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Abstract 
Cooper et al. [Efficiency aggregation with enhanced Russell measures in data envelopment 
analysis, Socio-Economic Planning Sciences, 41 (2007) 1–21] presented a method for 
measuring aggregate efficiency, using the enhanced Russell measure. In that paper, they 
posed questions and opened the way for new opportunities for studying and extending the 
proposed method and some other related fields. One of these issues is the extension of the 
proposed method in the case where there is the possibility of reallocation among the units in 
order to improve group efficiency. In this paper, we propose a model for evaluating the 
group efficiency, and employ the centralized scenario to set targets for each unit as well as 
for the group. 
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1. Introduction 
Data envelopment analysis (DEA) is a 
mathematical programming approach for 
evaluating the performance of decision 
making units (DMUs) especially in 
obtaining the efficiency score of a DMU 
in comparison with others. This can be 
performed only through using the inputs 
and outputs consumed or produced by 
DMUs. The set of all possible operating 
points is called the production possibility 
set (PPS) which is defined as follows: 
T={(x,y)| x can produce y} 
 
The two most common technologies used 
in DEA are the constant returns to scale 
(CRS) and the variable returns to scale 
(VRS). Each DMU on the frontier of T is 
“technically” efficient, but others are 
inefficient. Determining whether or not a 
DMU is on the frontier is possible by 
using various DEA models. One of these 
models is the enhanced Russell measure, 
which gives a score of 1 to each efficient 
unit and a score between 0 and 1 to each 
inefficient unit. 
While analyzing the efficiency or 
productivity of DMUs, it is usually of 
interest to consider not only the efficiency 
of each individual but also (and often 
more importantly) an aggregate measure 
summarizing the efficiency of a group 
[23]. There is a close connection between 
aggregate efficiency and group efficiency 
concepts. Usually, in DEA, whenever we 
want to measure the performance of a set 
or group of units based on their units, the 
concept of aggregation is used. 
Sometimes resource aggregation is first 
performed, and then a method for 
evaluating the virtual unit that represents 
the system or industry or group of units 
being evaluated is introduced. In some 
cases, the overall performance and 
efficiency are calculated as a function of 
the performance or efficiency of the 
subsystems or units within that set or 
group, and the efficiency of the group is 
the aggregation of the group members' 

efficiency. So, aggregate efficiency 
measures, measure the efficiency of a 
group of DMUs. 
Cooper et al. [11] introduced a method for 
evaluating the technical efficiency of a 
group consisting of a number of similar 
subsets. They have only dealt with 
technical efficiency in that paper, 
addressing the aggregate technical 
efficiency, rather than group efficiency. 
Previous works had used either input 
efficiency measures or output efficiency 
measure to calculate the aggregate 
technical efficiency, while their method 
employed both input and output 
efficiency measures, simultaneously, to 
compute the aggregate technical 
efficiency. Moreover, since previous 
methods employed radial methods, the 
measures obtained by them were 
incomplete because they did not take into 
account the non-zero input and output 
slacks, and the resulting models cannot 
therefore find all the inefficiencies. In 
order to remove such problems of 
previous methods, Cooper et al. [11] used 
the enhanced Russell measure. 
Blackorby and Russell [10] derived 
conditions on the firm technologies that 
are required to aggregate technical 
efficiency indices. They showed that, 
under reasonable assumptions about the 
efficiency indices, output (input) 
aggregation is possible only if the 
efficiency indices are ratios of linear 
functions of input and output quantities 
and the aggregate index (or its inverse) is 
a convex combination—a linearly 
weighted average—of the individual 
indices (or their inverses). They focused 
either on the input or on the output 
efficiency measures alone, and ignored 
the case where the efficiency measure 
consists simultaneously of both input and 
output efficiency. Regarding this case, 
Cooper et al. [11] showed that their 
proposed method, which consists of both 
input and output efficiencies, satisfies the 
conditions put forward by Blackorby and  
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Russell [10]. 
Before proceeding, we note that others 
have also studied the aggregation 
problem. For instance, Fare and Zelenyuk 
[13] established the fact that industry 
maximal revenue is the sum of its firms’ 
maximal revenues. This fact enables us to 
discover conditions for the aggregation of 
Farrell efficiency. Making use of this fact, 
they derived the industry efficiency 
measure from the firms’ measures of both 
technical and overall efficiencies. Fare 
and Zelenyuk [14] showed that the 
weighted geometric mean is required in 
order to aggregate individual efficiencies 
into group efficiency, in such a way that 
the multiplicative structure of further 
decompositions is preserved with equal 
weights across components. Zelenyuk 
[29] extended the work of Fare and 
Zelenyuk [13] to obtain a theoretically 
justified method for aggregating 
Malmquist productivity indices and their 
decompositions. Färe and Karagiannis 
[12] derived alternative weighting 
schemes that complement those of Färe 
and Zelenyuk [13] for consistent 
aggregation of Farrell when the 
technology exhibits (global) constant 
returns to scale. Zelenyuk [30] extended 
the aggregation theory in efficiency and 
productivity analysis by providing a 
practical way of estimating scale 
efficiency of a group (e.g., industry). 
Walheer [28] made a distinction between 
two types of inputs in the aggregation 
framework: private and public inputs, and 
considered the aggregation of Farrell 
efficiencies with private and public 
inputs.  
Now, we proceed by mentioning some 
points regarding [11]: 
1-  The concept of consistency is used in 
aggregation, which means that the results 
obtained from evaluating the group and 
evaluating individual units should be the 
same. Especially, if the group is evaluated 

as efficient, then all the units should be 
evaluated as efficient. 
2-  As is known, the evaluation of DMUs 
in DEA is relative and is based on 
comparison with other units. This is a 
shortcoming when it comes to evaluating 
groups, since there is not another group 
consisting of all the units, so that the 
group under evaluation can be compared 
against it. Therefore, the group must be 
compared against itself and, by DEA, it 
will certainly be evaluated as efficient. 
So, in [11] it is tried to perform 
evaluation against others, rather than self-
evaluation of a group. However, the 
group is compared against the frontier of 
the PPS containing the group itself 
(obtained as putting all the units together) 
and the other units that make up the 
group. Nevertheless, the point is that this 
is the case only for constant returns to 
scale, but not for variable returns to scale. 
This is because in the CRS case, adding 
or removing such a group that consists of 
all the units to the PPS with constant 
returns to scale (Tc) will not change the 
frontier and consequently the shape of the 
PPS (See Fig. 1. Unit G in the figure is 
the group made up of units A,B,C). 
However, in variable returns to scale, if 
the group is compared against the frontier 
produced by the individual units, it will 
lie outside the region; and if we consider 
the PPS resulting from the addition of the 
group to the other units, the group will 
certainly be efficient because it will have 
the maximum output in all output indices. 
This is incompatible with the consistency 
introduced in [11], since the group is 
certainly efficient but all the units are not 
necessarily efficient, while in the CRS 
case the efficiency of the group leads to 
the efficiency of all the units, and vice 
versa. Although many real world 
problems involve VRS, their proposed 
method does not provide a means to avoid 
self-evaluation in VRS. 
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Fig.1. Group G lies in Tc but not in Tv. 

 
3-  It is assumed in [11] that the units are 
separate from each other, i.e., trade-off is 
not possible between units. This means 
that it is not possible to reallocate the 
resources in order to improve the 
performance of some units and, 
consequently, the whole group. Such an 
improvement is primarily more obvious 
in the case of VRS; for instance, if 
sufficient resources are allocated to a unit 
with increasing returns to scale (IRS), not 
only its efficiency but also that of the 
group will improve. Similar comments 
could be made about the units in the case 
of decreasing returns to scale (DRS). For 
problems in which resource reallocation 
and trade-off are possible, however, 
group efficiency can be improved. As is 
pointed out in [11], the efficiency of the 
units is the necessary condition for group 
efficiency. In other words, if reallocation 
is possible, then the group might be 
inefficient although all the units are 
efficient. Therefore, potential resource 
reallocation from one unit to another is 
introduced for [11]. 
Considering the above-mentioned 
shortcomings, the present paper proposes 
a method to evaluate group technical 
efficiency in which the technical 
efficiency of all the DMUs comprising 
the group can be inferred from group 

technical efficiency, i.e., it has 
consistency. Furthermore, the method can 
be applied to DMUs with VRS. In 
addition, there is the possibility of 
reallocation between the units to improve 
group technical efficiency. This is 
basically possible when the units are 
interrelated; for instance, the units belong 
to a larger unit or they are controlled by 
the same decision maker. It is then 
obvious that the decision maker is willing 
to improve group performance. Clearly, 
the inefficiency of one of the group 
members will lead to group inefficiency, 
while the efficiency of all the units is not 
sufficient for group efficiency, as was 
mentioned earlier. The decision maker, 
who provides the resources, would like 
the group to consume less input and 
produce more output. One could seek 
such an improvement in resource 
reallocation, which can be the “potential 
resource reallocation” as pointed out by 
Cooper et al. [11]. Improvement in 
resource consumption and, consequently, 
group efficiency enhancement requires 
simultaneous attention to the whole input 
and the whole output. This means that all 
the inputs and all the outputs of all the 
DMUs should be considered 
simultaneously. In other words, to 
evaluate group performance, we should 
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consider the performance of units as they 
are related to each other. Although 
ordinary DEA models examine the DMUs 
individually, simultaneous attention to all 
inputs and outputs implies that the units 
cannot perform independently. 
There have been some previous 
approaches in the literature that handle 
the DMUs in a joint manner. A DEA-
based model with aggregated, non-radial 
input orientation was presented by 
Golany et al. [15], which jointly 
determines the inputs of each DMU 
subject to a total input availability 
constraint and bounds on the changes of 
the solution for each DMU. The objective 
function used is heuristic and difficult to 
interpret. Golany and Tamir [16] 
proposed an output-oriented resource 
allocation model which includes 
constraints on the total input 
consumption. The possible objective 
functions proposed include total output 
(for the case of a single output) and a 
weighted sum of the total outputs or an 
unweighted sum of deviations from pre-
established output thresholds (for the 
multiple, commensurable output case). 
Athanassopoulos [5] introduced a goal 
programming DEA model (GoDEA) for 
centralized planning. In this model, in 
order to set global targets for the total 
consumption of each input and the total 
production of each output, a series of 
independent DEA models, one for each 
input and each output, was proposed. 
Beasley [7] also presented a non-linear 
resource allocation model based on the 
ratio form that aimed at jointly computing 
inputs and outputs for each DMU for the 
next period, which seeks to maximize the 
average efficiency. 
Recently, in some papers, Lozano et al. 
considered the units simultaneously, and 
called it the centralized scenario. They 
believe that the units cannot be 
independently evaluated when they are 

not independent from each other, but are 
managed by the same decision maker, 
who is interested in minimizing the total 
input consumption or maximizing the 
total output production, together with 
maximizing the efficiency of each 
individual unit. But they considered the 
simultaneous projection of the units onto 
the efficient frontier, and regarding the 
centralized theory they proposed 
centralized target setting [18]. They used 
this concept to study the performance of 
some Spanish city councils and tried to 
set appropriate targets for the recycling 
plants affiliated to these councils. All 
these councils were managed by the same 
decision maker, whose objective was to 
maximize the total output, i.e., increasing 
the amount of recycled matter. An output-
oriented model was employed for target 
setting. Since one of the inputs considered 
in the evaluation was the number of 
trucks of each council and considering the 
point that the decision maker would allow 
the allocation of the trucks of one council 
to another, the centralized scenario was 
used for appropriate target setting. 
Although the existing models had been 
proposed for the specific problem, the 
idea could be extended to other problems. 
Therefore, Lozano and Villa [18] 
proposed a general approach for 
centralized resource allocation. In their 
paper, two new DEA models have been 
presented for this purpose. Both of them 
project all DMUs onto the efficient 
frontier. One model seeks radial 
reductions of the total consumption of all 
the inputs, while the other tries to find 
separate reductions for each total input 
according to a preference structure. 
Consistent with the centralized point of 
view, total output conservation 
constraints are imposed. Lozano et al. 
extended the centralized scenario again 
and introduced “Centralized DEA models 
with the possibility of downsizing.” They 
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believe that the intra-organizational 
perspective opens up the possibility that 
greater technical efficiency for the 
organization as a whole might be 
achieved by closing down some of the 
existing DMUs. 
The main idea in our approach is based on 
Lozano’s centralized scenario. It should 
be noted that Lozano dealt with either the 
input orientation or the output orientation 
alone, and did not consider the inputs and 
outputs simultaneously. Moreover, he 
used the centralized scenario for the 
optimal allocation of resources or the 
optimal acquisition of outputs, but never 
used it to measure group efficiency and to 
obtain an efficiency index. This is what 
we intend to achieve in this paper. 
The rest of this paper is structured as 
follows. Our proposed model is 
introduced in section 2. Some properties 
of the model are pointed out and their 
validity is established. Furthermore, target 
setting for the group and its comprising 
units is carried out and the proposed 
model, which is a fractional model, is 
converted to a linear model by 
appropriate transformations. Section 3 
exhibits how the model works, through a 
numerical example and appropriate 
diagrams. In section 4, we apply our 
model to an example provided in several 
previous papers. Section 5 contains the 
conclusions. 
 
2. Proposed model for evaluating the 
group, and target setting  
2.1. Discussion 
We assume n  DMUs, each of which 
consumes m  inputs to produce s  
outputs. Let mRX   and sRY   be 
matrices containing the observed inputs 
and outputs, respectively, for n  DMUs. 
We denote by jX  (the j th column of X ) 
the vector of inputs consumed by jDMU , 

and by jY  (the j th column ofY ) the 

vector of outputs produced by jDMU . 

The production possibility set Tv, with 
variable returns to scale technology is 
defined as follows:  

 

 
 
The Enhanced Russell Measure (ERM) 
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See [22] for more about this measure. 
It is reasonable to always try to produce 
more output by using less input. So, we 
would like to increase group output 
production by using as little group input 
as possible. Considering this, the group is 
efficient if the same output level cannot 
be produced by consuming less input, or 
more output cannot be produced by 
consuming the same input level. 
However, if a set of n  DMUs cannot be 
found in Tv such that at least one of the 
components of their total inputs is smaller 
than the group input or at least one of the 
components of their total outputs is larger 
than the group output, then the group 
under evaluation is efficient. It is 
noteworthy, however, that the efficiency 
based on this definition is technical 
efficiency, and it does not necessarily 
mean that the group is efficient in all 
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respects. In this paper, by efficiency we 
mean technical efficiency. In order to 
evaluate the group under consideration, 
we propose the following non-radial 
model, as a combination of Lozano’s 
centralized method and the enhanced 
Russell model. 
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g
vT  and its frontier as g

vT . Therefore, it 
can be inferred that the model (2) 
evaluate the group with compare to the 
elements on the g

vT . 
In what follows, we state some properties 
related to model (2). 
Cooper et al. in [11] write about the 
enhanced Russell measure: “R is 
‘complete’ and therefore differs from the 
commonly employed radial measures 
which (a) fail to reflect the non-zero  
 

slacks and (b) are either output-oriented 
or input-oriented. They thus fail to reflect 
performances of the outputs or inputs 
represented in those constraints not 
covered by the radial measure”. 
Regarding the criteria stated above for the 
completeness of the enhanced Russell 
measure, it could be inferred that the 
index R obtained from model (2) has the 
same property, as well. Obviously model 
(2) is feasible and its optimal value is 
between 0 and 1. 
 
Definition. A group is technically 
efficient if the optimal value of model (2) 
is 1. Otherwise it is inefficient. 
We now provide some properties of our 
proposed model. 
 
Theorem 1. R is units invariant. 
Proof. Notice that i  and k  are unit-
invariant so that R is also unit-invariant. 
To see that this is the case, we note that 
these inequalities may be formulated as 
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Therefore,  kijr  ,,  is a feasible 
solution for (2) and its objective function 
value is smaller than *R , which 
contradicts the optimality of  *** ,, kijr  . 
The contradiction assumption is thus 
invalid, and hence 
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efficient for every index r. 
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Without loss of generality, assume that 
strict inequality occurs in the i’th 
component of the inputs (the proof 
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Therefore,  kijr  ,,  is a feasible 
solution for (2) and its objective function 
value is smaller than *R , which 
contradicts the optimality of  *** ,, kijr  . 
The contradiction assumption is thus 
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the group. 
This is realized when each of the units 
reaches its targets, which are set by 
 krir yx ˆ,ˆ . In fact, the efficiency of all the 
units is the necessary condition for group 
efficiency. 
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values of model (2) in evaluating them, 
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Proof. Obvious. 
Suppose that  krirjr   ,,  is the optimal 
solution obtained by evaluating unit r  by 
the enhanced Russell model and 
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unit r  onto the frontier vT . 
 
Theorem 5. Suppose that R  is the 
optimal value of model (2) in evaluating 
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Proof. Obvious. 
The efficiency of each individual unit is 
the sufficient condition for efficiency of 
the group, but this is not a sufficient 
condition, by the corollary of Theorem 5, 
that is the efficiency of the units does not 
necessarily mean the efficiency of the 
group. 
Now, using Fig. 2, we present the 
relationship between the projections 
obtained from the enhanced Russell 
model and those obtained from our 
proposed model, and study some 
properties of the latter. The PPS with 
VRS containing group A is as follows, 
with g

vT  as the frontier of this PPS. We 
would like to evaluate how the proposed 
method works on group A. As was shown 
in Theorem 3, the projection point 
obtained from the proposed method is 
Pareto efficient, but lies on g

vT . 
Moreover, by the constraints of model 
(2), it can be inferred that the projection 
point dominates the group under 
assessment. Therefore, by Fig. 2, it can be 
said that the projection point will lie on 
arc BC of g

vT . This projection is 
obviously technically efficient. Now 
suppose we want to obtain the group 
members by direct projection onto the 
efficient frontier g

vT  by the enhanced 
Russell model in the first place, and then 
obtain a pattern for evaluating group 
performance by summing these 
projections. We know that the projection 

points corresponding to each unit 
certainly dominate the units, and finally 
the sum of these projections dominates 
the group. The pattern obtained from the 
summation of the projections lies in the 
hatched area. Also, it can be located on 
the frontier of this area, i.e., arc BC. But 
as will be shown in the numerical 
example in section three, it will not 
necessarily lie on g

vT  and would 
therefore be a point F, which is 
technically inefficient. Now we deal with 
the relationship between the group 
projection by the proposed method and 
the projection obtained from direct 
projection methods such as the enhanced 
Russell method. It should be mentioned 
that the projection point of our propose 
method is certainly efficient, but this is 
not the case for the other method (point 
F). This does not mean that the point 
obtained from our method definitely 
dominates that of the other method. We 
will face such a case in the numerical 
example. For instance, considering Fig. 2, 
this point can lie in the BD or EC region 
of the frontier, which does not dominate 
F. However, as is shown in the figure, 
there exists a point on g

vT  which 
dominates F. Such points can be obtained 
by adding appropriate constraints to 
model (2). This can also be achieved in 
another way. It is sufficient to apply the 
proposed method to F. Considering what 
has been stated so far, the projection point 
of F will lie on arc DE by using the 
proposed method. As can be observed, we 
can use this method to obtain points with 
higher efficiency compared to those 
obtained from ordinary methods which do 
not consider the possibility of trade-off 
among units. Such ordinary methods 
assign a higher efficiency score to the 
group when evaluating it and, in fact, they 
do not consider the inefficiency resulting 
from the lack of trade-off. 
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Fig. 2. Comparison between the projection obtained from our proposed method and the sum of 

projections obtained from ERM model. 
 

2.2 Transformation of proposed model 
into a linear form 
Model (2) has a fractional programming 
structure. We can therefore utilize the 
approach in Charnes and Cooper [10] to 
transform the nonlinear (non-convex) 
model (2) into an ordinary linear 
programming formulation, which is 
readily solved by the many computer 
codes now available. For this purpose, we 
introduce new variables:  
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We can then multiply the numerator and 
denominator in the objective function of 
(2) by   without changing its value. 
Also, since 0 , we can multiply both 
sides of the constraints in (2) by   
without changing any of the orientations. 
We then write the thus transformed model 
as follows: 
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Notice that, in the formulation of (6), we 
do not need to state explicitly that 0 . 
It is sufficient to state that 0  since 
any feasible solution of (6) necessarily 
satisfies this inequality strictly. We now 
have an ordinary linear programming 
formulation that can be readily solved. 
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Suppose, therefore, that we have a  
 
solution to (6). If we divide both sides of 
the constraints in (6) by factor  , we can 
reproduce the constraints in (2). Factoring 
  from the objective function in (6), and 
utilizing the definition in (5), we recover 
the objective function in (2). Also by 
using  
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We can obtain the optimal amount of the 
variables of model (2). 
 
3. Numerical Example 
In this section, we try to elaborate on our 
propose method through a simple 
numerical example. Consider 7 units with 
a single input and a single output in Tv. 
We intend to evaluate the group 
consisting of these 7 units. The data of the 
inputs and outputs of these units is 
provided in the second and third columns 
of Table 1. As can be observed, the input 
and output of the group are 21.5 and 30, 
respectively. First, we evaluate the group 

by our proposed method. The projection 
points of each unit by the proposed 
method can be seen in Fig. 3. Points 
F,E,A are projected onto point C, and 
points B,G,D,C are projected onto point 
G. Numerical values of these projection 
points can be seen in the fourth and fifth 
columns of Table 1. The total input and 
output levels of these two projection 
points are 11.5 and 30, respectively. Since 
the projection points lie in Tv , by the 
definition of g

vT ,    30,5.11ˆ,ˆ yx  is 

also in g
vT  and dominates the group 

(21.5,30). It should be mentioned that by 
Theorem 2,    30,5.11ˆ,ˆ yx  is Pareto 
efficient. Therefore, if it is evaluated by 
the proposed method, it should obtain an 
efficiency score of 1, as seen in column 
10 of Table 1. You can also see in column 
10 the efficiency score given by our 
proposed model when evaluating the 
group. Thus, the score assigned to the 
group under evaluation by this method is 
0.534884. Regarding the projection 
points, it is obvious that the inefficiency 
of the group lies in incorrect use of its 
inputs. 

 
Table 1: Data for the Numerical Example 

DMU Input Output ࢞ෝ ࢟ෝ X’ Y’ X’’ Y’’ 
A 5.5 7 2.5 6 5.5 7 2.5 6 
B 2 2 1 3 1 3 2.5 6 
C 2.5 6 1 3 2.5 6 2.5 6 
D 3 5 1 3 2 5 1.5 4 
E 4 4 2.5 6 1.5 4 1 3 
F 3.5 3 2.5 6 1 3 1 3 
G 1 3 1 3 1 3 1 3 

SUM 21.5 30 11.5 30 14.5 31 12 31 
T-Eff 0.534884 1 0.827586 1 

T-Eff ~Technical Efficiency Obtained from the Proposed Model 
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Fig. 3. The projection of units using the proposed model. 

 
Now we evaluate each unit by the 
enhanced Russell method. In Fig. 4, the 
projection points of each unit by ERM 
can be seen. Also, the numerical values of 
these projection points are given in 
columns 6 and 7 of Table 1. The total 
input and output levels of these projection 
points are 14.5 and 31, respectively. 
Because these projection points also lie in 
Tv, by the definition of g

vT , 

(x’,y’)=(14.5,31) is in g
vT , as well, and 

dominates the group (21.5,30). But (x’,y’) 

does not necessarily lie on the g
vT . In 

order to evaluate the position of (x’,y’) in 
g

vT , we evaluate it by the proposed 
method. The score given to (x’,y’) by this 
method is 0.827586, which implies the 
inefficiency of (x’,y’) in g

vT . However, as 
was mentioned with respect to Fig. 2, the 
efficiency of  yx ˆ,ˆ  and the inefficiency 
of (x’,y’) does not imply that  yx ˆ,ˆ  
dominates (x’,y’), as can be seen from 
their respective numerical values. 

  

 
Fig. 4. The projection of units by using ERM model. 
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Fig. 5. The projections obtained from ERM model using the proposed model. 

 
In Fig. 5, points A’,B’,C’,D’,E’,F’,G’ are 
the projection points resulting from ERM 
model, and their sum makes up (x’,y’). 
The projection given by the proposed 
model after evaluating (x’,y’) can be seen 
in this figure. Point C’ is the projection 
point of A’, C’, G’, point G’ is the 
projection of B’, E’, F’, and point G’ is the 
projection of D’. The numerical values 
for these projected points are given in 
columns 8 and 9 of Table 1. As can be 
seen, the total input and output levels of 
these projection points are 
(x’’,y’’)=(12,31). By evaluating (x’’,y’’) 
using the proposed model, an efficiency 
score of 1 is obtained. Now we have two 
efficient points (x’’,y’’) and  yx ˆ,ˆ . 
Obviously neither of them dominates the 
other, and either of them can be 
considered as a target for the group under 
study. 
A few points are worth mentioning with 
respect to the proposed method and 
example. 
1. First, we should pay attention to the 
targets that the group sets for itself and its 
members. In Fig. 2, any point of arc BC 
can be a target for group A. For instance, 
in the numerical example above, it was 
observed that the two extreme points 
(11.5,30) and (12,31) are targets for the 

group (21.5,30). In setting these targets, 
none of the inputs or outputs was given 
priority over others. In other words, in 
model (2) a weight of 1 was assigned to 
all inputs and outputs. However, other 
points on the frontier can be selected by 
considering weights that reflect the 
decision maker’s preferences. Also we 
might be able to employ other methods 
which are used in target setting. See 
[3,6,16,19,22,25] for examples. 
Moreover, different targets can be 
selected for each target point 
corresponding to the group. One of these 
methods is to employ the alternative 
optimal solutions of model (2). This is 
because as can be seen in the numerical 
example and Figures 2 and 4, the 
projected points by the propose model for 
the units are not necessarily closest to 
them, and there might be alternative 
optimal solutions that are nearer to the 
units and seem more reasonable for the 
units to select as their targets. There are 
different approaches to reach such targets, 
which can be found in the literature. For 
instance, some of the approaches for 
finding the nearest target, pointed out by 
Aparicio et al. [2], can be mentioned. 
2. Another point to be taken into account 
is the possibility of braking up some very 
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large units. With regard to the results 
obtained and shown in the figures, it can 
be reasoned that some larger units can be 
broken up into smaller units to improve 
group efficiency. The reduction in the 
size of some units can be attributed to this 
issue. For instance, in Fig. 3, if the input 
of unit A is very large but its output is not 
much larger than that of C, our proposed 
method suggests breaking up the unit. 
This is while ERM does not do so, and it 
will demonstrate a lot of inefficiency in 
the group. Such a situation can be more 
readily seen in Fig. 6, where unit A 
consumes 20 units of input but produces 
only one more unit of output than unit C 
whose input is 2.5. If unit A is broken up 
into smaller units, group output 
production will certainly increase. In fact, 
this unit is said to be size inefficient (A 
unit is ‘‘too large’’ if breaking it up into a 
number of smaller units would result in a 
larger output bundle than what could be 
produced from the same input by a single 
unit. When this is the case, the unit is not 
size efficient.) For more information on 
size efficiency, see [25]. We do not claim 
to be able to remove all size inefficiencies 
of units by our proposed method but, 
considering the above example, one of the 

differences between this method and 
others can be the removing of a lot of 
inefficiencies due to the large size of 
some units, which would then lead to an 
improvement in group efficiency. In other 
way, it seems that the proposed method 
for large-size DMUs, with decreasing 
return to scale and small-size DMUs, with 
increasing return to scale, just with 
solving one LP, introduces targets around 
the MPSS range. 
 
4. Empirical Example 
Let us consider the following example 
from Ali et al. [1], Seiford and Zhu [26], 
and Valter Boljuncic [8]. There are eleven 
DMUs, each using two inputs to produce 
two outputs, see Table 2. We intend to 
evaluate the group consisting of these 11 
DMUs with inputs (818,592) and outputs 
(1660,929), using our proposed method. 
In columns 2-5 of Table 2, the inputs and 
outputs of the 11 units are provided. In 
columns 6-9, the projections obtained for 
each unit using our proposed method can 
be seen. The last row shows that group 
efficiency with the proposed method is 
0.488047, and the model suggests using 
input (440,330) and output (1760,1100). 

 

 
Fig. 6. Unit A is size inefficient and it should be broken up to improve group efficiency. 
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Table 2: Data for the Empirical Example 

DMU Input 1 Input 2 Output 1 Output 2 X1
’ X2

’ Y1
’ Y2

’ 

1 40 30 160 100 40 30 160 100 
2 30 60 180 70 40 30 160 100 
3 93 40 170 60 40 30 160 100 
4 50 70 190 130 40 30 160 100 
5 80 30 180 120 40 30 160 100 
6 35 45 140 82 40 30 160 100 
7 105 75 120 90 40 30 160 100 
8 97 67 100 82 40 30 160 100 
9 100 50 140 40 40 30 160 100 

10 90 60 140 105 40 30 160 100 
11 98 65 140 50 40 30 160 100 

SUM 818 592 1660 929 440 330 1760 1100 
T-Eff 0.488047 

 
5. Conclusion 
In this paper, using Lozano et al.’s 
centralized scenario and the enhanced 
Russell measure, we introduced an index 
to measure group efficiency. To do so, by 
assuming the possibility of reallocation 
among units, we set targets for each unit 
as well as for the group. In previous 
works only the group has been evaluated, 
but there is no suggestion for better 
operation of each DMU. In this paper we 
not only set target for the group but also 
set targets for each unit. Using model (2), 
and by taking into account the potential of 
the units, it can be found out how much 
inefficient group needs to modify its 
inputs and outputs in order to achieve 
efficiency. In this work, we considered 
the case when efficient operation of 
individual economic units does not 
necessarily imply efficiency for a group 
of these units. But we showed that 
technical efficiency of the group implies 
the efficiency of individual units, and so 
the defined efficiency index was 
consistent. We tried to establish the 
validity of the proposed method by a 
numerical as well as an empirical  
 

example.  

A number of points seem necessary to be 
mentioned regarding the extension of this 
work. In this paper we considered the 
case where reallocation is possible for all 
inputs, while this might not be the case 
and reallocation might be impossible 
owing to some reasons. For instance, the 
cost of transferring resources from one 
unit to another might be too high as a 
result of remoteness of the geographical 
location of units from each other, and 
consequently reallocation will be possible 
only among subunits of a unit. In such a 
case, the centralized scenario should be 
employed such that only a subunit of 
inputs in which reallocation is possible is 
utilized. Moreover, as can be seen in 
Figures 3 and 5 in the empirical example, 
when the centralized scenario is used, 
some efficient units also move on the 
frontier, a case which might be of little 
interest to the decision maker. This 
problem can be removed by some minor 
revisions in the model. Asmild [4] 
transformed the centralized resource 
allocation model in a way that it only 
modified inefficient units. Also, there is 
the possibility that it may be more 
efficient for the organization as a whole  
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to permit some existing DMUs to be 
eliminated entirely. As was mentioned 
earlier, Lozano et al. [19] considered such 
a case. We attempted to consider the least 
complicated case in this paper. 
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