure 1 is a point chart for comparison of
efficiency scores between GPDEA-R-
CCR and GPDEA-CCR models. Now we
analyze the results in MCDEA models
under assumption of constant returns to
scale technology. As can be seen in the
Figure 1, all efficiency scores obtained
from the GPDEA-R-CCR model are
greater than or equal to their corresponding
scores in the GPDEA- CCR models. This
demonstrates that in comparison with the
GPDEA-CCR models, GPDEA-R-CCR
models can prevent the efficiency
underestimation and discrimination power
and poor weight dispersion issues and
increases the power of discrimination.
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Table 3. GPDEA-R-CCR results based on Example 1 dataset

DMU weights
W, Wi, Wi Wi, o W Wag Wz Woy  Wa, o Wi Wap Wy Wy, Wy, Wy wy, Efficiency

1 0001 0001 0114 0001 0337 0087 0125 0001 0001 0.105 0001 0001 0001 0022 0001 0001 1.000
2 0001 0001 0127 0001 0275 0421 0001 0001 0001 009 0076 0001 0001 0001 0001 0001 1.000
3 0022 0001 0071 0001 0391 0304 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 1.000
4 0001 0001 0153 0001 0395 0122 0055 0001 0001 0194 0001 0001 0001 0071 0001 0001 1000
5 0001 0001 0116 0001 0134 0232 0071 0001 0001 0239 0138 0001 0001 0001 0001 0001 0965
6 0.034 0001 0084 0001 0321 0349 0001 0001 0001 0001 0001 0001 0001 0.001 0001 0001 0.788
7 0.032 0001 0001 0001 015 0132 0510 0001 0001 009 0001 0001 0001 0063 0001 0001 0875
8 0.001 0001 0159 0001 0143 0285 0038 0001 0001 0060 0227 0001 0001 0078 0001 0001 1.000
0 0.001 0001 0313 0001 0236 0137 0070 0001 0001 0033 0001 0001 0001 0001 0001 0001 1.000
10 0042 0001 0451 0001 0321 0157 0019 0001 0001 0001 0001 0001 0001 0001 0001 0001 1.000

Now we analyze the results of MCDEA
models with constant returns to scale
technology assumption. Table 4 presents
the results of Model (1). In order to solve
the model, we engage in a minimization of
sum of deviations, i.e., minZ};l d; or
minsum, as mentioned by Ghasemi et al.
(2014). The weight of the fourth output
equals to zero in all units. Moreover, the
weights corresponding to the third input
are non-zero values for unit 4 only, and

zero for the other units. This is caused by
the low capability of the MCDEA model;
for instance, its lower discrimination
power and the fact that it ignores the
significance of third and fourth inputs and
the fourth output in the calculation of
efficiency. The weights corresponding to
the fourth input are zero in units 2, 3, 6, 7
and 8, which leads to the imprecise
calculation of efficiency values and thus,
occurrence of pseudo-inefficiency.

Fig 1. Compare efficiency scores obtained from the models of GPDEA-R-CCR and
GPDEA-CCR

1/2

0/8

*
+

—&— GPDEA-R-CCR efficiency
o/6 .'

—m— Efficiency (true wvalue)

Efficiency provided by Bal
of4 f

0/2

10 1z
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Table 4. Minsum DEA- CCR results based on Example 1 dataset

DMU Output weights Input weights Efficiency
Uy Uy Us Uy 7y Uy Vs Uy

1 0.00102 000343 000827 0 0.00338 0.01433 0 0.00343 1

2 0.00317 000434 000464 0 0.00403 0.01347 0 0 0.048
3 0.00333 000436 000488 0 0.00424 0.01417 0 0 1

4 0 0.00488 000797 0 0.00336 0.01182 0.00038 0.00208 1

3 0.00118 000636 000967 0 0.00420 (.01688 0 0.00403 1

] 0.00268 000367 000302 0 0.00341 0.01140 0 0 0.78%
7 0.00070 000371 000364 0 0.00245 0.00000 0 0.00235 0.743
3 0.00084 000446 000679 0 0.00295 (.01183 0 0.00283 0.823
g 0.00305 000417 000446 0 0.00388 0.01287 0 0 0
10 0.00322 0.00441 000471 0 0.00400 0.01370 0 0 1

Now, we consider the results of Model (6).
As can be observed from Tables 5, 6, 7, 8
and 9, the adaptive weighted sum method
can be used to solve Model (6). In Table 5,
weights are considered as the vector (0. 5,
0.45, 0.05) and the last column of Table 5
indicates that units 1, 3, 4 and 10 are
efficient, and the others inefficient. Other
columns show the weights corresponding
to the ratios of all input to output
components. Comparing the efficiency
values obtained from MCDEA and
MCDEA-R-I models, it can be observed
that all values in the MCDEA-R-I models
are greater than or equal to the
corresponding values in the MCDEA
models. Only in unit 5 is the MCDEA
efficiency value greater than the MCDEA-
R-1 efficiency value. The value obtained
from MCDEA is equal to 1 and the
corresponding value in the MCDEA-R-I
model equals to 0.986, which is due to the
decrease in the weight of 6, in the

1374

objective function, which here is wg =0.5.
By increasing the corresponding weight of
8, in the objective function, the efficiency
values can be increased in the MCDEA-R-
I model, so they would be greater than their
corresponding values in MCDEA. As can
be seen in Table 5, the average weighted
sum corresponding to each input to output
ratio equals to a non-zero value.

In the presented numerical example, we
use the adaptive weighted sum method to
solve the MOLP problems; in this regard,
the corresponding weights of the objective
functions are selected based on the
manager or decision-maker’s preferences.
For sensitivity analysis and comparison of
results obtained from the presented models
with the results of previous models, we use
a normal weight vector based on the
importance of each objective function to
solve the models.
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Table 5.

MCDEA-R-I results based on Example 1 dataset. Weight vector = (0.5, 0.45, 0.05)

DMU

weights

w,, Efficiency

1 0151 0000 0.061 0001 0001 0263 0513 0001

2 0188 0.001 0001 0001 0032 0380 0368 0.0

3 0126 0001 0001 0001 003 0332 0456 0001

4 0001 0001 0172 0001 0433 0245 0138 0.001

5 0239 0001 0001 0001 0002 0327 0400 0.001

6 0.001 0001 0142 0001 0301 036 0171 0.001

70000 0001 0104 0001 0419 0218 0247 0.001

§ 0195 0001 0001 0001 0055 0316 0422 0001

9 0183 0001 0001 0001 0345 0197 0264 0.001

100319 0001 0001 0001 0.050 0194 0424 0.001

0.001

0.0

0.00m

0.001

0.001

0.001

0.001

0.00m

0.00m

0.001

0.00m

0.001

0.001 0001 0001 0001 0000 0.001 0001 1.000

0.001 0001 0001 0001 0001 0001 0001 0838

0001 0001 0001 0001 0001 0001 0001 1.000

0001 0001 0001 0001 0001 0001 0001 1.000

0001 0001 0001 0001 0001 0001 0001 0936

0.001 0001 0001 0001 0001 0001 0001 0.795

0.001 0001 0001 0001 0001 0001 0001 0777

0001 0001 0001 0001 0001 0001 0.832

0001 0001 0001 0001 0001 0001 0001 085

0001 0001 0001 0001 0001 0001  1.000

Analyzing the results from the MCDEA-
R-l1 model with the weight vector (0.7,
0.25, 0.05) for each objective, as explained
in Table 6, it can be witnessed that units 1,
3, 4, 6 and 10 are efficient, and the others
inefficient. In all units except unit 5, all
efficiency values are greater than or equal
to the corresponding values in Table 4, and
for all units, the weight averages of the
ratio of input to output components are
non-zero values in all components,

m 3 S . .
Zz:;wlr £0, ZT=;W” # 0. For instance, the

first input component of @ #0 is
non-zero value, which shows that all input
and output components are involved in the
calculation of efficiency. For example, the
efficiency values of units 8 and 9 are 0.897
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and 0.931, respectively, which are greater
than their corresponding values in the
MCDEA model, meaning 0.823 and 0.771,
as presented in Table 4. The MCDEA-R-I
model prevents the problem of pseudo-
inefficiency; for instance, by solving the
DEA-R-I model unit 6 is determined
efficient (Table 6), while its efficiency
score is equal to 0.788 in Table 4 relating
MCDEA, which shows that this unit is
MCDEA inefficient. The average
efficiency of all units in the MCDEA-R-I
model (Table 6) is greater than the
corresponding value in MCDEA (Table 4).
It should be noted that the DEA-R-I
models have been considered input-
oriented and the production technology is
constant returns to scale.
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Table 6. MCDEA-R-I results based on Example 1 dataset. Weight vector = (0.7, 0.25, 0.05)

DMU weights
W W, LA R Wyz Wy Wy Wi Wap Wa, Wy Wy, Wy W, Efficiency

1 0151 0001 006l 0001 0001 0263 0513 0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1.000
2 0183 0001 0003 0001 0001 0357 0445 0001 0001 0001 0001 0001 0001 0001 0001 0001 00978
3 0126 0001 0001 0001 0054 0352 045 0001 0001 0001 0001 0001 0001 0001 0001 0001 1.000
4 0402 0001 0001 0.001 0006 0260 0312 0001 0001 0001 0001 0.001 0001 0001 000! 0001 1.000
50259 0001 0000 0001 0001 0327 0400 0001 0.001 0.001 0.001 000! 0.002 0001 0.001 0.001 0.986
6 0001 0001 0123 0001 0001 0001 0646 0001 0001 0160 0001 0001 0018 0033 0001 0001 1.000
7 0001 0001 0192 0001 0343 0453 0001 0001 0001 ©O001 0001 0001 0001 0001 0001 0001 00907
§ 0189 0001 0001 0001 0001 0293 0504 0001 00Ol 0001 0001 0001 0001 0001 0001 0001 0897
9 0.196 0001 0001 000! 0.560 0231 0.001 0001 0001 0001 0001 0.001 0001 0.001 0.001 0.001 0031
100319 0001 0001 0001 0050 0194 0424 0001 0001 0001 0001 0001 0001 0001 0001 0001 1.000
Figure 2 is a point chart comparing the Tables 5 and 6, respectively. Figure 2
efficiency scores of Minsum DEA- CCR compares the efficiency scores obtained
and MCDEA-R-I models. Since both from the Minsum model and the MCDM-
models are multi-objective programming R-1 model for the weights W; and W,. As
problems, we use the adaptive weighted can be witnessed, the scores obtained from
sum method to solve them. If we use the model (6) are greater than or equal to their
weight vector W = (1,0,0) to solve model similar scores in Model (1) for all units;
(1), the resulting single-objective model, this proves that MCDM-R-I models can
which we call Minsum, will minimize the prevent the efficiency underestimation and
set of deviations. To solve model (6), we discrimination power and poor weight
first  select the weights W, = dispersion issues better than Minsum
(0.5,0.45,0.05) and W, = models and increase the power of
(0.7,0.25,0.05) ; results are presented in discrimination.

142

1 e ——y—— 1

- Yy, A
, - /
—#— Minsum DEA-CCR efficiency
—— MCDEA-R-I efficiency by (0.5, .45, 0.05) o/e
MCDEA-R-I effieincy by (0.7,0.25, 0.05)

0/4

0/2

o T T T T T 1

o 2 4 =1 8 10 12

Fig. 2. Compare efficiency scores obtained from the models of Minsum DEA-CCR and
MCDM-R-I
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Now, to analyze the sensitivity of the
MCDEA-R-I model to weight vector
changes in the objective function, we
consider the weight vector (0.8, 0.1, 0.1)
for the objective function of the MCDEA-
R-1 model. According to the obtained
results (Table 7), units 1, 2, 3, 4, 6 and 10
are efficient and the other units are
inefficient, and similarly, the efficiency
values of the MCDEA-R-I model are
greater than or equal to the corresponding
values in MCDEA (Table 5); however, this
result is not true for unit 5. For instance,
the efficiency scores of units 8 and 9 are
0.897 and 0931 in MCDEA-R-I,
respectively, while the corresponding
values obtained from the MCDEA model
(Table 4) equal to 0.823 and 0.771, which
shows that the efficiency underestimation
problem is resolved in DEA-R-I models.
Also, we can observe that unit 6 is efficient
in the MCDEA-R-I model (Table 7), while
being inefficient in MCDEA (Table 4)

Table 7. MCDEA-R-I results based on Example 1 dataset.

with the efficiency score of 0.778. This
reveals the existence of pseudo-
inefficiency in the MCDEA model, while
the MCDEA-R-I model prevents it.
Comparing the results from MCDEA-R-I
and MCDEA models and using the weight
vector W = (0.6, 0.4, 0) for the MCDEA-
R-I model, the results indicate that the
efficiency values of the MCDEA-R-I
model are greater than or equal to those of
the MCDEA model (see Tables 4 and 8).
For instance, the efficiency scores for units
8 and 9 are 0. 823 and 0.771 in the
MCDEA model, respectively, while in the
MCDEA-R-I model (Table 8), their values
equal to 0.888 and 0.93, respectively. The
weight averages obtained from the
MCDEA-R-I model are non-zero values
for every input and output component; i.e.,
all input and output components are
involved in the calculation of efficiency.

Weight vector = (0.8, 0.1, 0.1)

DAMU

V

weights

Efficiency

1 0139 0001 0069 0000 0001 0260 03519

0.157 0.001 0001 0001 0001 0313 0497

30119 0001 0003 0001 0001 0322 0344

4 0404 0001 0001 0001 0001 0271 0313

3 023@ 0001 0001 0001 0001 0327 0400

6 0001 0001 0123 0001 0001 0001 0.646

70001 0001 0192 0001 0343 0433 0001

§ 0180 0.001 0001 0001 0.001 0203 0504

9 019 0001 0001 0001 0360 0231 0.001

10 0.297 0.001 0001 0177 0.504

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0001 0001 0001 0001 0001 Q001 0001 1000

0.001 0.001 0001 0.001 0.001 0001 1.000

n.oo1 0001 0001 0001 0001 0001 0001 1000

0.001 0.001 0001 0001 0.001 0001 0001 1.000

0001 0001 0001 0002 0001 0001 0001 00986

0.168 0.001 0001 0018 0.033 0001 0.001 1.000

0001 0001 0001 0001 0001 Q001 0001 0807

0.001 0001 0001 0001 0001 0001 0001 0.897

0001 0001 0001 0001 0001 0001 0001 0831

0.001 0001 0001 0001 0001 0001 0001 1.000

Table 8. MCDEA-R-I results based on Example 1 dataset. Weight vector = (0.6, 0.4, 0.0)
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DMU

weights

Efficiency

1 0139 0001 0062 0001 0001 0260 0519 0.001

2 0157 0.001 0000 0001 0001 0313 0407 0001

3 0119 0001 0003 0001 0001 0322 0544 0,001

4 0404 0000 0001 0001 0001 0271 0313 0.001

5 0238 0001 0001 0001 0001 0327 0400 0,001

6 0.001 0001 0123 0001 0001 0001 0646 0.001

7 0001 0001 01902 0001 0343 0433 0001 0.001

§ 0.18% 0001 0001 0001 0001 0293 0504 0,001

g 0196 0001 0001 0001 0560 0231 0.001 0.001

10 0297 0.001 0,002 0001 0001 0177 0504 0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001 0001 0001 0001 0001 0001 0001 1.000

0.001 0001 0001 0020 0001 0001 0000 1.000

0.001 0001 0001 0001 0001 0001 0001 1.000

0.001 0001 0001 0001 0001 0001 0001 1.000

0.001 0001 0001 0002 0.001 0001 0001 0986

0.169 0.001 0001 0018 0033 0001 0001 1.000

0.001 0001 0001 0001 0001 0001 0001 0907

0.001 0001 0001 0001 0001 0001 0001 0897

0.001 0001 0001 0001 0001 0001 0001 0931

0.001 0001 0001 0001 0001 0001 0001 1.000

In the following, we will solve Model (5)
with the weight vector (1, 0, 0) in order to
analyze the sensitivity of the MCDEA-R-I
model to changes in the weight vector (see
Table 9 below). In this case, in order to
maximize the significance of 6, in the
model, its weight is considered equal to
one and the weights of the other two
objective functions are assumed zero. As
shown in Table 9, all units are efficient
except unit 9, and with an increase in the
weight of 6, in the objective function, the
problem of pseudo-inefficiency s
completely solved. Even Unit 5 s
identified as efficient in that case, and its
efficiency would equal to one. For all rows
and columns in Table 9 corresponding to
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the weights of the input to output ratios, the
weight average for each row and column is
a non-zero value. As an instance, the ratio
of the first input to any other output is a
non-zero value. However, due to the
weights  restriction 25— X% wy = 1,
there can’t be a zero value for all the
weights and the DEA-R-I model would
naturally impose a weight restriction on
the problem. Figure 3 is a point chart
demonstrating the efficiency scores of
Minsum DEA- CCR and MCDEA-R-I
models for weights W5 = (0.8,0.1,0.1),
W, = (0.6,0.4,0) and Ws = (1,0,0);
results are presented in Tables 4, 7, 8 and
9, respectively.
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Table 9. MCDEA-R-I results based on Example 1 dataset. Weight vector = (1, 0, 0)
DMU weights
W Wiy Wig Wi, W, Wyg Wag Way Wi Way Waz Wiy w, Wy, Wy w,, Efficiency

1 0001 098> 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 1.000
2 0001 0275 0001 0001 0.001 0.001 0.647 0001 0001 0001 0.001 0001 0065 0001 0001 0001 1.000
3 0001 0162 0001 0001 0001 0001 0771 0001 0001 0001 0001 0001 0055 0001 0001 0001 1.000
4 0.001 0562 0001 0001 0001 0001 0424 0001 0001 0001 0001 0001 0001 0001 0001 0001 1.000
5 0001 0434 0001 0001 0001 0001 0352 0001 0001 0001 0001 0001 0001 0001 0001 0.001 1000
6 0001 0001 0001 0001 0001 0001 089 0001 0001 0001 0011 0001 0081 0001 0001 0001 L.000
70001 0424 0001 0001 0001 0001 0404 0001 0139 0001 0001 0001 0001 0001 0001 0001 1000
§ 0001 0276 0001 0174 0001 0001 0018 0477 0001 0001 0044 0001 0001 0001 0001 0001 1.000
9 .00 Q001 0001 0001 0946 0.001 0001 0001 0001 0001 0001 0001 0040 0001 0001 0001 0989
10 0001 0001 0001 0001 0935 0001 0001 0001 0000 0001 0001 0001 0051 0001 0001 0001 1.000

Fig. 3. Compare efficiency scores obtained from the models of Minsum DEA-CCR and

MCDM-R-I1
1/2
T O —F N
' N S _- ’_1
N, g .
0/8 — == v
—#— Minsum DEA-CCR efficiency *
—8— MCDEA-R-l efficiency by (0.8, 0.1, 0.1) 0o/6
MCDEA-R-I efficiency by (0.6, 0.4, 0.0)
—— MCDEA-R-I efficiency by (1,0,0) of4
0/2
] T T T T T 1
o 2 4 G a3 10 12

Ghasemi et al. (2014) presented the Bio-
MCDEA model to overcome the lack of
discrimination power in DEA. Table 1
presents the results from application of this
model to the data. As can be seen, this
model could not fully resolve the problem
of low discrimination power in GPDEA
and MCDEA models and if the weight
restriction is removed, some weights
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would still have zero values. For example,
the weight of the fourth output equals to
0.001 in all units and becomes zero when
removing the weight restriction. For the
weight vector of the third input, the weight
corresponding to unit 4 is the only one with
a non-zero value, i.e., the problem of
discrimination power still remains.
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Table 10. BiO-MCDEA model results based on Example 1 dataset (e= 0.0001)

DMU  Output weights Input weights Efficiency  Super Efficiency  Rank
Uy Us Uz Uy 'y 'z Vg Uy

1 0.00420 000481 000573  0.00010 0.00433 001678 0.00010 0.00016 0.961 0.961 4

2 0.00290 000435  0.00480 0.00010 0.00404 001324 000010 0.0014 0.948 0.948 5
3 0.00358 0.00408 000488 0.00010 0.00386 001429 0.00010 0.00013 1 1.210 2
4 0.00010  0.00486 0.00782 0.00010 0.00344 001191 0.00010 0.00288 1 1.079 3
3 0.00420 0.00624 0.00690 0.00010 0.00576  0.01906 0.00010 0.00024 0.947 0.947 i
i 0.00245  0.0036% 000408 0.00010 0.00344 001123 0.00010 0.00011 0.789 0.789 8
7 0.00116 000373 000522 0.00010 0002832 001031 000010 000165 0.767 0.767 a
g 0.00147 000445 000617 0.00010 000339 001237 000010 O0.00190 0.837 0.837 7
a 0.00279 000418 000463 0.00010 0.00382 001275 000010 0.00014 0.761 0.761 10
10 0.00284 000441 0.00488 0.00010 0.00410 0.01346 000010 0.00015 1 1.419 1

In the following, we engage in an analysis
of results obtained from the Bio-MCDEA-
R model. In this regard, the weight vector
(w1, wp) = (0.5, 0.5) is used to solve the
Bio-MCDEA-R model. Results from the
Bio-MCDEA-R model are presented in
Table 11. The last column of the table
provides the efficiency values. As can be
observed, units 1, 3, 4 and 10 are efficient

and the others inefficient. All efficiency
values in the Bio-MCDEA-R model are
greater than or equal to the corresponding
values in the Bio-MCDEA model. As can
be seen, the Bio-MCDEA-R model
prevents the pseudo-inefficiency problem.
For instance, the Bio-MCDEA-R model
considers unit 1 efficient, while it is
inefficient in the Bio-MCDEA model.

Table 11. Bio-MCDEA-R results based on Example 1 dataset. Weight vector (0.5, 0.5)

DMU weights
Wiy Wiz Wiz Wiy Way Waz Wiz Way Wgy Waz Wy Wiy Wis Wiz Wiz wy, Efficiency

1 0124 0001 0.041 0001 0001 0210 0450 000! 0001 0001 0001 0001 0001 0164 0001 0.001 1.000
2 0001 0001 0140 0001 0365 0333 0150 0001 0001 0.001 0001 0001 0000 0001 0001 0001 08950
3 0001 0001 0116 0001 0371 0312 018 0001 0001 000! 0001 0001 0001 0001 0001 0001 1000
4 0001 0001 0172 0001 0433 0245 0138 0001 0001 0001 0001 0001 0001 0001 0000 0001 1.000
5 0238 0001 0001 0001 0068 0338 0325 0001 0001 000 0001 0001 0001 0001 0001 0001 0946
6 0001 0001 0150 0.001 033§ 0379 0124 0001 0001 000! 0001 0001 0001 0001 0001 0001 0777
7 0001 0001 0104 0001 0410 0218 0247 0001 0001 0001 0001 0001 0001 0001 0001 0001 0777
§ 0001 0001 0167 0.001 0370 0278 0173 0001 0001 000! 0001 0001 0001 0001 0001 0001 0.888
0 (.18 0001 0001 0.001 0345 0107 0264 0001 0001 000! 0001 0001 0001 0001 0001 0001 0.853
10 0001 0001 0278 0001 0366 0172 0172 0001 0001 0001 0001 0001 0001 0001 0001 0001 1.000
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Now, in order to analyze the sensitivity of
the Bio-MCDEA-R model to changes in
the weight vector of the objective function,
the weight vector (w;,w,) = (0.2,0.8) is
applied. Results indicate the efficiency of
units 1, 3, 4 and 10, and the inefficiency of
other units (see Table 12). As can be seen
in the last column, the values in Table 12
are greater than or equal to those of the

Bio-MCDEA model, and similar to Table
10’s results, unit 1 is efficient in the Bio-
MCDEA- R model, though the Bio-
MCDEA model identifies it as inefficient.
Now, the weight vector (w;,w,) =
(0.4,0.6) is used to analyze the Bio-
MCDEA-R model’s sensitivity to changes
in the weight vector of the objective
function (See Table 13).

Table 12. Bio-MCDEA-R results based on Example 1 dataset. Weight vector= (0.2, 0.8)

DMU weights
w Wig w Wy, Wy, W Wy Wy, o Wy Wiz w Way Wy Wy Wy w,,  Efficiency
1 0124 0001 0041 0001 0001 0210 0450 0001 0001 0001 0.001 0001 0001 0164 0001 0001 1.000
2 0.157 0001 0001 0001 0001 0313 0497 0001 0001 0001 0001 0001 0020 0001 0001 0001 1.000
3 0.001 0001 0.116 0001 0371 0312 018 0001 0001 0001 0001 0001 0001 0001 0001 0001 1.000
4 0001 0001 0172 0001 0433 0245 0138 0001 0001 0001 0001 0001 0001 0001 0001 0001 1.000
3 0.082 0001 0.083 0001 0001 0332 038 0001 0001 0001 0001 0001 0103 0001 0001 0001 1.000
6 0001 0001 0144 0001 0001 0001 0.642 0001 0042 0160 0001 0001 0001 0001 0001 0001 1.000
7 0.204 0001 0.023 0001 0001 0645 0001 0001 0116 0.001 0001 0001 0001 0001 0001 0001 1.000
H 0.135 0001 0001 0001 0431 0001 0.173 0249 0001 0001 0.001 0001 0001 0001 0001 0001 0970
g 0.196 0001 0.001 0001 0360 0231 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0931
0 0001 0001 0278 0001 0366 0172 0.172 0001 0001 0001 0001 0001 0001 0001 0001 0001 1.000
Table 13. Bio-DEA-R-CCR results based on Example 1 dataset. Weight vector= (0.4, 0.6)
DMU welghts
wy. Wyo Wiz Wiy w, Wz w, Way, Wy, Wy Wiz Wy W, Wy o Wy w,, Efficiency
1 0124 0001 0041 0001 0001 0210 0450 0001 0001 0001 0001 0001 0001 0164 0001 0001 1.000
2 0001 0001 0140 0001 0365 0333 0050 0000 0001 0001 Q0oL 0001 0001 Q001 0001 0001 00930
3 0001 0001 0116 0001 0371 0312 0189 0001 0001 0001 0001 0001 0001 0001 0001 0001 1.000
40001 0001 0172 0001 0433 0245 0138 0001 0001 0001 0001 0001 0001 0001 0001 0001 1.000
5 0239 0001 0001 0001 0002 0327 0400 0001 0001 0001 0001 0001 0001 0001 0001 0001 0.986
6 0001 0001 0.170 0001 0.001 0.061 0.543 0.001 0.001 0213 0001 0001 0.001 0001 0001 0001 0.939
7 0001 0001 0169 0001 0173 0364 0263 0001 0001 0019 0001 0001 0001 0.001 0001 0001 0.849
§ 0001 0001 0167 0001 0370 0278 0173 0001 0001 0001 0001 0001 0001 0001 0001 0001 0888
9 0184 0001 0001 0001 0528 0246 0001 0001 0001 0001 0001 0001 0020 0001 0.001 0.001  0.930
10 0001 0001 0278 0001 0366 0172 0172 0001 0001 0001 0001 0001 0.001 0001 0001 0001 1.000
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Fig. 4. Compare efficiency scores obtained from the models of Bio-MCDEA and Bio-

MCDEA R
1/2
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o/8 ) W,
—4— Bio-M CDEA efficiency ¥ ¥
—— Bio-MCDEA-R efficiency by (0.5, 0.5) o/6
Bio-MCDEA-R efficiency by (0.2, 0.8)
— Bin-MCDEA-R efficiency by (0.6, 0.5) OF%
0/2
0 . .
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Figure 4 is a point chart comparing the
efficiency scores of Bio-MCDEA and Bio-
MCDEA-R models. In order to solve the
Bio-MCDEA model, we use the weight
vectors W = (0.5,0.5), and the weight
vectors W = (0.5,0.5),

W = (0.2,0.8), and W = (0.4,0.6) are
used to solve the Bio-MCDEA-R model.
Results are provided in Tables 10, 11, 12
and 13, respectively. As can be seen, all
values obtained from model (9) are greater
than or equal to their corresponding values
in Model (3), which reveals that Model (9)
can prevent the efficiency underestimation
and lack of discrimination power and poor
weight dispersion in Model (3) and cause
the Bio-MCDEA-R model to have a higher
weight discrimination power comparing to
Bio-MCDEA models.

5. Conclusion

This article deals with three important
issues, namely the discrimination power of
weights, underestimation of efficiency and
pseudo-inefficiency. In this regard, we
engaged in a comparison of results from
the GPDEA models provided by Bal et al.
[25, 26], the MCDEA model proposed by
Li and Reeves [23] and the Bio-MCDEA
presented by Ghasemi et al. [24]. As
discussed in the previous sections, the
main drawback of all these models is low
discrimination power and the issue that
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some input and output components are not
involved in the evaluation of efficiency
when weights become zero. In order to
overcome said problems, we made use of
DEA-R-I models since they enjoy the
following  properties:  Firstly,  the
efficiency values obtained from these
input-oriented models under constant
returns to scale assumption are greater than
or equal to the corresponding efficiency
values in CCR models. Secondly, CCR
models falsly introduce some efficient
units as inefficient, due to an inherent
weight restriction and the zero weights
corresponding to certain input and output
components, while this does not occur in
DEA-R-I models. Thirdly, since in the
optimal solutions obtained from CCR
models, some weights corresponding to
certain input and output components equal
to zero, the efficiency values are calculated
inaccurately for some units (less than the
true values), which is referred to as
efficiency underestimation. This issue has
been resolved, to some extent, in DEA-R-
| based models. In this paper, the models
presented by Ghasemi et al. [24], including
GPDEA, MCDEA, and Bio-MCDEA, all
of which exhibit a multi-objective
programming framework, were developed
based on the DEA-R-I models and three
new models were introduced. Through
numerical examples, we demonstrated the
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advantages of these models over previous
ones. In this regard, we showed that the
three aims of increasing discrimination
power, reducing efficiency
underestimation and eliminating pseudo-
inefficiency can be achieved by choosing
appropriate weights for the objective
functions. The models presented in this
paper are based on DEA-R and consider a
ratio of inputs to outputs in their
calculations. In the first model, there is a
weight restriction as a constraint, which
prevents the weight average from equaling
to zero. One of the features of the proposed
models is that they are always feasible and
when there is a higher number of units
under evaluation compared to the number
of inputs and outputs, the accuracy of
results would increase. For future studies,
the above-mentioned models can be
extended to variable returns to scale and
other MOLP problem solving methods,
including interactive methods such as
STEM and ZW, can be used to solve the
models. We also suggest development of
the above-mentioned models for imprecise
data.
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