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Abstract 
Data envelopment analysis (DEA) is a powerful technique for performance evaluation of 

decision making units (DMUs). One of the main objectives that is followed in performance 

evaluation is discriminating among efficient DMUs to provide a complete ranking of DMUs. 

DEA successfully divides them into two categories: efficient DMUs and inefficient DMUs. 
The DMUs in the efficient category have identical efficiency score. But the question that 

raises here is in evaluation. Where several DMUs have the equal efficiency, which unit 

performs better and how can we rank these efficient units, Different methods have been 
presented for ranking the efficient units.   

In this paper, we propose a method for calculating an efficiency of DMUs by comparing with 

the bad benchmark line. Our approach obtain common set of weights to create the best 

efficiency score, such that the amount of DMUs that are efficient is less than that of other 
models. If we have more than one efficient DMU, we can rank them by the same model and 

it isn't necessary to use another ranking method.  
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1. Introduction 
Charnes et al. [6] introduce data 

envelopment analysis (DEA) to assess the 

relative efficiency of a homogeneous 

group of operating decision making units 
(DMUs), such as schools, hospitals, or 

sales outlets. The DMUs usually use a set 

of resources, referred to as input indices, 
and transform them into a set of outcomes, 

referred to as output indices. DEA 

successfully divides them into two 

categories: efficient DMUs and inefficient 
DMUs. The DMUs in the efficient 

category have identical efficiency score. 

Therefore, in these last decades several 
ranking methods have been invented into 

the DEA context (Alder, Fridman & 

Sinunystern [1]; Chen [7]). After the 
earliest ranking method, the Cross- 

efficiency method developed by Sexton, 

Silkman, and Hogan [16], a large number 

of papers have been developed into the 
DEA area such as the super-efficiency 

method (Anderson & Peterson [4], Banker 

& Chen [5], Jahanshahloo, Junior, Hossein 
zadeh lotfi & Akbarian [12]), the Fridman 

and Sinuny-stern model (Sinuny-

stern,Mehrez & Barboy, [17]).  
The Common Set of Weights (CSW) 

approach in DEA was initially introduced 

by Cook et al. [8] and developed by Roll et 

al. [15]. Hosseinzadeh Lotfi et al. [10] 
used the concept of MOP and the common 

set of weights to calculate efficiency score 

of all DMUs. Jahanshahloo, Memarianiet, 
et al. [11] offered a method based on the 

common weights to measure the efficiency 

and to rank the efficient DMUs in the two-

step process. Amin and Toloo [8] 
presented a model in order to find the most 

efficient DMUs by using a common set of 

weights. Liu and Peng [14] searched a 
common set weight to evaluate the 

absolute efficiency of each efficient 

DMUs in order to give a complete ranking 
for all efficient DMUs. Jahanshahloo et al. 

[13] suggested two methods to obtain the 

set of common weights for ranking 

efficient DMUs by comparing with an 

ideal line and the special line. Wang and 
Chin [18, 19] suggested a framework for 

measuring cross-efficiency via the 

common set of weights . Wang et al. [20] 

proposed a new methodology based on 
regression analysis, which define the 

common weights from the angle of 

efficiency fitting and consider the 
traditional DEA efficiencies as their target 

efficiencies to be achieved.  Davoodi and 

Zhiani Rezai [9] recently extended a 

common-weights DEA methodology 
involving a linear programming problem 

to gauge the efficiency of the DMUs with 

respect to the multi-objective model. 
The proposed method is going to calculate 

an efficiency of DMUs by the bad 

benchmark line, will obtain common set of 
weights to create the best efficiency score, 

such that the amount of DMUs that are 

efficient is less than other models. If we 

have more than one efficient DMU, we can 
rank them by the same model and it isn't 

necessary to use another ranking method. 

In this paper, we review the concept of 
DEA framework in section 2. Common set 

of weights will be obtained by comparing 

with the bad benchmark line in section 3. 
Also in section 4, they will rank DMUs by 

CWA-efficiency. In section 5, they will 

bring an empirical example. Finally, 

section 6 will give their conclusions. 
 

2. DEA framework 

We deal with 𝑛  DMUs each having m
different inputs {𝑥𝑖𝑗}   (𝑖 = 1, … , 𝑚) and 

𝑠 different outputs
 

{𝑦𝑟𝑗}   (𝑟 = 1, … , 𝑠). 

We denote by jDMU  (xj, yj)  (j =

1, … , n) and the input/output data matrices 

by X = (𝑥𝑖𝑗) ∈ 𝑅𝑚×𝑛 and
  

Y = (𝑦𝑟𝑗) ∈

𝑅𝑠×𝑛 respectively. We assume X > 0  

and Y > 0 . Under the constant returns to 

scale (CRS) assumption, the following 

model measures the efficiency of
 
DMU𝑂 

i.e. DMU under consideration [6]: 

θ𝑜
∗ = 𝑀𝑎𝑥  

∑ 𝑢𝑟𝑦𝑟𝑜
𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑜
𝑚
𝑖=1

                       (1) 
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𝑠. 𝑡.     
∑ 𝑢𝑟𝑦𝑟𝑗

𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1      𝑗 = 1, … , 𝑛  

𝑢𝑟 ≥ ε > 0            𝑟 = 1, … , 𝑠,  
𝑣𝑖 ≥ ε > 0            𝑖 = 1, … , 𝑚.  
 

Where the symbol ε is a positive 

Archimedean infinitesimal constant, 

which is used in order to avoid the 

appearance of zero weights. oDMU is 

efficient in model (1) iff θ𝑜
∗ = 1.0. 

We define E={𝑗|𝜃𝑗
∗ = 1.0, 𝑗 = 1, … , 𝑛} to 

represent the set of efficient 𝐷𝑀𝑈s. It is 

helpful for decision makers only to focus 

on the efficient 𝐷𝑀𝑈𝑠. However, decision 
makers always face the problem of how to 

carry out a comparison among 𝐷𝑀𝑈𝑠  on 

the set E. 

Liu and Peng [14] present the vertical and 
horizontal axes set as the virtual output 

(weighted sum of 𝑠 outputs) and virtual 

input (weighted sum of m inputs), 
respectively. Then, they define the 

common benchmark level as one straight 

line that passes through the origin with 

slope 1.0.    1, 2,...,ru r s  and 

     1  , 2,...,iv i m  in the weighted sum 

denote the decision variables of the 

common weights for the 𝑟th output and 𝑖th 

input index, respectively. For any two 

DMUs, MDMU and NDMU , given one 

set of weights for each,  ' 1,2,...,ru r s

and  '      1  , 2,...,iv i m , the coordinates of 

points 'M  and 'N  in Fig.1 are 

 ' '

1 1
, 

m s

i iM r rMi r
v x u y

    and 

 ' '

1 1
, 

m s

i iN r rNi r
v x u y

   , respectively. 

The virtual gaps between points 'M and 
'PM between 'N  and 

'PN on the 

horizontal axes are denoted by '

I

M , N'

I , 

respectively and the vertical axes by '

O

M ,  

 

N'

O , respectively. So, there exists a total 

virtual gap ' ' ' ' I O I O

M M N N        from 

points  ', 'M N  to the benchmark line. 

Liu and Peng [14] determined an optimal 

set of weights,  *     1  ,...,ru r s  and

 *   1, ,iv i m  , such that both points 

*M and *N below the ideal line could be 

as close to their projection points, 
*PM

and *PN on the benchmark line, as 

possible. In other words, by adopting the 

optimal weights, the total virtual gaps 

* * * * I O I O

M M N N
       from both 

DMUs to the benchmark line is the 

shortest. They formulated the common set 

of weights for efficient units as follows: 

 *

1

1

  

1, ,

, 0,    ,

ε 0,    1, , ,

ε 0,      1  , 2,..., .

. .

O I

j j

j E

s O

r rj jr

m I

i io ji

O I

j j

r

i

Min

u y
j E

v x

j E

u r s

v i m

s t







  

 
 



   

   

  

 




(2) 

 

Then, they transformed model (2) to a 

linear form. 
In this paper, we are going to introduce the 

model that obtains an optimal set of 

weights such that the bad benchmark line 

passes through the origin and the anti-ideal 

point with slope 𝑔 (we'll define it in the 

next section), and the distances of the other 

DMUs to this line are the furthest. In this 
model, the number of DMUs that are 

efficient is less than other models. If we 

have more than one efficient DMU, we can 

rank them by the same model and it isn't 
necessary to use another ranking method. 
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3. Common set of weights by the bad 

benchmark line 
In conventional DEA models, each DMU 

in turn maximizes the efficiency score, 

under the constraint that none of DMU's 

efficiency score is allowed to exceed 1.0. 
In this method, according to this constraint 

we are going to obtain an efficiency model 

to calculate the best absolute efficiency 
score such that the total virtual gap to the 

bad benchmark line (we'll define it as 

follows) is the furthest to all DMUs. Then 

we can rank DMUs with the same 
efficiency if we will have a model with 

more than one DMU that has efficiency 

score of 1.0. 
In this methodology, first we scale the 

input and output data by normalization; i.e. 

we divide 𝑖th input and 𝑟th output of all 

DMUs by 𝑅𝑖
−and 𝑅𝑟

+, respectively, where: 

 

 

 

𝑅𝑖
− = {𝑀𝑎𝑥 𝑥𝑖𝑗|𝑗 = 1, … , 𝑛}   

(𝑖 = 1, … , 𝑚)  

𝑅𝑟
+ = {𝑀𝑎𝑥 𝑦𝑟𝑗|𝑗 = 1, … , 𝑛} 

(𝑟 = 1, … , 𝑠). 
 
Definition 1: The anti-ideal DMU is a 

virtual point, which consumes the most 

inputs only to produce the least outputs. 
That is, if we show the anti-ideal DMU 

with 𝐷𝑀�̃� = (�̃�, �̃�), i.e. 

�̃�𝑖 = 𝑀𝑎𝑥 {
𝑥𝑖𝑗

𝑅𝑖
− |𝑗 = 1, … , 𝑛}       

(𝑖 = 1, … , 𝑚) 

�̃�𝑟 = 𝑀𝑖𝑛 {
𝑦𝑟𝑗

𝑅𝑟
+ |𝑗 = 1, … , 𝑛}       

(𝑟 = 1, … , 𝑠). 
 

In Fig.2 the vertical and horizontal axes are 

set to be the virtual output (weighted sum 

of s outputs) and virtual input (weighted 
sum of m inputs), respectively.  

 

 

Virtual Output 

  

Virtual Input 

   

Slop=1.0 
Benchmar
k 

Fig.1: Gap analysis DMUs below the virtual benchmark line. O 
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Definition 2: The bad benchmark line in 

the virtual two-dimensions space is one 

straight line that passes through the origin 

with the slope of 𝑔 that will be calculated 

as follows: 

𝑔 =
𝑚𝑖𝑛{�̃�𝑟|𝑟 = 1, … , 𝑠}

𝑚𝑎𝑥{�̃�𝑖|𝑖 = 1, … , 𝑚}
 ; 

 

such that �̃�𝑟 (𝑟 = 1, … , 𝑠), �̃�𝑖(𝑖 =
1, … , 𝑚) are outputs and inputs of the anti-

ideal DMU (𝐷𝑀�̃�). 

𝑈𝑟( 𝑟 = 1, … , 𝑠)and 𝑉𝑖( 𝑖 = 1, … , 𝑚)  in 

the weighted sum denote the decision 
variables of the common weights with 

the 𝑟th output and 𝑖th input index, 

respectively. The notation of a decision 

variable with superscript symbol "′" 
represents an arbitrary assigned value. For 

any two DMUs, 𝐷𝑀𝑈𝑀 𝑎𝑛𝑑𝐷𝑀𝑈𝑁, if 

given one set of weights 𝑈′𝑟( 𝑟 =
1, … , 𝑠) and 𝑉′𝑖( 𝑖 = 1, … , 𝑚), then the 
coordinates of points M' and N' in Fig.2 are 
(∑ 𝑣′𝑖𝑥𝑖𝑀 ,𝑚

𝑖=1 ∑ 𝑢′𝑟𝑦𝑟𝑀
𝑠
𝑟=1 ) and 

(∑ 𝑣′𝑖𝑥𝑖𝑁 ,𝑚
𝑖=1 ∑ 𝑢′𝑟𝑦𝑟𝑁)𝑠

𝑟=1 . The virtual 

gaps between points M' and 𝑀′𝑃 on the  

 

horizontal axes and vertical axes, are 

denoted ∇𝑀′
𝐼  and ∇𝑀′

𝑜 , respectively. 

Similarly, for points N' and 𝑁′𝑃, the gaps 

are  ∇𝑁′
𝐼  and  ∇𝑁′

𝑂 . So, there exists a total 

virtual gap 
' ' ' ' I O I O

M M N N        from 

points  ', 'M N  to the bad benchmark 

line. We want to determine an optimal set 

of weights,  *     1  ,...,ru r s  and

 *   1, ,iv i m  , such that both points 

*M and *N upper the bad benchmark line 

could be as far to their projection points, 
*PM and *PN on the bad benchmark line, 

as possible. In other words, by adopting 
the optimal weights, the total virtual gaps 

* * * * I O I O

M M N N
       from both DMUs 

to the bad benchmark line is the furthest. 

As for the constraint, the numerator is the 

weighted sum of outputs minus the vertical 

gap ∇𝑗
𝑜, and the denominator is the 

weighted sum of inputs plus the horizontal 

virtual gap ∇𝑗
𝐼 . The constraint implies that 

the direction closest to the bad benchmark 

𝛻𝑀′
𝐼  

𝛻𝑀′
𝑂  

 

𝑀′ = (∑ 𝑣′𝑖𝑥𝑖𝑀 ,𝑚
𝑖=1 ∑ 𝑢′𝑟𝑦𝑟𝑀

𝑠
𝑟=1 )  

𝛻𝑁′
𝐼  

 
𝛻𝑁′

𝑂  

 

N'=∑ 𝑣′𝑖𝑥𝑖𝑁 ,𝑚
𝑖=1 ∑ 𝑢′𝑟𝑦𝑟𝑁)𝑠

𝑟=1  

g 

Virtual Output 
(∑ 𝑢′𝑟𝑦𝑟𝑗

𝑠
𝑟=1 )  

Virtual Input  
(∑ 𝑣′𝑖𝑥𝑖𝑗

𝑚
𝑖=1 ) 

𝑀′𝑃 

𝑁′𝑃 

O Fig2: Gap analysis showing DMU upper the virtual bad benchmark line. 
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line is down and rightwards at the same 
time. Therefore, we have following model: 

∇∗= 𝑀𝑎𝑥    ∑ (∇𝑗
𝑂 + ∇𝑗

𝐼)𝑛
𝑗=1   

𝑠. 𝑡.     
∑ 𝑢𝑟𝑦𝑟𝑗

𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1    

𝑗 = 1, … , 𝑛                                       (3) 
∑ 𝑢𝑟𝑦𝑟𝑗−∇𝑗

𝑂𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗+∇𝑗
𝐼𝑚

𝑖=1

= g    

𝑗 = 1, … , 𝑛  
∑ 𝑢𝑟

𝑠
𝑟=1 + ∑ 𝑣𝑖

𝑚
𝑖=1 = 1  

𝛻𝑗
𝑂, 𝛻𝑗

𝐼 ≥ 0  

𝑗 = 1, … , 𝑛,  
𝑢𝑟 ≥ ε > 0            𝑟 = 1, … , 𝑠, 
𝑣𝑖 ≥ ε > 0            𝑖 = 1, … , 𝑚. 
𝑣𝑖 ≥ ε > 0            𝑖 = 1, … , 𝑚. 
 

Here, the constraint ∑ 𝑢𝑟
𝑠
𝑟=1 + ∑ 𝑣𝑖

𝑚
𝑖=1 = 1 

is added for normalization purpose and 𝜀 

is positive Archimedean infinitesimal 
constant. It prevents weights to become 

zero. 

 

Theorem 1: The model (1) is always 
feasible. 

Proof: The model (1) is the CCR model 

and it is always feasible. We can find a 
feasible solution of model (1) that satisfy 

in the constraint   ∑ 𝑢𝑟
𝑠
𝑟=1 + ∑ 𝑣𝑖

𝑚
𝑖=1 = 1 

(*), because the constraint (*) cut the 

feasible regain of model (1), therefore we 

suppose that there is the vector as (𝑉′, 𝑈′), 
that is the feasible solution of model (1) 

and also is feasible in the constrain (*), so: 

∀𝑗   
∑ 𝑢′

𝑟𝑦𝑟𝑗
𝑠
𝑟=1

∑ 𝑣′
𝑖𝑥𝑖𝑗

𝑚
𝑖=1

≤ 1,    

𝑎𝑛𝑑 
∑ 𝑢′

𝑟
𝑠
𝑟=1 + ∑ 𝑣′

𝑖
𝑚
𝑖=1 = 1.   

And as well we have: 

∀𝑗  ∇𝑗
𝑂 , ∇𝑗

𝐼≥ 0,       
∑ 𝑢′𝑟𝑦𝑟𝑗−∇𝑗

𝑂𝑠
𝑟=1

∑ 𝑣′𝑖𝑥𝑖𝑗+∇𝑗
𝐼𝑚

𝑖=1

≤  
∑ 𝑢′

𝑟𝑦𝑟𝑗
𝑠
𝑟=1

∑ 𝑣′
𝑖𝑥𝑖𝑗

𝑚
𝑖=1

≤ 1,  

 

According to the definition of 𝑔, we have 

𝑔 ≤ 1, therefore: 

∀𝑗  ∃∇𝑗
′𝑂 , ∇′

𝑗
𝐼
≥ 0,       

∑ 𝑢′
𝑟𝑦𝑟𝑗−∇𝑗

′𝑂𝑠
𝑟=1

∑ 𝑣′
𝑖𝑥𝑖𝑗+∇𝑗

′𝐼𝑚
𝑖=1

= 𝑔.  

 

Consequently vector (𝑉′, 𝑈′, ∇′𝐼 , ∇′𝑂) is a 
solution of model (3).  

The ratio form of constraints in (3) can be 
rewritten in a linear form, formulated in 

the constraint of (4): 

∇∗= 𝑀𝑎𝑥  ∑ (∇𝑗
𝐼 + ∇𝑗

𝑂)𝑛
𝑗=1   

𝑠. 𝑡.    ∑ 𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1 − ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚
𝑖=1 ≤ 0  

𝑗 = 1, … , 𝑛 

∑ 𝑢𝑟𝑦𝑟𝑗 − g𝑠
𝑟=1 ∑ 𝑣𝑖𝑥𝑖𝑗 −𝑚

𝑖=1 ∇𝑗
𝑂 −

g∇𝑗
𝐼= 0                                             (4) 

 𝑗 = 1, … , 𝑛  
∑ 𝑢𝑟

𝑠
𝑟=1 + ∑ 𝑣𝑖

𝑚
𝑖=1 = 1  

∇𝑗
O, ∇𝑗

I ≥ 0              𝑗 = 1, … , 𝑛 

𝑢𝑟 ≥ ε > 0            𝑟 = 1, … , 𝑠 

𝑣𝑖 ≥ ε > 0             𝑖 = 1, … , 𝑚. 
 

Theorem 2: For all optimal weights of 

model (4), there isn't any DMU that is 
under the bad benchmark line.  

Proof: Proof by contradiction, We suppose 

that there is the optimal weights such 

as(𝑈∗, 𝑉∗), that 𝐷𝑀𝑈𝑘 is  under the bad 

benchmark line, so, we have: 
∑ 𝑢𝑟

∗𝑦𝑟𝑘
𝑠
𝑟=1

∑ 𝑣𝑖
∗𝑥𝑖𝑘

𝑚
𝑖=1

< g. 

 

Therefore, there is a 𝑠𝑘 > 0; such that we 

have: 

∑ 𝑢𝑟
∗𝑦𝑟𝑘 − g ∑ 𝑣𝑖

∗𝑥𝑖𝑘 + 𝑠𝑘 = 0        (𝑖)

𝑚

𝑖=1

𝑠

𝑟=1

. 

 

According to second category constrains 
of model (3), we have: 

∑ 𝑢𝑟
∗𝑦𝑟𝑘 − g ∑ 𝑣𝑖

∗𝑥𝑖𝑘 − (∇𝑗
𝑂∗ + g∇𝑗

𝐼∗)

𝑚

𝑖=1

𝑠

𝑟=1

= 0        (𝑖𝑖) . 
 

Therefore, (i), (ii) imply that: 

𝑠𝑘 = −(∇𝑗
𝑂∗ + g∇𝑗

𝐼∗); 
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when this equation is true if and only if 

𝑠𝑘 = ∇𝑗
𝑂∗ + g∇𝑗

𝐼∗= 0. 

 

It shows that 𝐷𝑀𝑈𝑘 is on the bad 

benchmark line. It is inconsistent to a 
absurd hypothesis, therefore, the absurd 

hypothesis is false, so, a assertion prove, 

i.e., there isn’t any DMU with any optimal 
weights that is under optimal weights. 

 

4. Ranking DMUs by CWA-efficiency 
For ranking efficient DMUs, we use 

definition of the CWA efficiency score 

of 𝐷𝑀𝑈𝑗 that Lui and Peng [5] defined as 

in the following equation: 

𝜉𝑗
∗ =

∑ 𝑦𝑟𝑗𝑢𝑟
∗𝑠

𝑟=1

∑ 𝑥𝑖𝑗𝑣𝑖
∗𝑚

𝑖=1

                𝑗 = 1, … , 𝑛.    (**) 

 

Definition 3: 𝐷𝑀𝑈𝑗 is efficient if 𝜉𝑗
∗ = 1, 

otherwise, 𝐷𝑀𝑈𝑗 is inefficient. 

The numbers of DMUs with the efficiency 

score 1.0 By using model (4) and equation 

(**) are fewer than those of other 
efficiency methods. Sometimes DMU with 

𝜉𝑗
∗ = 1 is unique. Because we use two 

following conditions to obtain efficient 

DMU. 

I) The efficient DMU has to have 𝜉𝑗
∗ = 1. 

II) The efficient DMU has to have the 

furthest distance to the bad benchmark 
line. 

So, the numbers of DMUs which are true 

in conditions (I) and (II), are fewer than the 
numbers of DMUs which are true in the 

only condition (I). 

In the other hand, DMUs which have 𝜃∗ =
1 at model (1) are more than efficient 

DMUs by our proposed method. Since the 

most ranking methods use model (1) in 

their method, so, they obtain more than 
one efficient DMUs. 

We can use our method for ranking 

efficient DMUs, so that we let ∇𝑗
𝐼 + ∇𝑗

𝑂  be 

∇𝑗  (𝑗 ∈ 𝐸), then, we can rank them by the 

following definition: 

Definition 4: If 𝜉𝑗
∗ = 𝜉𝑖

∗ = 1, i.e. they are 

both efficient. Then the performance of 

𝐷𝑀𝑈𝑗 is better than 𝐷𝑀𝑈𝑖 if ∇𝑗
∗> ∇𝑖

∗. 

Also inefficient DMUs can be ranked by 
the following definition: 

Definition 5: Performance of 𝐷𝑀𝑈𝑗 is 

better than 𝐷𝑀𝑈𝑖, if 𝜉𝑗
∗ > 𝜉𝑖

∗. 

 

5. Empirical example 

Let us rank 20 branches of bank in Iran by 

our proposed method. These data were 

previously analyzed by Amirteimoori and 
Kordrostami [3] are listed in Table1. 

In our method, first we define an anti-ideal 

bank. It has maximized inputs of all of 

banks as in the case of  𝑚 inputs and 

minimized outputs of all of banks as in the 

case of 𝑠 outputs, i.e. its inputs and outputs 

are as follows: 

𝐼1 = 1                𝑂1 = 0.11 

𝐼2 = 1                𝑂2 = 0.184 

𝐼3 = 1 𝑂3 = 0.049. 
 

We calculate the amount of g as follows: 

𝑔 =
𝑚𝑖𝑛{0.11,0.184,0.049}

𝑚𝑎𝑥{1,1,1}
= 0.049.    

 

It is clear that there isn't a real bank as anti-

ideal bank. The anti-ideal bank is the 

virtual bank. Therefore, we use our 
method to calculate the efficiency score of 

DMUs. Therefore their results are shown 

in the last column of Table 1. 
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Table 1: Data of DMUs and their CCR efficiency and Ranking by model 

Branch 
 𝐈𝟏 

Staff 
  𝐈𝟐 

Computer 
𝐈𝟑 

spaces 
𝐎𝟏 

Deposits 
𝐎𝟐 

Loans 
𝐎𝟑 

Change 
𝜽𝐂𝐂𝐑

∗  𝜉𝑗
∗ 

1 

2 

3 
4 

5 

6 

7 
8 

9 

10 
11 

12 

13 

14 
15 

16 

17 
18 

19 

20 

0.950 

0.796 

0.798 
0.865 

0.815 

0.482 

0.719 
0.785 

0.476 

0.678 
0.711 

0.811 

0.659 

0.976 
0.685 

0.613 

1.000 
0.634 

0.372 

0.583 

0.700 

0.600 

0.750 
0.550 

0.850 

0.650 

0.600 
0.750 

0.600 

0.550 
1.000 

0.650 

0.850 

0.800 
0.950 

0.900 

0.600 
0.650 

0.700 

0.550 

0.155 

1.000 

0.513 
0.210 

0.268 

0.500 

0.350 
0.120 

0.135 

0.510 
0.305 

0.255 

0.340 

0.540 
0.450 

0.525 

0.205 
0.235 

0.238 

0.500 

0.190 

0.227 

0.228 
0.193 

0.233 

0.207 

0.182 
0.125 

0.080 

0.082 
0.212 

0.123 

0.176 

0.144 
1.000 

0.115 

0.090 
0.059 

0.039 

0.110 

0.521 

0.627 

0.970 
0.632 

0.722 

0.603 

0.900 
0.234 

0.364 

0.184 
0.318 

0.923 

0.645 

0.514 
0.262 

0.402 

1.000 
0.349 

0.190 

0.615 

0.293 

0.462 

0.261 
1.000 

0.246 

0.569 

0.716 
0.298 

0.244 

0.049 
0.403 

0.628 

0.261 

0.243 
0.098 

0.464 

0.161 
0.068 

0.111 

0.764 

1.000 

0.833 

0.991 
1.000 

0.899 

0.748 

1.000 
0.798 

0.789 

0.289 
0.604 

1.000 

0.817 

0.470 
1.000 

0.639 

1.000 
0.473 

0.408 

1.000 

0.4382 

0.6292 

0.9709 
0.5839 

0.7072 

0.5722 

1.0000 
0.2382 

0.6109 

0.2168 
0.3574 

0.9092 

0.7818 

0.4207 
0.3057 

0.5239 

0.7988 
0.4397 

0.4079 

0.8427 

 
 

According to Table 1, our proposed 

efficiency model obtains only one 𝐷𝑀𝑈 

(𝐷𝑀𝑈7) as an efficient 𝐷𝑀𝑈, 

because𝜃7
∗ = 1.000. But seven 𝐷𝑀𝑈𝑠 

(1, 4, 7, 12, 15, 17, 20) are efficient units 

in 𝐶𝐶𝑅 efficiency model (see Table 1). 
In the proposed method, for ranking other 

𝐷𝑀𝑈𝑠 (inefficient  𝐷𝑀𝑈𝑠 ), performance 

of every unit is better, if it will have more 

score efficiency. For example, 𝜃3
∗ =

0.9709 is more than other units so 𝐷𝑀𝑈3 

has the second rank and also 𝜃10
∗ =

0.2168 is less than other units, so 𝐷𝑀𝑈10 

has the last rank. You can see ranks of all 

DMUs in Table 2.  

 

6. Conclusion 

Conventional data envelopment analysis 

doesn’t rank efficient units. In this paper, 
we proposed an efficiency model that 

often obtains only one efficient unit. For 

our model, first we defined the anti-ideal 

𝐷𝑀𝑈 and the bad benchmark line, and 

then we built the efficiency model. If we 

obtain more than one 𝐷𝑀𝑈 as efficient 

units, we can rank them with the same 
model. In the other hands, If we have two 

𝐷𝑀𝑈𝑠 that are efficient𝐷𝑀𝑈𝑠, the 

performance of every unit is better, if it has 

the further distance from the bad 
benchmark line, i.e. it has the more amount 

of ∆∗ from other units. 

Advantage of our method is that we can 
obtain the efficiency of units with one 

model and also we can rank them by the 

same model. 
As suggestion in the next paper, we can 

find the both line “the good and bad 

benchmark line” in the virtual two-

dimensions pace, then determine an 

optimal set of weights 𝑢𝑟
∗  (𝑟 = 1, … , 𝑚) 

and 𝑣𝑖
∗ (𝑖 = 1, … , 𝑚) for calculating 

efficiency, such that the total virtual gaps 

all of DMUs to the good benchmark line is 
the shortest and to the bad benchmark line 

is the furthest.  
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