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Abstract

Data envelopment analysis (DEA) is a powerful technique for performance evaluation of
decision making units (DMUs). One of the main objectives that is followed in performance
evaluation is discriminating among efficient DMUs to provide a complete ranking of DMUs.
DEA successfully divides them into two categories: efficient DMUs and inefficient DMUs.
The DMUs in the efficient category have identical efficiency score. But the question that
raises here is in evaluation. Where several DMUs have the equal efficiency, which unit
performs better and how can we rank these efficient units, Different methods have been
presented for ranking the efficient units.

In this paper, we propose a method for calculating an efficiency of DMUs by comparing with
the bad benchmark line. Our approach obtain common set of weights to create the best
efficiency score, such that the amount of DMUs that are efficient is less than that of other
models. If we have more than one efficient DMU, we can rank them by the same model and
it isn't necessary to use another ranking method.

Keywords: Data Envelopment Analysis (DEA), Common Weights Analysis (CWA),
Ranking, The bad benchmark.
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1. Introduction

Charnes et al. [6] introduce data
envelopment analysis (DEA) to assess the
relative efficiency of a homogeneous
group of operating decision making units
(DMUs), such as schools, hospitals, or
sales outlets. The DMUs usually use a set
of resources, referred to as input indices,
and transform them into a set of outcomes,
referred to as output indices. DEA
successfully divides them into two
categories: efficient DMUs and inefficient
DMUs. The DMUs in the efficient
category have identical efficiency score.
Therefore, in these last decades several
ranking methods have been invented into
the DEA context (Alder, Fridman &
Sinunystern [1]; Chen [7]). After the
earliest ranking method, the Cross-
efficiency method developed by Sexton,
Silkman, and Hogan [16], a large number
of papers have been developed into the
DEA area such as the super-efficiency
method (Anderson & Peterson [4], Banker
& Chen [5], Jahanshahloo, Junior, Hossein
zadeh lotfi & Akbarian [12]), the Fridman
and  Sinuny-stern  model  (Sinuny-
stern,Mehrez & Barboy, [17]).

The Common Set of Weights (CSW)
approach in DEA was initially introduced
by Cook et al. [8] and developed by Roll et
al. [15]. Hosseinzadeh Lotfi et al. [10]
used the concept of MOP and the common
set of weights to calculate efficiency score
of all DMUs. Jahanshahloo, Memarianiet,
et al. [11] offered a method based on the
common weights to measure the efficiency
and to rank the efficient DMUs in the two-
step process. Amin and Toloo [8]
presented a model in order to find the most
efficient DMUs by using a common set of
weights. Liu and Peng [14] searched a
common set weight to evaluate the
absolute efficiency of each efficient
DMUs in order to give a complete ranking
for all efficient DMUs. Jahanshahloo et al.
[13] suggested two methods to obtain the
set of common weights for ranking
efficient DMUs by comparing with an

ideal line and the special line. Wang and
Chin [18, 19] suggested a framework for
measuring  cross-efficiency via the
common set of weights . Wang et al. [20]
proposed a new methodology based on
regression analysis, which define the
common weights from the angle of
efficiency fitting and consider the
traditional DEA efficiencies as their target
efficiencies to be achieved. Davoodi and
Zhiani Rezai [9] recently extended a
common-weights DEA  methodology
involving a linear programming problem
to gauge the efficiency of the DMUs with
respect to the multi-objective model.

The proposed method is going to calculate
an efficiency of DMUs by the bad
benchmark line, will obtain common set of
weights to create the best efficiency score,
such that the amount of DMUs that are
efficient is less than other models. If we
have more than one efficient DMU, we can
rank them by the same model and it isn't
necessary to use another ranking method.
In this paper, we review the concept of
DEA framework in section 2. Common set
of weights will be obtained by comparing
with the bad benchmark line in section 3.
Also in section 4, they will rank DMUs by
CWA-efficiency. In section 5, they will
bring an empirical example. Finally,
section 6 will give their conclusions.

2. DEA framework

We deal with n DMUs each having m
different inputs {x;;} (i=1,..,m) and
s different outputs {y,;} (r=1,...,s).
We denote byDMU; (x;,y;) (=
1, ...,n) and the input/output data matrices
by X = (xij) ER™ M and Y = (yr]) €
RS*™ respectively. We assume X >0
andY > 0 . Under the constant returns to
scale (CRS) assumption, the following
model measures the efficiency of DMU,
i.e. DMU under consideration [6]:

ez = Max Yr=1Urdro (1)

m
i=1 Vi%Xio
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Yr=1 UrYrj <1

s.t. < i=1,..,n
Xt vixij J

u.-=>2e>0 r=1,..,s,

v,=2e>0 i=1,..m

Where the symbol ¢ is a positive
Archimedean infinitesimal  constant,
which is used in order to avoid the
appearance of zero weights. DMU is
efficient in model (1) iff 6, = 1.0.

We define E={j|6; = 1.0, j =1,..,n} to
represent the set of efficient DMUs. It is
helpful for decision makers only to focus
on the efficient DMUs. However, decision
makers always face the problem of how to
carry out a comparison among DMUs on
the set E.

Liu and Peng [14] present the vertical and
horizontal axes set as the virtual output
(weighted sum of s outputs) and virtual
input (weighted sum of M inputs),
respectively. Then, they define the
common benchmark level as one straight
line that passes through the origin with

slope  1.0.  u,(r=12,...,) and

v;(i=12,..,m) in the weighted sum

denote the decision variables of the
common weights for the rth output and ith
input index, respectively. For any two

DMUs, DMU ,, and DMU  , given one
set of weights for each, u, (r =1,2,...,s)

and v, (i=1,2,...,m), the coordinates of
points M' and N' in Figl are

(Zim:lv i.X"V' 'Zsrzlui"yl’M ) and

(Zirnle;XiN vz;u}ym ) respectively.

The virtual gaps between points M "and
M " between N' and N Pon the
horizontal axes are denoted by A,,., A,

respectively and the vertical axes by A? .,

A%, respectively. So, there exists a total
virtual gap Ay, . +Ap . +Ay . +AS. from
points (M ,N ') to the benchmark line.

Liu and Peng [14] determined an optimal
set of weights, u,(r=1..,s) and

v;(i =1...,m), such that both points

M “and N “below the ideal line could be
as close to their projection points, M
and N Fon the benchmark line, as
possible. In other words, by adopting the
optimal weights, the total virtual gaps
| o} | o}
AM* +AM* +A - +Ay.  from both
DMUs to the benchmark line is the

shortest. They formulated the common set
of weights for efficient units as follows:

A" =Min Z(A?+A'j)

jeE

S (0]
D Yy A B

st. ==———=1 jeE,
> VX, —A]
|:1I 10 ]
AT, A 20, j €E, 2)
u,2e>0, r=1,...,s,
vV, 2e>0, i=12,..,m.

Then, they transformed model (2) to a
linear form.

In this paper, we are going to introduce the
model that obtains an optimal set of
weights such that the bad benchmark line
passes through the origin and the anti-ideal
point with slope g (we'll define it in the
next section), and the distances of the other
DMUs to this line are the furthest. In this
model, the number of DMUs that are
efficient is less than other models. If we
have more than one efficient DMU, we can
rank them by the same model and it isn't
necessary to use another ranking method.
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3. Common set of weights by the bad
benchmark line

In conventional DEA models, each DMU
in turn maximizes the efficiency score,
under the constraint that none of DMU's
efficiency score is allowed to exceed 1.0.
In this method, according to this constraint
we are going to obtain an efficiency model
to calculate the best absolute efficiency
score such that the total virtual gap to the
bad benchmark line (we'll define it as
follows) is the furthest to all DMUs. Then
we can rank DMUs with the same
efficiency if we will have a model with
more than one DMU that has efficiency
score of 1.0.

In this methodology, first we scale the
input and output data by normalization; i.e.
we divide ith input and rth output of all
DMUs by R; and R;', respectively, where:

R; = {Max xij|j =1,..,n}

(i=1,..,m
Rf ={Maxy,|j=1,..,n}
(r=1,..,5).

Definition 1: The anti-ideal DMU is a
virtual point, which consumes the most
inputs only to produce the least outputs.

That is, if we show the anti-ideal DMU

with DMU = (X,7), i.e.

%; = Max {’;—1 =1, n}
(izl,...,m)l
$, = Min {% j=1,..,n)
(r=1,..,5s).

In Fig.2 the vertical and horizontal axes are
set to be the virtual output (weighted sum
of s outputs) and virtual input (weighted
sum of m inputs), respectively.
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Definition 2: The bad benchmark line in
the virtual two-dimensions space is one
straight line that passes through the origin
with the slope of g that will be calculated
as follows:

_ minlr =1,...,5) .

T omax{Xii =1, ...,m}’

such that . (r=1,..,s), x(i=
1, ..., m) are outputs and inputs of the anti-
ideal DMU (DMU).

U(r=1,..,s)and V;(i=1,..,m) in
the weighted sum denote the decision
variables of the common weights with
therth output and ith input index,
respectively. The notation of a decision
variable with superscript symbol "
represents an arbitrary assigned value. For
any two DMUs, DMU, andDMUy, if
given one set of weights U',.(r =
1,..,s)and V';(i=1,..,m),then the
coordinates of points M'and N'in Fig.2 are
QL1 VX, X3=1 UWrYrm) and
Qiz1 Vixin, Xi=q WrYry)- The virtual
gaps between points M' and M'? on the

horizontal axes and vertical axes, are
denoted Vi, and V$,,, respectively.
Similarly, for points N' and N'?, the gaps
are V4, and V9,. So, there exists a total
virtual gap A,,.+AS,.+Ay. +AS.  from
points (M ',N ") to the bad benchmark

line. We want to determine an optimal set
of  weights, u,;(r=y1..,s) and

v; (i =1...,m), such that both points

M “and N " upper the bad benchmark line
could be as far to their projection points,
M “Pand N " on the bad benchmark line,
as possible. In other words, by adopting
the optimal weights, the total virtual gaps
AL +AT . +A| . +AS. from both DMUs
to the bad benchmark line is the furthest.
As for the constraint, the numerator is the
weighted sum of outputs minus the vertical
gap V?,and the denominator is the
weighted sum of inputs plus the horizontal
virtual gap V]’- . The constraint implies that
the direction closest to the bad benchmark
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line is down and rightwards at the same
time. Therefore, we have following model:
V'=Max X7,(V¢ + Vi)
Lr=1UrYrj <1
Tiivixy; —
j=1..,n 3)
Zf‘:luryrj_vjo _

Z’{’;lvixij+vﬁ- -
j=1,..,n

ro Uy F X2 v =1
VoVl 20
j=1,..,n
u.-=2e¢>0 r=1,..,s,
Vi28>0 i=1,...m
Vi28>0 i=1,..,m

s. t.

Here, the constraint Y5_,u, + X7, v; =1
is added for normalization purpose and ¢
is positive Archimedean infinitesimal
constant. It prevents weights to become
zero.

Theorem 1: The model (1) is always

feasible.

Proof: The model (1) is the CCR model

and it is always feasible. We can find a

feasible solution of model (1) that satisfy

in the constraint  Y3_ u, + X%, v; =1

(*), because the constraint (*) cut the

feasible regain of model (1), therefore we

suppose that there is the vector as (V', U"),

that is the feasible solution of model (1)

and also is feasible in the constrain (*), so:
. Zi:lu,ryw

\4 S <1,

and

Yr Uy + X2V =1

And as well we have:

vj V?,Vi=0,

Zr-lu’ryr] V

Z?;lvrixi]-+v§ -

’
Yr=1ut rVrj

m !
Xz vl

<1,

According to the definition of g, we have
g <1, therefore:

. 10 174
vj av0, vz 0,

10
Yi=1 u’rYrj_Vj _
o
Z?:ll v’ixij+Vj

Consequently vector (V',U’,V',V'9) is a
solution of model (3).
The ratio form of constraints in (3) can be
rewritten in a linear form, formulated in
the constraint of (4):

*__ 1 (0]
V'= Max Y7, (V] +V?)
s.t. Z,Sﬂzl UrYrj — Zﬁl ViXij <0
j=1,..,n
Yoo Uryrj — gL vixij — V) —

gvi=0 (4)
j=1,..,n

e Uy X2 v =1

VP, V=0 j=1,..,n
u-=2¢e¢>0 r=1,..,s

v, =2e>0 i=1,..m

Theorem 2: For all optimal weights of
model (4), there isn't any DMU that is
under the bad benchmark line.

Proof: Proof by contradiction, We suppose
that there is the optimal weights such
as(U*, V"), that DMU, is under the bad
benchmark line, so, we have:

21 UrYrk
TlTT<

m *
i=1 Vi Xik

Therefore, there is a s, > 0; such that we

have:
S

m
Z UrYrk — gZ Vi Xj + S =0 (.

r=1 i=1

According to second category constrains
of model (3), We have:

Z ur}’rk gz: Ui xlk (Vo* + gvl*)

r=1 i=1

=0 (i) .

Therefore, (i), (ii) imply that:
Sk = —(VJQ* + gVJI-*);
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when this equation is true if and only if
s = V7" +gV/'=0.

It shows that DMU, is on the bad
benchmark line. It is inconsistent to a
absurd hypothesis, therefore, the absurd
hypothesis is false, so, a assertion prove,
i.e., there isn't any DMU with any optimal
weights that is under optimal weights.

4. Ranking DMUs by CWA-efficiency
For ranking efficient DMUs, we use
definition of the CWA efficiency score
of DMU; that Lui and Peng [5] defined as
in the following equation:

Zr=1 Yrjur
* r=1)1r]%r . 1 Kk
= - =1,..,n
J ML J=Lem ()

Definition 3: DMU; is efficient if §; = 1,
otherwise, DMU; is inefficient.

The numbers of DMUs with the efficiency
score 1.0 By using model (4) and equation
(**) are fewer than those of other
efficiency methods. Sometimes DMU with
§; =1 is unique. Because we use two
following conditions to obtain efficient
DMU.

) The efficient DMU has to have §; = 1.
I1) The efficient DMU has to have the
furthest distance to the bad benchmark
line.

So, the numbers of DMUs which are true
in conditions (1) and (1), are fewer than the
numbers of DMUs which are true in the
only condition (I).

In the other hand, DMUs which have 8* =
1 at model (1) are more than efficient
DMUs by our proposed method. Since the
most ranking methods use model (1) in

their method, so, they obtain more than
one efficient DMUEs.

We can use our method for ranking
efficient DMUs, so that we let V} + V¢ be
V; (j € E), then, we can rank them by the
following definition:

Definition 4: If & = & =1, i.e. they are
both efficient. Then the performance of
DMU; is better than DMU; if V]’-‘> v;.
Also inefficient DMUs can be ranked by
the following definition:

Definition 5: Performance of DMU; is
better than DMU,, if §; > &/

5. Empirical example

Let us rank 20 branches of bank in Iran by
our proposed method. These data were
previously analyzed by Amirteimoori and
Kordrostami [3] are listed in Tablel.

In our method, first we define an anti-ideal
bank. It has maximized inputs of all of
banks as in the case of m inputs and
minimized outputs of all of banks as in the
case of s outputs, i.e. its inputs and outputs
are as follows:

L=1 0, =0.11
L =1 0, = 0.184
IL=1 05 = 0.049.

We calculate the amount of g as follows:

_ min{0.11,0.184,0.049}
g= max(LLL) = 0.049.

It is clear that there isn't a real bank as anti-
ideal bank. The anti-ideal bank is the
virtual bank. Therefore, we use our
method to calculate the efficiency score of
DMUs. Therefore their results are shown
in the last column of Table 1.
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Table 1: Data of DMUs and their CCR efficiency and Ranking by model
I I, I; 0, 0, 0; \ s
Branch Staff | Computer | spaces | Deposits | Loans | Change Occr J
1 0.950 0.700 0.155 0.190 | 0.521 | 0.293 | 1.000 | 0.4382
2 0.796 0.600 1.000 0.227 0.627 | 0.462 | 0.833 | 0.6292
3 0.798 0.750 0.513 0.228 | 0.970 | 0.261 | 0.991 | 0.9709
4 0.865 0.550 0.210 0.193 | 0.632 | 1.000 | 1.000 | 0.5839
5 0.815 0.850 0.268 0.233 | 0.722 | 0.246 | 0.899 | 0.7072
6 0.482 0.650 0.500 0.207 0.603 | 0.569 |0.748 | 0.5722
7 0.719 0.600 0.350 0.182 0.900 | 0.716 | 1.000 | 1.0000
8 0.785 0.750 0.120 0.125 | 0.234 | 0.298 | 0.798 | 0.2382
9 0.476 0.600 0.135 0.080 | 0.364 | 0.244 | 0.789 | 0.6109
10 0.678 0.550 0.510 0.082 0.184 | 0.049 | 0.289 | 0.2168
11 0.711 1.000 0.305 0.212 0.318 | 0.403 | 0.604 | 0.3574
12 0.811 0.650 0.255 0.123 | 0.923 | 0.628 | 1.000 | 0.9092
13 0.659 0.850 0.340 0.176 0.645 | 0.261 | 0.817 | 0.7818
14 0.976 0.800 0.540 0.144 0.514 | 0.243 | 0.470 | 0.4207
15 0.685 0.950 0.450 1.000 | 0.262 | 0.098 | 1.000 | 0.3057
16 0.613 0.900 0.525 0.115 | 0.402 | 0.464 | 0.639 | 0.5239
17 1.000 0.600 0.205 0.090 1.000 | 0.161 | 1.000 | 0.7988
18 0.634 0.650 0.235 0.059 | 0.349 | 0.068 | 0.473|0.4397
19 0.372 0.700 0.238 0.039 | 0.190 | 0.111 | 0.408 | 0.4079
20 0.583 0.550 0.500 0.110 | 0.615 | 0.764 | 1.000 | 0.8427

According to Table 1, our proposed
efficiency model obtains only one DMU
(DMU,) as an efficient DMU,
becaused; = 1.000. But seven DMUs
(1,4,7,12,15,17,20) are efficient units
in CCR efficiency model (see Table 1).

In the proposed method, for ranking other
DMUs (inefficient DMUs ), performance
of every unit is better, if it will have more
score efficiency. For example, 63 =
0.9709 is more than other units so DMUs;
has the second rank and also 65, =
0.2168 is less than other units, so DMU,,
has the last rank. You can see ranks of all
DMUs in Table 2.

6. Conclusion

Conventional data envelopment analysis
doesn’t rank efficient units. In this paper,
we proposed an efficiency model that
often obtains only one efficient unit. For
our model, first we defined the anti-ideal
DMU and the bad benchmark line, and
then we built the efficiency model. If we

obtain more than one DMU as efficient
units, we can rank them with the same
model. In the other hands, If we have two
DMUs that are efficientDMUs, the
performance of every unit is better, if it has
the further distance from the bad
benchmark line, i.e. it has the more amount
of A* from other units.

Advantage of our method is that we can
obtain the efficiency of units with one
model and also we can rank them by the
same model.

As suggestion in the next paper, we can
find the both line “the good and bad
benchmark line” in the wvirtual two-
dimensions pace, then determine an
optimal set of weights u; (r =1, ...,m)
and v/ (i=1,..,m) for -calculating
efficiency, such that the total virtual gaps
all of DMUs to the good benchmark line is
the shortest and to the bad benchmark line
is the furthest.
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