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Abstract 

One of the problems of the data envelopment analysis traditional models in the multiple form 

that is the weights corresponding to certain inputs and outputs are considered zero in the 
calculation of efficiency and this means that not all input and output components are utilized 

for the evaluation of efficiency, as some are ignored. The above issue causes the efficiency 

score of the under evaluation unit not to be calculated correctly. One of the ways to deal with 
the pseudo-inefficiency is to use data envelopment analysis models with multi-criteria 

structure. In this regard, we first investigate the models of data envelopment analysis with 

multi-criteria structure and further, with regard to the ability of the ratio-based data 

envelopment analysis models, we develop data envelopment analysis models with a multi-
criteria structure for ratio data and the feasibility and the bounded condition of the above 

models and their efficiency intervals are described. By presenting a numerical example, we 

compare the efficiency scores obtained from the models presented with the previous models 
and we show that the proposed models can be used to deal with the pseudo-inefficiency and 

efficiency underestimation. Finally, we present the results. 
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1. Introduction 
DEA is a technique based on mathematical 

programming, used for evaluating the 

relative efficiency of a set of decision-

making units (DMUs). The efficiency of 
each DMU is determined by the efficiency 

frontier. The units on the efficiency 

frontier are assumed efficient, and the 
others are considered inefficient. 

Technically, DEA sets up a production 

possibility set (PPS) and considers its 

frontier as the efficient frontier, formed 
under the condition of non-domination. 

Extended by Charnes et al. (1978). DEA 

enjoys the advantage of weight selection, 
which was one of the most frequently 

studied topics in DEA literature.  

Many studies have been conducted in the 
area of weights. Meanwhile, a weakness in 

DEA is lack of discrimination among 

efficient DMUs, which yields a large 

number of efficient units; this occurs when 
the number of units under evaluation is 

less than the sum of inputs and outputs. In 

such cases, the weights corresponding to 
certain inputs and outputs are considered 

zero for the efficient DMUs and this means 

that not all input and output components 
are utilized for the evaluation of 

efficiency, as some are ignored. As a result 

of the unrealistic weight distribution in 

DEA, some units may be considered 
efficient in the analysis, while not really 

having an efficient performance; this is 

due to assignment of an overly large 
weight to an output or an overly small 

weight to an input. Thompson et al. (1986, 

1990) were the first to utilize weight 

restrictions for improving the 
discrimination power. Their work was 

extended later by other authors in the field; 

in this relation, the method of assurance 
region (AR) was proposed by Charnes et 

al. (1990) as well as Khalili et al. (2010). 

Another method of weight restriction is the 
cone-ratio method, presented in (Dyson 

and Thanassouli, 1988; Mecit and Alp, 

2013; Sarrico and Dyson, 2004; 

Thanassoulis and Allen, 1998). It is worth 

mentioning that all these models were 
presented in order to deal with the problem 

of unrealistic weights distribution. The 

problem with AR and cone-ratio methods 

was their dependence on the measurement 
of inputs and outputs, which sometimes 

led to the infeasibility of models and 

computational difficulties.  
Super-efficiency models were presented in 

1993 by Anderson and Peterson, aiming to 

overcome the problem of discrimination 

power and poor weights dispersion, as 
presented in (Andersen and Petersen, 

1993; Chen et al., 2013; Chen and Liang, 

2011). Another method for dealing with 
the issue of discrimination power was the 

cross-efficiency technique presented by 

Wang and Chin (2010, 2011). The problem 
with super-efficiency models was the 

infeasibility of some efficient units under 

variable returns to scale assumption. 

Though Chen studied the input- and 
output-oriented models, this problem of 

infeasibility was not overcome, as pointed 

out in the counterexamples presented by 
Soleimani-damaneh et al. (2006) regarding 

Chen’s model. Lee et al. (2011, 2012) 

presented a two-stage process for dealing 
with the infeasibility problem through 

adjustments in input savings and output 

surpluses. Also, Lee et al. (2012) showed 

that in cases where some inputs and 
outputs had zero values, the problem still 

remained infeasible. 

The main problems of cross-efficiency 
techniques included multiple weights and 

solutions in the related models, besides the 

large number of solutions, and the need to 

solve numerous linear and nonlinear 
programming problems (see Angiz et al., 

2010; cooks et al., 2013).  

One of the techniques used for improving 
the discrimination power was the 

utilization of multi-objective models in 

DEA, see (Chen et al., 2009; Foroughi et 
al., 2011; Li and Reeves 1999). The 

formulation presented by Li and Reeves 

(1999) was a tri-objective problem, in 

which the three objectives did not have any 
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priority over each other; however, as 
mentioned by Ghasemi et al. (2014), the 

model proposed by Li and Reeves (1999) 

exhibited the problem of having zero 

weights in some input or output 
components, which led to those 

components not being involved in the 

evaluation of efficiency. They showed that 
multi-objective models do not solve the 

problem of discrimination power. 

 Bal et al. (2008, 2010) used goal 
programming to solve the MCDEA model 

and proposed the GPDEA model. They 

argued that the GPDEA model would 

resolve the discrimination power issue; 
meanwhile, Ghasemi et al. (2014) showed 

that the model still suffers the problems of 

previous models and the weights of certain 
input or output components may still be 

zero; so, these components may not be 

involved in the efficiency measurement 
and incorrect efficiency values may result. 

Ghasemi et al. (2014) presented the Bio-

MCDEA model in order to deal with the 

problem of discrimination power and solve 
the problems with the previous models. 

Providing a bi-objective model based on 

the MCDEA model, they showed that the 
proposed model solves the previous 

problems, and it is more suitable from the 

viewpoint of computation. However, their 

suggested model is based on imposition of 
weight restrictions on input and output 

components, and if the restrictions are 

removed, some input and output weights 
may become zero and the above-

mentioned problem would remain 

unsolved. However, it provides more 
realistic efficiency values. 

Wei et al. (2011c, 2011a) presented an 

input-oriented ratio-based model (DEA-R-

I model) based on the ratio of input to 
output components and showed that the 

model can be an eligible alternative for the 

CCR models. The above-mentioned 
(input-oriented) models, due to having a 

larger space for weight selection, enjoy 

greater efficiency levels than input-

oriented CCR models; meanwhile; the 
CCR model does not consider weight 

restrictions and some weights may become 

zero when evaluated by this model, 

therefore, the corresponding weights 
might not be involved in the evaluation of 

efficiency; however, the DEA–R-I model 

obviates this problem to some extent. The 
above-mentioned (input-oriented) model 

can be a proper substitute for the input-

oriented CCR model (CCR-I model) 
without weight restriction; thus, the 

discrimination power problem is resolved 

in the CCR-I model. Later, Wei et al. 

(2011a) demonstrated that the CCR model 
may not properly reflect the efficiency 

value of some units and face the problem 

of efficiency underestimation (US), which 
was proven to be more critical for efficient 

units, as it mostly involves them. 

Wei et al. (2011c) compared the efficiency 
and super-efficiency values in CCR-I and 

DEA-R models and revealed their 

differences. They showed that the 

efficiency values in DEA–R-I models are 
greater than or equal to the corresponding 

weights in CCR-I models, which would 

reduce efficiency underestimation in 
DEA-R, as opposed to CCR-I. They 

showed that the inherent limitation in the 

CCR-I model leads to the inefficiency of 

units that are efficient in practice; in this 
regard, their values are ignored due to the 

zero weights in input and output 

components and the efficient DMUs are 
considered inefficient. Subsequently, they 

began analyzing their super-efficiency 

models and showed that the efficiency 
underestimation problem was present in 

the super-efficiency model as well. In a 

comparison of values obtained from CCR-

I- and DEA-R-I-based super-efficiency 
models, Wei et al. (2011c) indicated that 

the super-efficiency values of DEA-R-I 

models are greater than or equal to their 
corresponding values in CCR-I; they also 

found that the super-efficiency values 

obtained from CCR-I models are not real 
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values for some units. Besides, by keeping 
the output levels constant, super-efficiency 

DEA–R-I models provide lower input 

levels for the units to remain efficient, and 

this shows that the super-efficiency CCR-I 
models do not represent the exact super-

efficiency values for some units and the 

super-efficiency values presented by 
DEA-R-I are more accurate and suitable 

for ranking extremely efficient units. This 

feature is rooted in the nature of DEA-R-I 

models, since DEA-R-I models enjoy a 
greater space for selecting weights and the 

mean weights of input and output 

components is greater in DEA-R-I models 
compared to their corresponding super-

efficiency models in CCR-I.  

Wei et al. (2011b) utilized the DEA–R-I 
model for evaluation of efficiency among 

hospitals, and raising the problem of 

pseudo-inefficiency, indicated that due to 

inherent weight restrictions, some efficient 
units in the CCR-I model are determined 

as inefficient; this phenomenon is called 

pseudo-inefficiency. They also 
demonstrated that the efficiency values of 

the DEA-R-I model are usually greater 

than or equal to the corresponding values 
in the CCR-I model. They showed that the 

same CCR inefficient units are DEA-R-I 

efficient. Therefore, using the DEA-R-I 

model is a proper approach for dealing 
with the phenomenon of the pseudo-

inefficiency.  

Given the importance of DEA-R-I 
compared to CCR-I models, the author 

decided to propose a new model based on 

DEA-R-I with a multi-objective 

programming framework in order to deal 
with the issue of discrimination power. In 

this regard, considering the characteristics 

of DEA-R models in weight selection and 
their larger space for weight selection 

compared to the CCR-I model, we can use 

these models to overcome the 
discrimination power issue. Therefore, 

with consideration to the problems of 

previous models, this article provides 

several new models within a multi-

objective programming framework based 
on DEA-R-I in order to address the 

problem of discrimination power. 

Moreover, through comparison with 

previous models, we will demonstrate the 
advantages to these new models in dealing 

with the problem of pseudo-inefficiency 

and efficiency underestimation.  
The rest of the paper is organized as 

follows: The second section is a brief 

description of GPDEA, MCDEA, bio-

MCDEA and DEA-R-I models, as well as 
a discussion of their strengths and 

weaknesses. Then, the new models for 

improvement of discrimination power in 
MCDEA are provided and in the next 

section, a numerical example is set based 

on previous and new models. Finally, the 
results are analyzed and compared and in 

the end, the conclusions are drawn. 

 

2. Improving Discrimination Power in 

Data Envelopment Analysis 

2.1 Multiple Criteria Data Envelopment 

Analysis (MCDEA) 
Consider n decision-making units that 

consume m inputs (𝑥𝑖𝑗, 𝑖 = 1, . . , 𝑚, 𝑗 =

1, … , 𝑛 )   in order to produce s outputs (𝑦𝑟𝑗  

, 𝑟 = 1, . . , 𝑠,   𝑗 = 1, … , 𝑛 ). Li and Reeves 

(1999) presented the problem of MCDEA 
as follows: 

Model 1: Multiple criteria data 

envelopment analysis (MCDEA) 

 min    ( 𝑑𝑜  𝑜𝑟  max   𝜃0 = ∑ 𝑢𝑟𝑦𝑟0
𝑠
𝑟=1 )   

 min         𝑀, 
 min      ∑ 𝑑𝑗

𝑛
𝑗=1 , 

𝑠. 𝑡.           ∑ 𝑣𝑖𝑥𝑖0 = 1,𝑚
𝑖=1                      (1) 

∑ 𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1 − ∑ 𝑣𝑖𝑥𝑖𝑗 + 𝑑𝑗 = 0,   𝑚

𝑖=1   

𝑗 = 1, … , 𝑛, 
𝑀 − 𝑑𝑗 ≥ 0, 𝑗 = 1, … , 𝑛, 

 𝑢𝑟 ≥ 0,   𝑟 = 1, … , 𝑠, 
𝑣𝑖 ≥ 0,   𝑖 = 1, … , 𝑚,   𝑑𝑗 ≥ 0,   

 𝑗 = 1, … , 𝑛. 
 

In this model, 𝑑0 is the measure of 

inefficiency, while ℎ𝑜 = 1 − 𝑑𝑜 is the 

measure of efficiency and ∑ 𝑢𝑟𝑦𝑟𝑜 
𝑠
𝑟=1 is 

the efficiency value in traditional DEA 
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models. M indicates the maximum 
deviation and the last objective function 

shows the sum of all deviations; the 

constraint 𝑀 − 𝑑𝑗 ≥ 0, 𝑗 = 1, … , 𝑛.   
optimizes all functions simultaneously. 

We use the adaptive weighted sum method 

to solve the MOLP problem above; to this 
end, we turn the problem into a single-

objective problem. In this regard, we 

assume: min   𝑤1 𝑑𝑜 + 𝑤2𝑀 +

𝑤3 ∑ 𝑑𝑗
𝑛
𝑗=1 . The weight vectors 

(𝑤1, 𝑤2, 𝑤3) are selected based on the 
importance of each objective function 

according to the decision-maker’s 

preferences. If we choose the weight 

vector 𝑤 =  (0,0,1) to solve Model (1), the 

resulting model would be called Minsum. 

Li and Reeves (1999) did not propose a 

solution for their model which could 
optimize all objective functions at the 

same time. To solve the MCDEA problem, 

we can use the goal-programming 
approach, which optimizes the problem 

with respect to the ideals of the objective 

functions.  
Bal et al. (2008, 2010) presented the 

following goal-programming model to 

solve the MCDEA problem provided by Li 

and Reeves (1999): 
Model 2: Goal programming data 

envelopment analysis under CRS 

(GPDEA-CCR) 

min   𝑎 = {d1
− + d1

+ + d2
+ + ∑ 𝑑3𝑗

−𝑛
𝑗=1 +

∑ dj
𝑛
𝑗=1 }        

s. t.           ∑ 𝑣𝑖
m
i=1 xi0 + d1

− − d1
+ = 1, 

∑ 𝑢𝑟yr0 + d2
− − d2

+ = 1s
r=1 , 

∑ 𝑢𝑟𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑥𝑖𝑗 + 𝑑𝑗 = 0𝑚
𝑖=1

𝑠
𝑟=1 ,  𝑗 =

1, … , 𝑛,                                           (2) 

𝑀 − 𝑑𝑗 + 𝑑3𝑗
− − 𝑑3𝑗

+ = 0,       𝑗 = 1, … , 𝑛, 
𝑢𝑟 ≥ 0,   𝑟 = 1, … , 𝑠, 𝑣𝑖 ≥ 0,   𝑖 = 1, … , 𝑚, 

𝑑𝑗 ≥ 0,    𝑗 = 1, … , 𝑛,    d1
−, d1

+, d2
−,

d2
+ ≥ 0,   d3j

−  , d3j
+ ≥ 0,   𝑗 = 1, … , 𝑛. 

 

In this model, d1
− and d1

+ are unwanted 
deviations for the goal, where the weighted 
sum of inputs under analysis equals to 

unity. Variables d2
+ and d2

− are wanted and 
unwanted deviation variables 

corresponding to the weighted sum of 
outputs in the unit under evaluation, which 

is less than or equal to 

unity. d3j
+  and d3j

−   are wanted and 

unwanted deviation variables for the goal 

M − dj ≥ 0. The weights of all deviations 

in the objective function are equal and 
deviations from the goal value are 

minimized. It should be noted that the 

main problem of GPDEA models, as 
mentioned by Ghasemi et al. (2014), is the 

zero values of some weights 

corresponding to some inputs and outputs 

in the optimal solution. Therefore, 
efficiency values are calculated 

inaccurately for those units and efficiency 

is not determined precisely. It is even 
possible that the obtained efficiency values 

of some units would be less than the actual 

values; i.e., pseudo-inefficiency would 
occur. Hence, GPDEA-CCR models 

cannot be utilized for dealing with the 

problem of dispersion and discrimination 

power in DEA. Another model in this 
relation is the bio-MCDEA model 

provided by Ghasemi et al. (2014) as 

follows: 
Model 3: Bi-objective multiple criteria 

data envelopment analysis (BiO-MCDEA) 

model  

min        ℎ = (𝑤2 M + w3 ∑ 𝑑𝑗
𝑛
𝑗=1 )   

𝑠. 𝑡.             ∑ 𝑣𝑖𝑥𝑖0 = 1,𝑚
𝑖=1            (3) 

∑ 𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1 − ∑ 𝑣𝑖𝑥𝑖𝑗 + 𝑑𝑗 = 0,𝑚

𝑖=1   

𝑗 = 1, … , 𝑛, 
𝑀 − 𝑑𝑗 ≥ 0, 𝑗 = 1, … , 𝑛, 

𝑢𝑟 ≥ 𝜀,   𝑟 = 1, … , 𝑠, 
𝑣𝑖 ≥ 𝜀,   𝑖 = 1, … , 𝑚,    𝑑𝑗 ≥ 0,   

  𝑗 = 1, … , 𝑛. 
 

In multiple-objective linear programming 

(MOLP) and multiple-criteria decision-
making (MCDM) models, the set of a 

problem’s optimal solutions are efficient 

or non-dominated solutions that optimize 

all objective functions simultaneously. 
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The aim is to provide a model with an 
objective function in order to obtain the 

efficiency scores and efficient solutions. 

We use the weighted sum method to solve 

the MCDEA model; to this end, we turn 
the problem into a single-objective 

problem. In this regard, we assume: 

min   𝑤1 𝑑𝑜 + 𝑤2𝑀 + 𝑤3 ∑ 𝑑𝑗
𝑛
𝑗=1 . The 

weight vectors (𝑤1 , 𝑤2, 𝑤3) are selected 

based on the importance of each objective 

function according to the decision-maker’s 
preferences. If we choose the weight 

vector 𝑊 =  (0,1,1) to solve Model (1), 

the resulting model would be called BIO-

MCDEA. 𝑤2 and 𝑤3 represent the 

significance of functions M and ∑ 𝑑𝑗, 

respectively, as selected by the decision-
maker; therefore, any changes in them 

would lead to changes in the efficiency 

scores. Note that Model (3) is initially a 
bio-objective problem presented as 

min  {M , ∑ 𝑑𝑗
𝑛
𝑗=1 } , which we solve using 

the adaptive weighted sum method; in this 

regard, we put  

min  (𝑤2 M + w3 ∑ 𝑑𝑗
𝑛
𝑗=1 )  and turn 

Model (3) into a single-objective problem. 

Ghasemi et al. (2014) considered the 
weights equal in solving the same 

problem. In this model, since the 

importance of the second objective 
function is to further increase the 

discrimination power, greater weights are 

assumed for the second objective function. 

The difference between bio-MCDEA and 
MCDEA models is in the presence or 

absence of objective d0; because when 
∑ 𝑑𝑗

𝑛
𝑗=1  is minimized in the bio-MCDEA 

model, d0 is minimized as well. Now we 

present new DEA-R-I based models which 
can overcome the following problems 

existing in previous models: 

1. Improving the discrimination power 

2. Eliminating pseudo-inefficiency 
3. Overcoming efficiency 

underestimation. 

The following DEA-R-I model was 
presented based on the ratio of inputs to 

outputs for analyzing the efficiency of 

decision-making units and obtaining the 
efficiency scores (Wei et al., 2011c). 

 Model 4: An input-oriented ratio-based 

data envelopment analysis (DEA-R-I) 

model. 

𝜃𝑜
∗ = 𝑚𝑎𝑥         𝜃𝑜  

 𝑠. 𝑡.         ∑ ∑ 𝑤𝑖𝑟
𝑠
𝑟=1

𝑚
𝑖=1

(
𝑥𝑖𝑗

𝑦𝑟𝑗
⁄ )

(𝑥𝑖𝑜
𝑦𝑟𝑜

⁄ )
  ≥  𝜃𝑜 ,    

𝑗 = 1, … , 𝑛,                                            (4) 
∑ ∑ 𝑤𝑖𝑟

𝑠
𝑟=1

𝑚
𝑖=1 = 1,     𝑤𝑖𝑟 ≥ 𝜖,     𝜃𝑜 ≥ 0. 

 

In this model, wir is the weight 

corresponding to the ratio of the 𝑖-th input 

variable to the 𝑟-th output variable.  

There are two types of inefficiency in 

conventional DEA models: 

1- Weak efficiency; 2- Pseudo-
inefficiency. 

If our model detects inefficient units as 

efficient ones, we call them weakly 
efficient; we use two-phase models (see: 

Cooper et al., 2007) or SBM model (see: 

Tone, 2001) to resolve the issue of weak 
efficiency. Pseudo-inefficiency occurs 

when efficient units are wrongly identified 

as inefficient; this happens as a result of 

the natural weight limitations in 
conventional DEA models such as CCR 

and BCC models. DEA-R-I models are 

used to deal with the concept of pseudo-
inefficiency. These models provide a 

bigger solution space for weight selection, 

which causes the input-oriented efficiency 
scores calculated by them to be greater 

than or equal to the scores obtained from 

conventional DEA models. The inherent 

weight limitations in conventional DEA 
models results in an inaccurate calculation 

of efficiency scores and therefore, some 

units are mistaken as being inefficient; in 
this regard, the decision-maker would then 

be forced to make changes in the inputs 

and outputs of these units to make them 

efficient, which could burden the DM with 
very high expenses. Therefore, it is 

imperative to use models such as DEA-R-

I, which can provide us with accurate 
efficiency scores. The fact that the 
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efficiency scores obtained from input-
oriented DEA-R-I models are greater than 

or equal to their corresponding values in 

input-oriented CCR models doesn’t reveal 

the weakness of these models; on the other 
hand, these models prevent the issues of 

efficiency underestimation and 

discrimination power and poor weight 
dispersion. 

The issue of efficiency underestimation is 

another important subject in data 
envelopment analysis; this problem 

happens when the efficiency of units is 

inaccurately measured by conventional 

models such as CCR and BCC; in such 
cases, the efficiency scores calculated by 

conventional models are lower than their 

actual values based on the level of inputs 
and outputs. We can use the DEA-R-I 

models in studies with such outcomes. 

These models consider a weight for each 
inputs/outputs ratio and involve all ratios 

in the efficiency measurement; whereas, 

the conventional models don’t involve the 

input and output components which have a 
corresponding weight of zero in their 

calculations and therefore, the efficiency 

scores aren’t calculated correctly and the 
efficiency underestimation issue occurs. 

We must note that if the efficiency scores 

obtained from CCR and DEA-R-I models 

were the same, efficiency underestimation 
wouldn’t occur; on the other hand, if the 

non-zero weights related to outputs were 

not the same, the efficiency scores of CCR 
and DEA-R-I models will not be equal; in 

this relation, the efficiency scores obtained 

from the DEA-R-I models will be greater 
than or equal to their corresponding values 

in the input-oriented CCR models and 

efficiency underestimation will not occur; 

now, we arrive at the following two 
assumptions (see Wei et al., 2011b ): 

H1. When DEA-R-I weights are 

concentrated on one output, the CCR-I 
efficiency, and DEA-R-I efficiency, are 

the same. 

H2. When DEA-R-I weights are not 
concentrated on multiple outputs, DEA-R-

I efficiency and CCR-I efficiency are not 

the same, with the exception of, every 

output of the referenced DMU is the same 
times of corresponding output of targeted 

DMU. 

According to the abovementioned reasons, 
input-oriented DEA-R models are more 

capable to deal with efficiency 

underestimation and discrimination power 
and poor weight dispersion problems; 

therefore, the higher efficiency scores of 

these models compared to CCR models is 

not proof of weakness, but strength.  
As mentioned by Wei et al. (2011b), the 

efficiency and super-efficiency values 

obtained from the abovementioned models 
are greater than or equal to the 

corresponding values in CCR-I models; 

therefore, these models prevent the 
problems of efficiency underestimation 

and pseudo-inefficiency and are preferred 

to traditional DEA models. 

To determine the value of 𝜖 in Model (4), 
we can solve the following model and 

arrive at the maximum value of 𝜖. 

max          𝜖        

 𝑠. 𝑡.         ∑ ∑ �̅�𝑖𝑟
𝑠
𝑟=1

𝑚
𝑖=1

(
𝑥𝑖𝑗

𝑦𝑟𝑗
⁄ )

(𝑥𝑖𝑜
𝑦𝑟𝑜

⁄ )
  ≥  𝜃 ,    

𝑗 = 1, … , 𝑛,                                            (5) 
∑ ∑ �̅�𝑖𝑟

𝑠
𝑟=1

𝑚
𝑖=1 = 1,     �̅�𝑖𝑟 ≥ 𝜖,     𝜃 ≥ 0. 

 
Theorem 1: Model (4) is feasible for 

every 𝜖 ≤ 𝜖∗ and infeasible for every  𝜖∗ ≤
ϵ . 

Proof: Assume that (�̅�𝑖𝑟
∗, 𝜃∗, 𝜖∗),  

 𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠, is the optimal 

solution for the Model (5). Then (�̅�𝑖𝑟
∗,

𝜃∗, 𝜖), 𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠,  𝜖 ≤ 𝜖∗   
is the feasible solution for the Model (5), 

Since Model (5) and Model (4) have the 

same feasible region, then (�̅�𝑖𝑟
∗,

𝜃∗, 𝜖),   𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠,  𝜖 ≤ 𝜖∗ 
is the feasible solution for the Model (4). 

We must note that Model (5) is always 

feasible, it is sufficient to introduce a 
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feasible solution for the model. Without 

loss of generality, suppose  𝜃 = 0, �̅�𝑖𝑟 =
1

𝑚∗𝑠
 , 𝑖 = 1, … , 𝑚,  𝑟 = 1, … , 𝑠.  It is easy to 

verify that is a feasible solution for Model 

(5).  

Now, suppose that (�̅�𝑖𝑟
′, 𝜃′, 𝜖), 

𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠,  𝜖 >  𝜖∗ is a 

feasible solution to Model (4). Since the 

feasible regions of Models (4) and (5) are 

the same, (�̅�𝑖𝑟
′, 𝜃′, 𝜖), 𝑖 = 1, … , 𝑚,   𝑟 =

1, … , 𝑠,  𝜖 >  𝜖∗ is therefore the feasible 

solution to model (5) with a larger 

objective function value than (�̅�𝑖𝑟
′,

𝜃′, 𝜖∗),  which is in contradiction with the 

optimality of 𝜖∗. As a result, Model (4) is 

infeasible for every  𝜖∗ ≤ ϵ .  ∎ 

 

Theorem 2: 0 ≤ 𝜃𝑜
∗ ≤ 1. 

Proof: Since the first constraint of Model 

(4) applies to every 𝑗 = 1, … , 𝑛, if we let 

𝑗 = 0, we will have: ∑ ∑ 𝑤𝑖𝑟
𝑠
𝑟=1

𝑚
𝑖=1 ≥ 𝜃𝑜

∗, 

however, according to the second 

constraint ∑ ∑ 𝑤𝑖𝑟
𝑠
𝑟=1

𝑚
𝑖=1 = 1, therefore 

 0 ≤ 𝜃𝑜
∗ ≤ 1. ∎ 

 

3. MCDEA models based on DEA-R-I 

models  

In this section, the models in the previous 

section are developed based on DEA-R-I 

models.  
First, consider the MCDEA model 

proposed by Li and Reeves (1999) in the 

previous section. Based on models of 
DEA-R-I, the multi-criteria model for 

evaluating efficiency is presented as 

follows: 

Model 6: An input-oriented ratio-based 
multiple criteria data envelopment analysis 

model (MCDEA-I-R) 

max          𝜃𝑜 

 min           𝑀 

 min        ∑ 𝑑𝑗
𝑛
𝑗=1  

  𝑠. 𝑡.         ∑ ∑ 𝑤𝑖𝑟
𝑠
𝑟=1

𝑚
𝑖=1

(
𝑥𝑖𝑗

𝑦𝑟𝑗
⁄ )

(𝑥𝑖𝑜
𝑦𝑟𝑜

⁄ )
 − 𝑑𝑗 =

 𝜃𝑜 ,       𝑗 = 1, … , 𝑛,                                  (6) 
∑ ∑ 𝑤𝑖𝑟

𝑠
𝑟=1

𝑚
𝑖=1 = 1,    𝑤𝑖𝑟 ≥ 𝜀,     

𝜃𝑜 ≥ 0,      𝑖 = 1, … , 𝑚   , 𝑟 = 1, … , 𝑠, 

𝑀 − 𝑑𝑗 ≥ 0, 𝑗 = 1, … , 𝑛. 

 

In the model, 𝜃𝑜 is the efficiency value and 

𝑑𝑗 is the distance between the efficiency 

score of the DMU under evaluation and the 

weighted sum of the input to output ratio 
of all DMUs to that of the DMU under 

evaluation. M represents the maximum 

deviation. In order to solve the problem 

above, we can use the MOLP problem 
solving methods such as the weighted sum 

of objective functions. By selecting the 

proper weight vector, we can calculate the 
efficiency values obtained from the model 

for the unit under evaluation as ℎ𝑜 = 1 −
𝑑𝑜; furthermore, by increasing the weight 

corresponding to the objective 

function  𝜃𝑜 , we can increase the 

efficiency values and therefore, prevent 

pseudo-inefficiency and efficiency 
underestimation.  

 

Theorem 3: Model (6) is feasible for 

every 𝜖∗ ≤ ϵ and infeasible for every 𝜖 ≤
𝜖∗. 

Proof: Assume that (�̅�𝑖𝑟, �̅�𝑜 , 𝜖∗), 
𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠,  is the optimal 

solution for the Model (5). Also, let �̅�𝑗 =

 ∑ ∑ �̅�𝑖𝑟
𝑠
𝑟=1

𝑚
𝑖=1

(
𝑥𝑖𝑗

𝑦𝑟𝑗
⁄ )

(𝑥𝑖𝑜
𝑦𝑟𝑜

⁄ )
 − �̅�𝑜, j=1,…n, 

�̅� = 

max
1≤𝑗≤𝑛

{ ∑ ∑ �̅�𝑖𝑟
𝑠
𝑟=1

𝑚
𝑖=1

(
𝑥𝑖𝑗

𝑦𝑟𝑗
⁄ )

(𝑥𝑖𝑜
𝑦𝑟𝑜

⁄ )
 − �̅�𝑜}. 

 

It is clear than (�̅�, �̅�𝑖𝑟 , �̅�𝑗, �̅�𝑜, 𝜖∗), 

𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠, 𝑗 = 1, … , 𝑛,  be 
a feasible solution for Model (6). Hence 

(�̅�, �̅�𝑖𝑟, �̅�𝑗 , �̅�𝑜, 𝜖), 𝑖 = 1, … , 𝑚, 

 𝑟 = 1, … , 𝑠, 𝑗 = 1, … , 𝑛,  𝜖 ≤ 𝜖∗  is as a 
feasible solution for the Model (6). 

Now on the contrary, suppose that 

(�̅�, �̅�𝑖𝑟, �̅�𝑗 , �̅�𝑜, 𝜖),               𝑖 = 1, … , 𝑚, 

 𝑟 = 1, … , 𝑠, 𝑗 = 1, … , 𝑛, 𝜖 > 𝜖∗ is a 

feasible solution for Model (6). Hence 

(�̅�𝑖𝑟 , �̅�𝑜, 𝜖), 𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠, 
𝜖 > 𝜖∗ is a feasible solution Model (5) 

with a larger objective function value than 
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( �̅�𝑖𝑟 , �̅�𝑜, 𝜖∗),   𝑖 = 1, … , 𝑚,   𝑟 = 1, … , 𝑠, 
which contradicts the optimality condition. 

As a result, Model (6) is infeasible for 𝜖 >
𝜖∗. ∎  

 

Theorem 4: The optimal value of  θo in 

Model (6) is always equal to or greater 

than unity. 

Proof: In order to show that 0 ≤ 𝜃𝑜
∗ ≤ 1, 

we let j = o in the first equation of Model 

(6); therefore, we arrive at 
∑ ∑ 𝑤𝑖𝑟

𝑠
𝑟=1

𝑚
𝑖=1 − 𝑑𝑜 = 𝜃𝑜, however, 

according to the second constraint of 

Model (6) : ∑ ∑ 𝑤𝑖𝑟
𝑠
𝑟=1

𝑚
𝑖=1 = 1, 𝜃𝑜 ≥ 0, 

𝑑𝑜 ≥ 0  therefore  1 − 𝑑𝑜 = 𝜃𝑜. Hence 

0 ≤ 1 − 𝑑𝑜 = 𝜃𝑜 ≤ 1. By attention to 𝜃𝑜 

is an arbitrary feasible solution of Model 

(6) then 0 ≤ 𝜃𝑜
∗ ≤ 1. ∎ 

 

Theorem 5: The objective function value 

of Model (6) is bounded.  
Proof: We prove that Model (6) is always 

feasible in Theorem (3). In accordance 

with the adaptive weighted sum method 

for solving Model (6), we put 

min −𝑤1 𝜃𝑜 + 𝑤2𝑀 +  𝑤3 ∑ 𝑑𝑗
𝑛
𝑗=1  . By 

attention to Theorem (4), 0 ≤ 𝜃𝑜 ≤ 1. The 
resulting objective function is non-

negative on account of a non-negative 

linear combination of  −θo and the other 

two positive terms. Due to the fact that 
Model (6) is a min-type problem the proof 

completes. ∎ 

As mentioned previously, one of the 
methods of solving MCDM problems is to 

utilize goal programming. In the previous 

section, the model provided by Bal et al. 

(2008, 2010) was based on goal 
programming. In this section, we attempt 

to extend that model based on the models 

of DEA-R-I. Our goal programming model 
is presented based on the ratio of inputs to 

outputs as follows: 

Model 7: An input-oriented ratio-based 
goal programming data envelopment 

analysis model (GPDEA-I-R) 

 min           {d1
− + d1

+ + ∑ 𝑑3𝑗
−𝑛

𝑗=1 +

∑ 𝑑𝑗
𝑛
𝑗=1 + ∑ 𝑑2𝑗

−𝑛
𝑗=1 + ∑ 𝑑2𝑗

+𝑛
𝑗=1 } 

  𝑠. 𝑡.          ∑ ∑ 𝑤𝑖𝑟
𝑠
𝑟=1

𝑚
𝑖=1

(
𝑥𝑖𝑗

𝑦𝑟𝑗
⁄ )

(𝑥𝑖𝑜
𝑦𝑟𝑜

⁄ )
 − 𝑑𝑗 +

 𝑑2𝑗
− − 𝑑2𝑗

+ =  𝜃𝑜 ,       𝑗 = 1, … , 𝑛, 

∑ ∑ 𝑤𝑖𝑟
𝑠
𝑟=1

𝑚
𝑖=1 + d1

− − d1
+ = 1,             (7) 

𝑀 − 𝑑𝑗 + 𝑑3𝑗
− − 𝑑3𝑗

+ = 0,    𝑗 = 1, … , 𝑛, 

𝑤𝑖𝑟 ≥ 𝜀,    𝜃𝑜 ≥ 0,      𝑖 = 1, … , 𝑚,      
 𝑟 = 1, … , 𝑠, 
𝑑𝑗 ≥ 0,    𝑗 = 1, … , 𝑛,    d1

−, d1
+  ≥

0,   𝑑2𝑗
− ,   𝑑2𝑗

+ ≥ 0,  

 d3j
−  ,   d3j

+ ≥ 0, 𝑗 = 1, … , 𝑛. 

 

In this model, d1
−, d1

+ are wanted and 
unwanted deviations for the goal the 

weight restriction equal to unity, d2j
− , d2j

+   

(j = 1, … , n) are wanted and unwanted 

deviations for the goal the efficiency score 

of the DMU under evaluation and distance 

between dj with the weighted sum of the 

ratio of inputs to outputs of all DMUs to 

that of the DMU under evaluation. 

Whereas d3j
+  and d3j

−   (j = 1, … , n) are the 

wanted and unwanted deviation variables 

for the goal M − dj ≥ 0. The objective is 

to minimize deviations for holding the 
main constraints. 

Model 8: Alternative an input-oriented 

ratio-based goal programming data 

envelopment analysis model (AGPDEA -
I-R) 

min             {d1
− + d1

+ + ∑ 𝑑3𝑗
−𝑛

𝑗=1 +

∑ 𝑑𝑗
𝑛
𝑗=1 }  

  s. t.           ∑ ∑ 𝑤𝑖𝑟
𝑠
𝑟=1

𝑚
𝑖=1

(
𝑥𝑖𝑗

𝑦𝑟𝑗
⁄ )

(𝑥𝑖𝑜
𝑦𝑟𝑜

⁄ )
 − 𝑑𝑗 = 

 

 𝜃𝑜 ,       𝑗 = 1, … , 𝑛, 
∑ ∑ 𝑤𝑖𝑟

𝑠
𝑟=1

𝑚
𝑖=1 + d1

− − d1
+ = 1,             (8) 

𝑀 − 𝑑𝑗 + 𝑑3𝑗
− − 𝑑3𝑗

+ = 0,    𝑗 = 1, … , 𝑛, 

𝑤𝑖𝑟 ≥ 𝜀,     𝜃𝑜 ≥ 0, 𝑖 = 1, … , 𝑚,      
 𝑟 = 1, … , 𝑠, 
𝑑𝑗 ≥ 0,    𝑗 = 1, … , 𝑛,   d1

−, d1
+  ≥ 0,  

d3j
−  ,   d3j

+ ≥ 0,    𝑗 = 1, … , 𝑛. 
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As discussed in the second section, 
Ghasemi et al. (2014) provided the bio-

MCDEA model in order to deal with the 

topic of the discrimination power in DEA. 

Their bi-objective model provided the 
efficiency value. Meanwhile, when there 

were no weights restrictions for input and 

output weights, the problem of GPDEA 
and MCDEA models was not solved and 

some weights of input and output 

components became zero. In this section, 

we develop a Bio-MCDEA model based 
on DEA-R-I models. Therefore, the 

following Bio-MCDEA-R -I model is 

proposed based on the ratio of inputs to 
outputs, aiming to overcome the problems 

of discrimination power, efficiency 

underestimation, and pseudo-inefficiency. 
Model 9: An input-oriented ratio-based bi-

objective MCDEA (Bio-MCDEA) data 

envelopment analysis model (Bio-

MCDEA-R -I) 

  min          ℎ = (𝑤2 M + w3 ∑ 𝑑𝑗
𝑛
𝑗=1 ) 

 𝑠. 𝑡.          ∑ ∑ 𝑤𝑖𝑟
𝑠
𝑟=1

𝑚
𝑖=1

(
𝑥𝑖𝑗

𝑦𝑟𝑗
⁄ )

(𝑥𝑖𝑜
𝑦𝑟𝑜

⁄ )
− 𝑑𝑗 =

 𝜃𝑜 ,       𝑗 = 1, … , 𝑛,                              (9) 
∑ ∑ 𝑤𝑖𝑟

𝑠
𝑟=1

𝑚
𝑖=1 = 1,     𝑤𝑖𝑟 ≥ 𝜀,     𝜃𝑜 ≥ 0. 

𝑀 − 𝑑𝑗 ≥ 0, 𝑗 = 1, … , 𝑛. 

 

In this model, 𝑑𝑗, 𝑗 = 1, … , 𝑛,  is the 

distance between the efficiency score of 

the DMU under evaluation and the 

weighted sum of the ratio of inputs to 
outputs of all DMUs to that of the DMU 

under evaluation and 𝜃𝑜 is the efficiency 

value which is maximized with 

minimizing 𝑑𝑗s.   
 

Theorem 6: Model (9) is feasible for  
 

every 𝜖∗ ≤ ϵ and infeasible for every 𝜖 ≤
𝜖∗. 

Proof: Since Models (6) and (9) have the 

same feasible regions, the proof is similar 

to our proof for Theorem (3). ∎ 

 

Theorem 7: The optimal value of  θo in 

Model (9) is always equal to or greater 
than unity. 

Proof: In order to show that 0 ≤ 𝜃𝑜
∗ ≤ 1, 

we let j = o in the first equation of Model 
(9); therefore, we arrive at 
∑ ∑ 𝑤𝑖𝑟

𝑠
𝑟=1

𝑚
𝑖=1 − 𝑑𝑗 = 𝜃𝑜, however, 

according to the second constraint of 

Model (9): ∑ ∑ 𝑤𝑖𝑟
𝑠
𝑟=1

𝑚
𝑖=1 = 1, 𝜃𝑜 ≥ 0, 

𝑑𝑜 ≥ 0  therefore  1 − 𝑑𝑜 = 𝜃𝑜. Hence 

0 ≤ 1 − 𝑑𝑜 = 𝜃𝑜 ≤ 1. By attention to 𝜃𝑜 

is an arbitrary feasible solution of Model 

(9) then 0 ≤ 𝜃𝑜
∗ ≤ 1. ∎ 

 

Theorem 8: The objective function value 

of Model (9) is bounded.  
Proof: We prove that Model (9) is always 

feasible in Theorem (6). The objective 

function of Model (9) is a non-negative 
linear combination of positive functions. 

Due to the fact that Model (9) is a min-type 

problem the proof completes. ∎ 
In the above model, in order to increase 

efficiency and prevent pseudo-inefficiency 

and efficiency underestimation problems, 

the weight of 𝜃𝑜  can be increased. In the 
numerical example section, the sensitivity 

analysis of solutions to the above models 

to the change of weights in the objective 
function is provided. 

 

4. Comparison of presented models 

versus previous ones  
In this section, we engage in a comparison 

of previous models with our presented 

models based on DEA-R-I through 
numerical examples.  In this section, 

aiming to discuss to deal with two inter-

related problems: weak discriminating 
power and unrealistic weight distribution. 

We engage in a comparison of results 

published by Ghasemi et al. (2014) in 

order to evaluate efficiency using the 
MCDEA models, as well as the models 

presented in this study. To this aim, we 

made use of the data set used by Ghasemi 
et al. (2014). A set of hypothetical data 

produced randomly from a uniform 

distribution function for 10 decision-
making units with 4 inputs and 4 outputs 

are considered (Ghasemi et al., 2014). The 

data are presented in Table 1. 
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We select the appropriate value of 𝜖 for 
solving Models (4) , (6), (9) according to 

the Theorems (1), (3) and (6). After 

solving Model (5), we obtain  

𝜖∗ = 0.0625 for all DMUs. As regards 
∑ ∑ 𝑤𝑖𝑟

𝑠
𝑟=1

𝑚
𝑖=1 = 1,  𝑤𝑖𝑟 ≥ 𝜖 , then 𝜖 ≤

1

8
= 0.125. 

As respects Ghasemi et al. (2014) used of  

𝜖 = 0.001 for solving their models, so we 

use of 𝜖 = 0.001 for solving our models. 

We first consider the results from the 
GPDEA-CCR model. As the results in 

Table 2 demonstrate, the efficiency values 

provided by Bal et al. (2008, 2010) are 
incorrect and given the zero input and 

output multipliers of unit 1, its efficiency 

is falsely determined as 0.988, while the 
true value equals to zero. The same 

argument stands for unit 5. The efficiency 

values provided by Bal et al. (2008, 2010) 

for other units, as well as the true values, 
are presented in Table 2.  

Table 2 presents the results obtained from 

the GPDEA-CCR model. Since all optimal 

weights related to input and output 
components corresponding with units one 

and three equal to zero, the efficiency 

scores are inaccurately presented by Bal et 
al. (2008, 2010) as 0.968 and 0.95, 

respectively. If we calculate the efficiency 

score based on the concept of economic 
efficiency, meaning the ratio of a weighted 

set of outputs to a weighted set of inputs, 

we will arrive at the accurate efficiency 

scores, as presented in the second column 
of Table 2. Therefore, considering that the 

optimal input and output weights related to 

units one and three become zero, the 
accurate efficiency score for these units 

would be zero. 

 

 

Table 1. Example 1 dataset 
DMU                           Outputs                                                                             Inputs                   

              1y                      2y                      3y                        4y                                      1x                             2x                    3x                     4x  

1  47               93              54               65                      32                  50            82             46 

2  88               56              92               80                      61                  56            68             37 

3   94               65              80               80                      42                  58            45             34 

4   50               53              93               97                      73                  39            88             81 

5   47               42              70               52                      45                  38            68             41 

6   86               45              100             47                      86                  62            44             32 

7  83               91              62               74                      38                  74            71             74 

8   79               60              72               98                      61                  54            70             62 

9   85               68              51               41                      84                  52            38             47 

10  78               95              70               92                      87                  47            31             52 
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Table 2. GPDEA- CCR results based on Example 1 dataset 

 
 
Now, we examine the results of the 

GPDEA- R-I model, as presented in Table 

3. As can be observed, the last column of 
the table shows the efficiency values and 

all units are efficient, except units 5, 6 and 

7. The main reason is not meeting the main 
condition of DEA in the evaluation of 

efficiency; in this regard, the number of 

DMUs should be 3 times as many as the 

sum of inputs and outputs. Accordingly, as 
there are 4 inputs and 4 outputs here, there 

should be 24 decision-making units, while 

the number of units under analysis is 10. 
Comparing Table 3 with Table 2, it can be 

observed that in both models, units 3, 4 and 

10 are efficient and the efficiency values of 
the GPDEA-R-I model are greater than or 

equal to the corresponding values in the 

GPDEA-CCR model for all units. 

Considering the zero values of certain 
weights in GPDEA-CCR models and the 

existing problem of discrimination power, 

in the corresponding GPDEA-R-I models, 
the weight average corresponding to the 

ratio of each input to output component is 

non-zero; i.e., 
∑ 𝑤𝑖𝑟

𝑚
𝑖=1

𝑚
≠ 0, 

∑ 𝑤𝑖𝑟
𝑠
𝑟=1

𝑠
≠ 0 . 

All weights are provided in Table 3 below. 

The GPDEA-R-I model prevents the 

problems of efficiency underestimation 

and pseudo-inefficiency. As can be seen, 
the efficiency values are greater than their 

corresponding values in the GPDEA-CCR 

model.  
Figure 1 is a point chart for comparison of 

efficiency scores between GPDEA-R-

CCR and GPDEA-CCR models. Now we 

analyze the results in MCDEA models 
under assumption of constant returns to 

scale technology. As can be seen in the 

Figure 1, all efficiency scores obtained 
from the GPDEA-R-CCR model are 

greater than or equal to their corresponding 

scores in the GPDEA- CCR models. This 
demonstrates that in comparison with the 

GPDEA-CCR models, GPDEA-R-CCR 

models can prevent the efficiency 

underestimation and discrimination power 
and poor weight dispersion issues and 

increases the power of discrimination. 
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Table 3. GPDEA-R-CCR results based on Example 1 dataset 
 

 
 
Now we analyze the results of MCDEA 

models with constant returns to scale 

technology assumption. Table 4 presents 
the results of Model (1). In order to solve 

the model, we engage in a minimization of 

sum of deviations, i.e., min ∑ 𝑑𝑗
𝑛
𝑗=1  or 

minsum, as mentioned by Ghasemi et al. 

(2014). The weight of the fourth output 

equals to zero in all units. Moreover, the 
weights corresponding to the third input 

are non-zero values for unit 4 only, and 

zero for the other units. This is caused by 

the low capability of the MCDEA model; 

for instance, its lower discrimination 
power and the fact that it ignores the 

significance of third and fourth inputs and 

the fourth output in the calculation of 
efficiency. The weights corresponding to 

the fourth input are zero in units 2, 3, 6, 7 

and 8, which leads to the imprecise 

calculation of efficiency values and thus, 
occurrence of pseudo-inefficiency. 

 

Fig 1. Compare efficiency scores obtained from the models of GPDEA-R-CCR and 

GPDEA-CCR 
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Table 4. Minsum DEA- CCR results based on Example 1 dataset 
 

 
 

Now, we consider the results of Model (6). 
As can be observed from Tables 5, 6, 7, 8 

and 9, the adaptive weighted sum method 

can be used to solve Model (6). In Table 5, 
weights are considered as the vector (0. 5, 

0.45, 0.05) and the last column of Table 5 

indicates that units 1, 3, 4 and 10 are 

efficient, and the others inefficient. Other 
columns show the weights corresponding 

to the ratios of all input to output 

components. Comparing the efficiency 
values obtained from MCDEA and 

MCDEA-R-I models, it can be observed 

that all values in the MCDEA-R-I models 
are greater than or equal to the 

corresponding values in the MCDEA 

models. Only in unit 5 is the MCDEA 

efficiency value greater than the MCDEA–
R-I efficiency value. The value obtained 

from MCDEA is equal to 1 and the 

corresponding value in the MCDEA-R-I 
model equals to 0.986, which is due to the 

decrease in the weight of 𝜃𝑜 in the 

objective function, which here is 𝑤𝜃𝑜
=0.5. 

By increasing the corresponding weight of 

𝜃𝑜 in the objective function, the efficiency 

values can be increased in the MCDEA-R-

I model, so they would be greater than their 
corresponding values in MCDEA. As can 

be seen in Table 5, the average weighted 

sum corresponding to each input to output 

ratio equals to a non-zero value. 
In the presented numerical example, we 

use the adaptive weighted sum method to 

solve the MOLP problems; in this regard, 
the corresponding weights of the objective 

functions are selected based on the 

manager or decision-maker’s preferences. 
For sensitivity analysis and comparison of 

results obtained from the presented models 

with the results of previous models, we use 

a normal weight vector based on the 
importance of each objective function to 

solve the models. 
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Table 5. MCDEA-R-I results based on Example 1 dataset. Weight vector = (0.5, 0.45, 0.05) 
 

 
 

Analyzing the results from the MCDEA-
R-I model with the weight vector (0.7, 

0.25, 0.05) for each objective, as explained 

in Table 6, it can be witnessed that units 1, 
3, 4, 6 and 10 are efficient, and the others 

inefficient. In all units except unit 5, all 

efficiency values are greater than or equal 

to the corresponding values in Table 4, and 
for all units, the weight averages of the 

ratio of input to output components are 

non-zero values in all components, 
∑ 𝑤𝑖𝑟

𝑚
𝑖=1

𝑚
≠ 0, 

∑ 𝑤𝑖𝑟
𝑠
𝑟=1

𝑠
≠ 0. For instance, the 

first input component of 
∑ 𝑤1𝑟

𝑠
𝑟=1

𝑠
≠ 0  is 

non-zero value, which shows that all input 

and output components are involved in the 
calculation of efficiency. For example, the 

efficiency values of units 8 and 9 are 0.897 

and 0.931, respectively, which are greater 
than their corresponding values in the 

MCDEA model, meaning 0.823 and 0.771, 

as presented in Table 4. The MCDEA-R-I 
model prevents the problem of pseudo-

inefficiency; for instance, by solving the 

DEA-R-I model unit 6 is determined 

efficient (Table 6), while its efficiency 
score is equal to 0.788 in Table 4 relating 

MCDEA, which shows that this unit is 

MCDEA inefficient. The average 
efficiency of all units in the MCDEA-R-I 

model (Table 6) is greater than the 

corresponding value in MCDEA (Table 4). 
It should be noted that the DEA-R-I 

models have been considered input-

oriented and the production technology is 

constant returns to scale.  
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Table 6. MCDEA-R-I results based on Example 1 dataset. Weight vector = (0.7, 0.25, 0.05) 
 

 
 

Figure 2 is a point chart comparing the 

efficiency scores of Minsum DEA- CCR 

and MCDEA-R-I models. Since both 

models are multi-objective programming 
problems, we use the adaptive weighted 

sum method to solve them. If we use the 

weight vector W =  (1,0,0) to solve model 
(1), the resulting single-objective model, 

which we call Minsum, will minimize the 

set of deviations. To solve model (6), we 

first select the weights 𝑊1 =
(0.5, 0.45, 0.05)  and 𝑊2 =
(0.7, 0.25, 0.05)  ; results are presented in 

Tables 5 and 6, respectively. Figure 2 

compares the efficiency scores obtained 

from the Minsum model and the MCDM-

R-I model for the weights 𝑊1 and 𝑊2. As 
can be witnessed, the scores obtained from 

model (6) are greater than or equal to their 

similar scores in Model (1) for all units; 
this proves that MCDM-R-I models can 

prevent the efficiency underestimation and 

discrimination power and poor weight 

dispersion issues better than Minsum 
models and increase the power of 

discrimination. 
 

 
Fig. 2. Compare efficiency scores obtained from the models of Minsum DEA-CCR and 

MCDM-R-I 
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Now, to analyze the sensitivity of the 
MCDEA-R-I model to weight vector 

changes in the objective function, we 

consider the weight vector (0.8, 0.1, 0.1) 

for the objective function of the MCDEA-
R-I model. According to the obtained 

results (Table 7), units 1, 2, 3, 4, 6 and 10 

are efficient and the other units are 
inefficient, and similarly, the efficiency 

values of the MCDEA-R-I model are 

greater than or equal to the corresponding 
values in MCDEA (Table 5); however, this 

result is not true for unit 5. For instance, 

the efficiency scores of units 8 and 9 are 

0.897 and 0.931 in MCDEA-R-I, 
respectively, while the corresponding 

values obtained from the MCDEA model 

(Table 4) equal to 0.823 and 0.771, which 
shows that the efficiency underestimation 

problem is resolved in DEA-R-I models. 

Also, we can observe that unit 6 is efficient 
in the MCDEA-R-I model (Table 7), while 

being inefficient in MCDEA (Table 4) 

with the efficiency score of 0.778. This 
reveals the existence of pseudo-

inefficiency in the MCDEA model, while 

the MCDEA-R-I model prevents it. 

Comparing the results from MCDEA-R-I 
and MCDEA models and using the weight 

vector W = (0.6, 0.4, 0) for the MCDEA-

R-I model, the results indicate that the 
efficiency values of the MCDEA-R-I 

model are greater than or equal to those of 

the MCDEA model (see Tables 4 and 8). 
For instance, the efficiency scores for units 

8 and 9 are 0. 823 and 0.771 in the 

MCDEA model, respectively, while in the 

MCDEA-R-I model (Table 8), their values 
equal to 0.888 and 0.93, respectively. The 

weight averages obtained from the 

MCDEA-R-I model are non-zero values 
for every input and output component; i.e., 

all input and output components are 

involved in the calculation of efficiency. 
 

 
Table 7. MCDEA-R-I results based on Example 1 dataset. Weight vector = (0.8, 0.1, 0.1) 

 

 
 
Table 8. MCDEA-R-I results based on Example 1 dataset. Weight vector = (0.6, 0.4, 0.0) 
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In the following, we will solve Model (5) 
with the weight vector (1, 0, 0) in order to 

analyze the sensitivity of the MCDEA-R-I 

model to changes in the weight vector (see 
Table 9 below). In this case, in order to 

maximize the significance of 𝜃𝑜 in the 

model, its weight is considered equal to 

one and the weights of the other two 
objective functions are assumed zero. As 

shown in Table 9, all units are efficient 

except unit 9, and with an increase in the 

weight of 𝜃𝑜 in the objective function, the 

problem of pseudo-inefficiency is 

completely solved. Even Unit 5 is 

identified as efficient in that case, and its 
efficiency would equal to one. For all rows 

and columns in Table 9 corresponding to 

the weights of the input to output ratios, the 
weight average for each row and column is 

a non-zero value. As an instance, the ratio 

of the first input to any other output is a 
non-zero value. However, due to the 

weights restriction ∑ ∑ 𝑤𝑖𝑟 = 1𝑚
𝑖=1

𝑠
𝑟=1 , 

there can’t be a zero value for all the 

weights and the DEA-R-I model would 

naturally impose a weight restriction on 
the problem. Figure 3 is a point chart 

demonstrating the efficiency scores of 

Minsum DEA- CCR and MCDEA-R-I 

models for weights 𝑊3 = (0.8, 0.1, 0.1), 

𝑊4 = (0.6, 0.4, 0) and 𝑊5 = (1, 0, 0); 

results are presented in Tables 4, 7, 8 and 

9, respectively. 
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Table 9. MCDEA-R-I results based on Example 1 dataset. Weight vector = (1, 0, 0) 
 

 
 

Fig. 3. Compare efficiency scores obtained from the models of Minsum DEA-CCR and 

MCDM-R-I 

 
 

Ghasemi et al. (2014) presented the Bio-

MCDEA model to overcome the lack of 
discrimination power in DEA. Table 1 

presents the results from application of this 

model to the data. As can be seen, this 
model could not fully resolve the problem 

of low discrimination power in GPDEA 

and MCDEA models and if the weight 
restriction is removed, some weights 

would still have zero values. For example, 

the weight of the fourth output equals to 
0.001 in all units and becomes zero when 

removing the weight restriction. For the 

weight vector of the third input, the weight 
corresponding to unit 4 is the only one with 

a non-zero value, i.e., the problem of 

discrimination power still remains. 
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Table 10. BiO-MCDEA model results based on Example 1 dataset (𝝐= 0.0001) 
 

 
 

In the following, we engage in an analysis 

of results obtained from the Bio-MCDEA-
R model. In this regard, the weight vector 

(w1, w2) = (0.5, 0.5) is used to solve the 

Bio-MCDEA-R model. Results from the 
Bio-MCDEA-R model are presented in 

Table 11. The last column of the table 

provides the efficiency values. As can be 
observed, units 1, 3, 4 and 10 are efficient 

and the others inefficient. All efficiency 

values in the Bio-MCDEA-R model are 
greater than or equal to the corresponding 

values in the Bio-MCDEA model. As can 

be seen, the Bio-MCDEA-R model 
prevents the pseudo-inefficiency problem. 

For instance, the Bio-MCDEA-R model 

considers unit 1 efficient, while it is 
inefficient in the Bio-MCDEA model. 

 

Table 11. Bio-MCDEA-R results based on Example 1 dataset. Weight vector (0.5, 0.5) 
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Now, in order to analyze the sensitivity of 
the Bio-MCDEA-R model to changes in 

the weight vector of the objective function, 

the weight vector (w1, w2) = (0.2, 0.8) is 

applied. Results indicate the efficiency of 
units 1, 3, 4 and 10, and the inefficiency of 

other units (see Table 12). As can be seen 

in the last column, the values in Table 12 
are greater than or equal to those of the 

Bio-MCDEA model, and similar to Table 
10’s results, unit 1 is efficient in the Bio-

MCDEA- R model, though the Bio-

MCDEA model identifies it as inefficient. 

Now, the weight vector (w1, w2) =
(0.4, 0.6) is used to analyze the Bio-

MCDEA-R model’s sensitivity to changes 

in the weight vector of the objective 
function (See Table 13). 

 

Table 12. Bio-MCDEA-R results based on Example 1 dataset. Weight vector= (0.2, 0.8) 
 

 
 

Table 13. Bio-DEA-R-CCR results based on Example 1 dataset. Weight vector= (0.4, 0.6) 
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Fig. 4. Compare efficiency scores obtained from the models of Bio-MCDEA and Bio-

MCDEA –R 

 
 
Figure 4 is a point chart comparing the 

efficiency scores of Bio-MCDEA and Bio-

MCDEA-R models. In order to solve the 
Bio-MCDEA model, we use the weight 

vectors W = (0.5,0.5), and the weight 

vectors W = (0.5,0.5),  
W = (0.2,0.8), and W = (0.4,0.6) are 
used to solve the Bio-MCDEA-R model. 

Results are provided in Tables 10, 11, 12 

and 13, respectively. As can be seen, all 
values obtained from model (9) are greater 

than or equal to their corresponding values 

in Model (3), which reveals that Model (9) 

can prevent the efficiency underestimation 
and lack of discrimination power and poor 

weight dispersion in Model (3) and cause 

the Bio-MCDEA-R model to have a higher 
weight discrimination power comparing to 

Bio-MCDEA models. 

 

5. Conclusion  
This article deals with three important 

issues, namely the discrimination power of 

weights, underestimation of efficiency and 
pseudo-inefficiency. In this regard, we 

engaged in a comparison of results from 

the GPDEA models provided by Bal et al. 
[25, 26], the MCDEA model proposed by 

Li and Reeves [23] and the Bio-MCDEA 

presented by Ghasemi et al. [24]. As 

discussed in the previous sections, the 
main drawback of all these models is low 

discrimination power and the issue that 

some input and output components are not 

involved in the evaluation of efficiency 

when weights become zero. In order to 
overcome said problems, we made use of 

DEA-R-I models since they enjoy the 

following properties: Firstly, the 

efficiency values obtained from these 
input-oriented models under constant 

returns to scale assumption are greater than 

or equal to the corresponding efficiency 
values in CCR models. Secondly, CCR 

models falsly introduce some efficient 

units as inefficient, due to an inherent 

weight restriction and the zero weights 
corresponding to certain input and output 

components, while this does not occur in 

DEA-R-I models. Thirdly, since in the 
optimal solutions obtained from CCR 

models, some weights corresponding to 

certain input and output components equal 
to zero, the efficiency values are calculated 

inaccurately for some units (less than the 

true values), which is referred to as 

efficiency underestimation. This issue has 
been resolved, to some extent, in DEA-R-

I based models. In this paper, the models 

presented by Ghasemi et al. [24], including 
GPDEA, MCDEA, and Bio-MCDEA, all 

of which exhibit a multi-objective 

programming framework, were developed 
based on the DEA-R-I models and three 

new models were introduced. Through 

numerical examples, we demonstrated the 
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advantages of these models over previous 
ones. In this regard, we showed that the 

three aims of increasing discrimination 

power, reducing efficiency 

underestimation and eliminating pseudo-
inefficiency can be achieved by choosing 

appropriate weights for the objective 

functions. The models presented in this 
paper are based on DEA-R and consider a 

ratio of inputs to outputs in their 

calculations. In the first model, there is a 
weight restriction as a constraint, which 

prevents the weight average from equaling 

to zero. One of the features of the proposed 

models is that they are always feasible and 
when there is a higher number of units 

under evaluation compared to the number 

of inputs and outputs, the accuracy of 
results would increase. For future studies, 

the above-mentioned models can be 

extended to variable returns to scale and 
other MOLP problem solving methods, 

including interactive methods such as 

STEM and ZW, can be used to solve the 

models. We also suggest development of 
the above-mentioned models for imprecise 

data. 
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