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Abstract 

Anchor DMUs are a new class in the general classification of Decision Making Units (DMUs) 

in Data Envelopment Analysis (DEA). An anchor DMU in DEA is an extreme-efficient DMU 
that defines the transition from the efficient frontier to the free-disposability part of the 

boundary of the Production Possibility Set (PPS). In this paper, the anchor points of the PPS 

of the CCR model are investigated. A basic definition of anchor point based on the supporting 
hyperplanes of the PPS of CCR model is provided. Then, by using a variant of super-

efficiency models, the necessary and sufficient conditions for a DMU to be an anchor DMU 

are provided via some theorems. To illustrate the applicability of the proposed model, some 
numerical examples are finally given.  

 

Keywords: Data Envelopment Analysis (DEA); Production Possibility Set (PPS), Efficient 

and inefficient frontier. 
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1. Introduction 
An anchor point in DEA is an extreme-

efficient DMU lying on the intersection of 

some strongly and weakly efficient 

frontiers of the PPS. An anchor point is, 
therefore, an extreme-efficient DMU in 

which some inputs can increase and/or 

some outputs can decrease without passing 
through the interior of the PPS. Anchor 

points play a significant role in DEA 

theory and applications. The concept of 

anchor point was used in Thanassoulis and 
Allen [11] (1998) for the generation of 

unobserved DMUs in order to reduce 

appropriately the DEA-inefficient 
boundary of the PPS. Anchor points were 

first named and identified by Allen and 

Thanassoulis [2] (2004). They proposed a 
method for detecting anchor points of the 

constant returns to scale production 

possibility set (CRS-PPS) with one input 

and multiple outputs. However, their 
method is not applicable to multiple inputs 

and outputs. Thanassoulis et al. [11](2012) 

proposed another approach to identify 
anchor points, using the radial efficiency 

scores and slack variables at the optimal 

solution of envelopment models. They 
extended the proposed approach in Allen 

and Thanassoulis [12] (2004) to the 

multiple inputs and outputs case in 

variable returns to scale production 
possibility set (VRS-PPS) in order to 

improve envelopment by means of 

unobserved DMUs. Bougnol and Dulá [3] 
(2009) defined the anchor point for the 

VRS-PPS. They provided a specialized 

procedure to identify anchor points based 

on their geometrical properties. Rouse 
[10](2004) employed this idea in 

identifying prices for health care services. 

For more detail about the notion and 
applications of the anchor DMUs, see 

Bougnol [4] (2001) and Allen and 

Thanassoulis [2] (2004). Since the set of 
anchor DMUs is a subset of the set of 

extreme DMUs, the set of extreme DMUs 

must be obtained. For this aim, one can use 

the proposed algorithms in Charnes, 

Cooper and Thrall [6] (1991) as well as 
Dulá and López [7] (2006) among others. 

This paper provides a definition for the 

anchor point of the CRS-PPS. 

Subsequently, it utilizes a novel approach 
to identify the anchor points of the PPS of 

the CCR model in the multiple inputs and 

outputs case; through testing all CCR-
efficient DMUs by a variant of super-

efficiency models (see models (3) and (4), 

after eliminating the inefficient-CCR 

DMUs from the PPS). In fact, extreme and 
non-extreme CCR-efficient DMUs and 

anchor DMUs can be obtained, using 

models (3) and (4). An advantage of the 
proposed approach is in determining 

which inputs (outputs) of anchor DMUs 

can increase (decrease) without 
penetrating into the interior of the 

production possibility set. Another 

advantage of the proposed approach is in 

discovering the edges of the PPS on which 
the anchor DMUs lie; whereas the 

aforementioned methods are unable to do 

these two advantages. Some useful facts 
related to the properties of models (3) and 

(4) and the necessary and sufficient 

conditions for a DMU to be an anchor 
DMU are stated and proved. In addition, 

three numerical examples are provided. 

 

2. Background 
Consider a set of n DMUs which is 

associated with m inputs and s outputs. 

Particularly, each DM 

( ;  ) ( {1,  , })j j jU X Y j J n     

consumes amount xij (> 0) of input i and 

produces amount yrj (> 0) of output r.  The 
production possibility set T, 

  ;  | , , 0,  0m sT X Y X E Y E X Y      

is based on postulate sets which are 

presented with a brief explanation (see 
Banker et al. [13] (1984)). One of the DEA 

models to evaluate the relative efficiency 

of a set of DMUs is the CCR model, which 

is, proposed by Charnes et al. [5](1978). 
The (PPS) of the CCR model can be 

defined as follows (Charnes  
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et al. [5] (1978)): 

 , ,  ,  0,  j j j j j

j J j J

T X Y X X Y Y j J  
 

  
     
  

   

in which Xj and Yj are vectors of inputs and 

outputs of 
jDMU , respectively. 

We will employ a DMU classification 
based on the categories (i) CCR-inefficient 

(weak efficient and interior), (ii) non-

extreme CCR-efficient, and (iii) extreme 
CCR-efficient. The three categories define 

the subsets `F ', `E', and `E ', respectively. 

These three subsets partition the set J. Any 

DMU in E; lies on the boundary (non-
extreme) ray and any DMU in E; lies on 

the extreme ray of the PPS of the CCR 

model and named as extreme DMU. 
The set E*is also called the frame of J. The 

frames are important in DEA because the 

PPS of the DEA models are constructed by 
them and the exclusion each of them alters 

the shape of the PPS. The PPS of the CCR 

model is depicted in Figures (1) and (2). In 

Figure (1), 

 1 2 3 4, , ,J D D D D ,    4 3,  F D E D 

and  *

1 2,E D D . Also D1 and D2 are 

anchor DMUs.  

The input-oriented CCR model, 

corresponds to 
kDMU , k J , is given 

by: 

1 1

min  

. .   ,    1,  ...,  

,      1,  ...,  

0,                                             (1)

0,

0,

                               

m s

i r

i r

j rj r rk

j J

j ij i ik

j J

j

r

i

s s

s t y s y r s

x s x i m

s

s

 



 





 

 













 
  

 

  

  







 





     free

 

 

Also, the output-oriented CCR model, 

corresponds to
kDMU , k J , is as 

follows: 

1 1

max  

. .   ,  1,  ...,  

       ,      1,  ...,  

       0,                             (2)

       0,

       0,

                     

m s

i r

i r

j rj r rk

j J

j ij i ik

j J

j

r

i

t t

s t y t y r s

x t x i m

t

t

 

 







 

 













 
  

 

  

  







 





                 free

 

Where ϵ is non-Archimedean small and 

positive number and ,  ,  ,i r is s t  
 and 

,  1,  ...,  ,it i m    

1,  .... ,r s  are called slack variables 

belonging to
0R

. Note that is
 and it



represent input excesses; also rs
 and rt



represent output shortfalls. In here, ,     

and ( 0),  ,j j J    are real numbers. 

Models (1) and (2) are called envelopment 

forms (with non-Archimedean number). 

kDMU is said to be strongly efficient 

(CCR-efficient) if and only if for each 
optimal solutions, either (i) or (ii) happen: 

(i) * 1   and * *( ,  ) (0,  0)s s    

(ii) 
* 1   and * *( ,  ) (0,  0)t t    

kDMU is said to be weak efficient if and 

only if for some optimal solutions, either 

(v) or (iv) happen: 

(v) * 1   and * *( ,  ) (0,  0)s s    

(iv) 
* 1   and * *( ,  ) (0,  0)t t    

Note that if * 1   and 
* 1   then DM Uk 

is an interior point of the PPS1. 
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Each inefficient and weak efficient DMU 
in the CCR model is said to be a CCR-

inefficient DMU. 

Efficient Frontier is the set of all points 

(real or virtual DMUs) with efficiency 
score is equal to unity. Efficient frontier is 

divided into two categories: 

i) Strong efficient frontier is the set of all 
(real or virtual) strong efficient (CCR 

efficient) DMUs. 

ii) Weak efficient frontier in which all its 

relative interior points (real or virtual 
DMUs) are weak efficient DMUs. 

DM Uk = (Xk, Yk) is said to be non-

dominated if and only if there is not any 
DMU = (X, Y) (real or virtual) such that: 

( , ) ( , )k kX Y X Y    and ( , ) ( , )k kX Y X Y    

We use the following theorem in the next 

section. 

 

Theorem 1: There does not exist any 

virtual DMU (a member of the PPS) that 

dominates an 
DEA-efficient DMU. 

 

Proof. See H. Fukuyama et al. (2012). 
In this paper, corresponding to each strong 

efficient DMU

, the virtual 

DMUs  1 1,..., ,..., , ,...,l

j j lj mj j sjDMU x x x y y   

and  1 1,..., , ,... ,...,q

j j mj j qj sjDMU x x y y y 

in which , 0   , are called “Dominated 

Input Virtual" 
l

kDIV and “Dominated 

Output Virtual" q

kDOV  DMUs, 

respectively. These virtual DMUs are 

either interior points of the PPS of the CCR 

model or lie on the some weak efficient 
frontiers (see theorems 3 and 6 and the 

proof of theorem 4). In the latter case we 

call these virtual DMUs as “weak efficient 

virtual DMUs" or WEV DMUs, hereafter. 
It is important to note that the WEV DMUs 

play an important role in identifying 

anchor points. Accordingly, this paper 
tries to find them. In figure 1, DMU 

 1 12 22 12, , D x x y  is strong efficient 

DMU and
2

1DIV ,  1 12 22 12, + , D x x y   

is a WEV DMU. In addition, in figure 2, 
2

1 1 DOV D   and
1

1 1 DOV D , 

corresponding to DMU D1, are WEV 

DMUs. 

The following definition introduces the 
anchor points of the PPS of the CCR 

model. 

 

 
Figure 1: 

1

2DIV  DMU 2D  is a WEV DMU and also model 3 corresponding to 2D with l=1 is 

infeasible therefore, 2D  is an anchor point.  2 

                                                
1. (*) is used for optimal solution 

1 1( ,..., , ,..., )j j mj j sjDMU x x y y
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Figure 2: Model 4 corresponding to DMU 

1D  with q = 2 is infeasible therefore, D1 is an anchor 

point. Also, 
1

1 1 DIV D  is an interior point 7. 

 

Definition. 
* kDMU E is an anchor 

DMU if it belongs to an unbounded face of 

the PPS of the CCR model. 

Remark1. By the above definition;
* kDMU E is an anchor DMU if there 

exist some l (or q) so that
l

kDIV  (or

q

kDOV ) DMUs are WEV DMUs. 

In figure 1, 
1 '

2 2 DMU DIV D  is a WEV 

DMU and so, 
'

2D  is an anchor point. 

Throughout this paper, we must assume 
that there are not any two strong efficient 

DMUs as ( , )x y and ( , )tx ty  for all t > 0 

and 1t  . Otherwise, one of them must be 

deleted. 

 

3. Identifying the anchor DMUs of the 

PPS of the CCR model 

In this section, the anchor DMUs of the 

PPS of the CCR model are defined in the 
following way. 

First, each  ;  kDMU k J , is evaluated by 

models (1) or (2). Then, we hold all CCR-

efficient 
DMUs, and remove other DMUs. Suppose 

that the set of all CCR-efficient DMUs is 

denoted by
*( )E E E   . Corresponding 

to each

 1 1,..., , ,..., ,  ( ')k k mk k skDMU x x y y k E  , 

the following models are solved: 

 '

min  

. .   ,

     1,  ...,  

k

l

k

j rj rk

j E k

s t y y

r s




 





  

 

 

 

'

'

       ,

     1,  ...,  ,  

       ,

       0,                       '

                                      1,  ...,  

k

j ij ik

j E k

k k

j lj l lk

j E k

k

j

k

l

x x

i m i l

x x

j E k

free l m



 





 

 



 



  





    (3) 

 

 

 

'

'

'

max  

. .  ,

     1,  ...,  ,   

      ,

     ,

       1,  ...,  ,

k

q

k

j rj rk

j E k

k k

j qj q qk

j E k

k

j ij ik

j E k

s t y y

r s r q

y y

x x

i m





 



 

 

 



 













              (4) 
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 0,         '  

                1,  ...,  

k

j

k

q

j E k

free q s





  


 

 

The following Theorems are held for 

models (3) and (4). The theorems 3-8 
provide the necessary and sufficient 

conditions for a DMU to be an anchor 

DMU. 

 
Theorem 2: In model (3) (or (4)), if for 

some l (or q), 
* 1k

l   (or
*,  1k

q  ) or if 

for some l (or q), model (3) (or model (4)) 

is infeasible, then, 

kDMU is an extreme DMU and vice versa. 

 

Proof. Suppose that * 1k

l  . First, we 

show that 
kDMU

 
is CCR-efficient. By 

contradiction, suppose that 
kDMU is 

CCR-inefficient. Let * * *( , , )s s    be the 

optimal solution of model (1). 

Two cases can occur: 

(i) * 1   and * *( ,  ) (0,  0)s s    

(ii) * 1   

in each case it can be shown that  
* 1k

l  , 

a contradiction. 

Now we show that 
kDMU  is, in fact, an 

extreme CCR-efficient DMU. By 

contradiction suppose that kDMU  is a 

non-extreme CCR-efficient. So, the 

following system has solution: 

'

'

,

,  

0,    '

j j k

j E

j j k

j E

j

y y

x x

j E















 



                              (5) 

 

Suppose that ,    '  j j E   is a solution of 

the above system. If 0k   then, 

( 1,  ,  -{ })k
jl j j E k      is a 

solution of model (3). Therefore,
* 1k

l  , a 

contradiction. On the other hand if 0k   

system (5) can be rewritten as follows:  

' { }

' { }

(1 ) ,

(1 )

j kj k

j E k

j kj k

j E k

y y

x x

 

 

 

 

 

 





  

By dividing both sides of the above 

equations by (1 0k  ); a solution of 

model (3) is obtained as 

1,  ,  '-{ }
1

( )jk

l j
j

j E k


 


  


. 

 

Therefore,
* 1k

l  , a contradiction. Thus, 

kDMU  is an extreme CCR-efficient 

DMU. Now, suppose that for some l, 

model (3) is infeasible. In the similar 

manner, it can be shown that DMUk is an 
extreme CCR-efficient DMU. Conversely, 

suppose that 
kDMU is extreme DMU and 

model (3) is feasible. We show that
* 1k

l 

. Consider the following problem 

corresponding to
kDMU : 

'

'

'

min  

. .   ,

     1,  ...,  

       ,

     1,  ...,  ,  

k

l

k

j rj r rk

j E

k

j ij i ik

j E

s t y s y

r s

x s x

i m i l















 



 

 





  (6) 

'

'

'

,

0,      '   

, 0,      1,  ...,     1,  ...,  ,

                   1,  ...,  

k k

j lj l l lk

j E

k

j

r i

k

l

x s x

j E

s s r s i m

free l m

 









 

 

 

  





 

 

Now suppose that * ' *( 1),  k

l   and 
*k

l   
 

are the optimal objective functions of the 
models (1), (6) and (3) with respect to

kDMU , respectively. It is not difficult to 
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show that 
* ' * *k k

l l     Therefore, 

* 1k

l  . This completes the proof. 

 
Corollary: In models (3) and (4), for each 

l and q 
* * 1k k

l q   if and only if DM Uk 

is a non-extreme CCR-efficient DMU. 

 

Proof. Omitted. 

 
Theorem 3: In a single input case, 

corresponding to each 

 1 1  , ,...,k k k skDMU x y y  the DIVk
1 

 '

1 1, ,...,k k k skDMU x y y   in which

0  , is an interior point of the PPS of 

the CCR model. 

 

Proof. First, we add 
'

kDMU  to the PPS 

and then, evaluate its performance by the 
input and output-oriented CCR models 

(see models (1) and (2)). It is enough to 

show that * 1    and 
* 1  . Consider the 

input-oriented CCR model corresponding 

to virtual DMU 
kDMU   as follows: 

'

1 1 1

'

min  

. .   ,   1,  ...,  

( ) ( ),      

0,                        '

                               

j rj k rk rk

j E

j j k k k

j E

j

s t y y y r s

x x x

j E

free



 

    









  

   

 



 (7) 

 

1

1

0 ( ),  1,  0,  ( 1)k
j k k

k

x
j k

x
   



 
      

 

 

is a feasible solution of (7). Since model 
(7) has a minimization-type objective 

function, * 1  ; where “*” is used to 

indicate optimality. In a similar manner, it 

can be shown that in output-oriented 

maximization problem, 
* 1 

 
 Therefore, 

kDMU is an interior point of the PPS. This 

completes the proof. 
In Figure 2, corresponding to DMU

 1 11 11 21  , ,D x y y , the 

 1 ''

1 1 11 11 21 , ,DIV D x y y   is an interior 

point of the PPS. 

 

Theorem 4: In a multiple inputs case, if 

for some l, model (3) is infeasible, then 
extreme 

CCR-efficient 
kDMU  is an anchor DMU. 

 

Proof. In view of Remark 1, we show that 

if for some l, model (3) is infeasible, then, 
the DIVk

l 

1 ( 1)

( 1) 1

,...,  ,  ,  

,... , , ,...,

j l j lj

k

l j mj j sj

x x x
DMU

x x y y





 
    

 

0  , 

 

is a WEV DMU. For this aim, it can be 
shown that in the performance evaluation 

of 
kDMU  , using model (2); 

* 1  . 

Consider model (2); corresponding to 

virtual DMU 
kDMU   as follows (without 

ϵ): 

'

'

'

max  

. .   ,

     1,  ...,  

       ,

     1,  ...,  ,  

       ( ) ,

       0,               '

       0,                          

j rj k rk rk

j E

j ij k ik ik

j E

j lj k lk lk

j E

j

k

s t y y y

r s

x x x

i m i l

x x x

j E



  

 

   











 



 

 

   

 









    

                            free

 (8) 

By contradiction, suppose that 
* *( '), ,  ( 1)( )j kj E     is the optimal 

solution of (8). The constraints of model 
(8) can be written as follows: 
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 

 

   

* * *

' { }

* * *

' { }

* * *

' { }

1 ,

     1,  ...,  

1 ,

     1,  ...,  ,  

1 1 ,

       

j rj k k rk

j E k

j ij k k ik

j E k

j lj k k lk k

j E k

y y

r s

x x

i m i l

x x

  

  

    

 

 

 

  



  

 

    







  (9) 

From model (9), it is easy to show that
* *1 0k k    . Divide both sides of 

model (9) by 
* *1 0k k     and define

*

*

* *
,  ' { }

1

j

j

k k

j E k



 

  
 

; so, model 

(9) becomes as follows: 

' { }

' { }

' { }

 ,      1,  ...,  

 ,      1,  ...,  ,  

                        

j rj rk

j E k

j ij ik

j E k

j lj lk

j E k

y y r s

x x i m i l

x x





 

 

 

 

 

  

 







(10) 

 

in which 
*

* *

1
 

1

k

k k


 

 

 
  

  

. Since 0  , 

there is ˆ 0  ; so that ˆ
lk lkx x   ; 

therefore, the constraints of model (10) can 
be rewritten as follows:  

' { }

' { }

' { }

 ,      1,  ...,  

 ,      1,  ...,  ,  

ˆ   

j rj rk

j E k

j ij ik

j E k

j lj lk

j E k

y y r s

x x i m i l

x x





 

 

 

 

 

  









 

 

So,   ˆ ' { } ,  j j E k    is a feasible 

solution for model (3); a contradiction.  
 

This implies that 
* 1   i.e. kDMU  lies 

on the efficient frontier. Now, since 

kDMU   is dominated by CCR-efficient

kDMU , so, the DIVk
l 

'

kDMU
 
is a WEV 

DMU. Therefore, in view of Remark 1

kDMU is an anchor DMU. This completes 

the proof. 

In Figure 1, model (3) corresponding to 

DMU
2 12 22 12 ( , , )D x x y , with l = 1, is 

infeasible; so, DMU D2 is an anchor DMU. 

The following theorem is, in fact, the 
converse of Theorem 4. 

 

Theorem 5: In multiple inputs case, if 
extreme CCR-efficiency DMU 

 1 1,  ..., ,  ..., ,  y , ...,  yk k lk mk k skDMU x x x

is an anchor DMU and the
1

kDIV  DMU is 

a WEV DMU; then model (3) is infeasible. 
 

Proof. By contradiction, suppose that 

model (3) is feasible. The first constraint 
of the model (3) implies that the optimal 

solution of model (3) is bounded. Suppose 

that, * *,   ( )( )k

l j j k 
 

is an optimal solution of it. Note that the 

first constraint of model (3) is tight at 

optimality. 

We first show that * 1k

l  . By 

contradiction suppose * 1k

l  . If * 1k

l   

we have:  
*

' { }

*

' { }

*

' { }

    

,

     1,  ...,  ,  

,

     1,  ...,   

k

j lj l lk lk

j E k

k

j ij ik

j E k

k

j rj rk

j E k

x x x

x x

i m i l

y y

r s

 





 

 

 

 



 











      (11) 

 

It shows that virtual DMU 
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*

1

' { }

*

' { }

*

' { }

*

1

' { }

*

' { }

,  ..., 

,  ...,

 ,

 ,  ...,

 

k

j j

j E k

k

j lj

j E k

k

j mj

j E k

k

j j

j E k

k

j sj

j E k

x

x

x

y

y











 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 











 

 

Dominates the CCR-efficient 
kDMU , a 

contradiction (see Theorem 1). Now, if
* 1k

l  , we have: 

*

' { }

*

' { }

*

' { }

    

,      1,  ...,  ,  

,      1,  ...,   

k

j lj lk

j E k

k

j ij ik

j E k

k

j rj rk

j E k

x x

x x i m i l

y y r s







 

 

 



  

 







(12)

 

 

At least one of the inequality constraints of 

(12) is a strict inequality, because, 

otherwise, the CCR-efficient 
kDMU , is 

not extreme DMU and so * 1k

l  . 

Therefore, there exist 0   so that
*

lk lk lkx x   . This means that, the 

virtual DMU 

1 ( 1)

( 1) 1

,  ..., ,  ,

 ,..., ,  y , ...,  y

k l k lk

k

l k mk k sk

x x x
DMU

x x





 
    

 

  

 

is, in fact, an observed DMU belongs to  
 

the PPS of the CCR model. This is a 

contradiction because; the CCR-inefficient 

DMUs had been eliminated from the PPS 
of the CCR model. The proof is completed. 

 

Theorem 6: In a single output case, for 

each  1 1,..., ,  yk k mk kDMU x x the

1

kDOV  1 1,..., ,  yk k mk kDMU x x    

in which 0   is an interior point of the 

PPS of the CCR model. 

 
Proof. The proof is similar to the theorem 

3 and so, the details are omitted. 

In Figure 3, 1

1DOV  DMU

 11 12 11' ,  x ,  yD x   , corresponding to 

DMU  1 11 12 11,  x ,  yD x is an interior 

point of the PPS. 

 
Theorem 7: In multiple outputs case, if for 

some q, model (4) is infeasible, then, CCR-

efficient 
kDMU is an anchor DMU. 

 

Proof. The proof is similar to theorem 4 

except that it can be shown that in the 

performance evaluation of 
kDMU   using 

model (1); * 1  . 

In Figure 2, model (4) corresponding to 

DMU  1 11 11 21,   y ,  yD x , with q = 2, is 

infeasible, so, the DOV1
2 DMU is a

 1 11 11 21,   y ,  yD x     WEV DMU 

The following theorem is, in fact, the 

converse of theorem 7. 
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Figure 3: Theorem 6. 

1

1  DOV D is interior point of the PPS. 

 
Theorem 8: In multiple outputs case, let 

extreme CCR-efficiency DMU 

 1 1,  ..., ,  y , ...,  y ,..., yk k mk k qk skDMU x x  

is an anchor DMU and the 
q

kDOV  DMU 

is a WEV DMU; then model (4) is 

infeasible. 

 
Proof. The proof is similar to the theorem 

5 except that by contradiction it must be 

assumed that the model (4) is feasible. So, 

we omit it. 
 Now, by theorem 2; all extreme DMUs of 

the PPS of the CCR model can be found. 

Also, by theorems 4 and 5; all anchor 

DMUs for which the 
l

kDIV  DMUs  

1 ( 1)

( 1) 1

,  ..., , ,

..., , y , ..., y

k l k lk

k

l k mk k sk

x x x
DMU

x x





 
    

 
 

are WEV DMUs can be found and by 

theorems 7 and 8; all anchor DMUs for 

which the 
q

kDOV  DMUs 

 1 1,  ..., ,  y , ...,  y ,..., yk k mk k qk skDMU x x     

are WEV DMUs can be found and 

therefore, all anchor points of the PPS of 

the CCR model can be found. 
Now we are in the position to put all 

together the ingredients of the method. 

 

Summary of finding all anchor DMUs 

algorithm 

 Step 1. Evaluate n DMUs with a 

suitable form of models (1) and, (2). Hold 

all CCR-efficient DMUs and remove other 
DMUs. Put indices of these CCR-efficient 

DMUs in E′. 

 Step 2. Evaluate each DMU in E′ with 

models (3) and (4). (Note that in the single 

input case we don't use model (3) and in 
the single output case we don't use model 

(4)). 

 Step 3. If for some l (or q) the model 

(3) (or (4)) is infeasible, then, kDMU is an 

anchor DMU and
l

kDIV  (or
q

kDOV ) 

kDMU   is WEV DMU. 

 Step 4. If each DMU in E′ are evaluated 

by models (3) and (4), stop. Otherwise, go  

to step 1. 
 

 

Table 1: Data of Numerical Example 1. 



IJDEA Vol.4, No.2, (2016).737-749  

D. Akbarian, et al.  / IJDEA Vol.5, No.4, (2017), 1411-1424 

 

1421 

 

DMU D1 D2 D3 D4 

x1 1 2 5 6 

2x  4 2 1 1 
y 3 4 5 2 

 
Table 2: Example 2. Multiple input and output. 

DMU D1 D2 D3 D4 D5 

x1 2 1 2 4 3 

x2 3 2 2 2 5 

y1 7 3 4 6 5 

y2 4 5 3 1 2 

 

4. Numerical Examples 
 

Example 1 (Single output case) 

Table 1 shows data for 4 DMUs with two 

inputs and one output. Using the CCR 
model (1), CCR-efficient DMUs are 

determined to be
1D , 2D  and 3D . So, 

 1,2,3E   . Remove CCR-inefficient 

DMU 3D  from PPS and solve model (3) 

corresponding to CCR-efficient DMUs
1D

, 2D and D3. 

The following results are yielded: 

By theorem 2, DMUs
1D , 2D  and 3D lie 

on the extreme rays of the PPS. Model (3) 

corresponding to DMU 1D  with l = 2 and 

DMU 3D  with l = 1 is infeasible. So, by 

theorem 4 DMUs 1D and 3D  are anchor 

DMUs and 
2

1DIV  and 3

lDIV  DMUs are 

WEV DMUs. Note that model (3) 

corresponding to DMU 2D with l = 1, 2 is 

feasible. So, by theorem 5, DMU D2 is not 
anchor DMU. 
 

Example 2 (Multiple outputs and inputs 

case) 
Table 2 shows data for 5 DMUs with two 

inputs and two outputs. Running model  
 

(1) (or (2)) shows that
1D , 2D  and 4D  are 

CCR-efficient and other DMUs are CCR-

inefficient. So,  1,2,4E   . By applying 

models (3) and (4) to each
kDMU , 

k E the results reported in table 3 are 

obtained.  In table 3, “INFES" and “FES” 

denotes “infeasible” and “feasible”, 
respectively. For instance, “INFES” in the 

first row and the second column means 

that model (3), corresponding to DMU 
1D  

with l=2, is infeasible. So, by theorem 4, 

1D  is an anchor DMU and 
2

1DIV  DMU 

1 (2, 3 + , 7, 4)D   is a WEV DMU. 

Using theorems 4 and 7 and the 

information of table 3, all
kDMU , k E

are anchor DMUs. 
 

Example 3 (Real word data) 

We evaluated the data of 20 branches of a 
bank in Iran using the proposed method. 

The data was previously analyzed by 

Amirteimoori et al. (2005), (see table (4)). 
Running the DEA model (1) (or (2)) 

resulted in  E = 1,4,7,12,15,17,20 . 

Using the proposed method, all DMUs in 

E are found to be anchor DMUs. Also 
1,2

1DIV , 
1,2,3

4DIV , 
1,2,3

7DIV , 
2

12DIV , 

1,2,3

15DIV , 
1,2,3

17DIV , 
2,3

20DIV
 
and 

2

1DOV , 
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1,2

4DOV , 
1,3

7DOV , 
1,3

12DOV  , 
2,3

15DOV , 

1,3

17DOV , 
1,2

20DOV  DMUs are WEV 

DMUs. For instance, 
1,2,3

15DIV means that, 

15DMU is an anchor point and the

first, second and the third inputs of 

15DMU can be increased without 

penetrating the interior of the PPS. Also, 
1,3

7DOV
 
means that, 

7DMU is an anchor 

point and the first and third outputs of 

7DMU  can decrease without penetrating 

the interior of the PPS. 
 

Table 3: Example 2. The results of evaluation CCR-efficient DMUs by models (3) and (4). 

DMU l  q 

 1 2 1 2 

D1 FES INFES  FES INFES 
D2 INFES INFES  INFES FES 

D4 INFES FES  FES INFES 

 
Table 4: Example 3. DMUs' data (extracted from [Amirteimoori et al. (2005), p. 689]). 

 input    output   

Branch Staff Computer terminals Space m2  Deposits Loans Charge 

1 0.9503 0.70 0.1550 0.1900 0.5214 0.2926 

2 0.7962 0.60 1.0000 0.2266 0.6274 0.4624 

3 0.7982 0.75 0.5125 0.2283 0.9703 0.2606 
4 0.8651 0.55 0.2100 0.1927 0.6324 1.0000 

5 0.8151 0.85 0.2675 0.2333 0.7221 0.2463 

6 0.8416 0.65 0.5000 0.2069 0.6025 0.5689 

7 0.7189 0.60 0.3500 0.1824 0.9000 0.7158 
8 0.7853 0.75 0.1200 0.1250 0.2340 0.2977 

9 0.4756 0.60 0.1350 0.0801 0.3643 0.2439 

10 0.6782 0.55 0.5100 0.0818 0.1835 0.0486 
11 0.7112 1.00 0.3050 0.2117 0.3179 0.4031 

12 0.8113 0.65 0.2550 0.1227 0.9225 0.6279 

13 0.6586 0.85 0.3400 0.1755 0.6452 0.2605 
14 0.9763 0.80 0.5400 0.1443 0.5143 0.2433 

15 0.6845 0.95 0.4500 1.0000 0.2617 0.0982 

16 0.6127 0.90 0.5250 0.1151 0.4021 0.4641 

17 1.0000 0.60 0.2050 0.0900 1.0000 0.1614 
18 0.6337 0.65 0.2350 0.0591 0.3492 0.0678 

19 0.3715 0.70 0.2375 0.0385 0.1898 0.1112 

20 0.5827 0.55 0.5000 0.1101 0.6145 0.7643 

 

5. Conclusions 

Anchor points play an important role in 

DEA theory and application. They 
delineate the efficient frontier from the 

free-disposability portion of the PPS 

frontier. Their identification has several 
notable DEA applications such as the 

construction of \unobserved" DMUs in 

order to reduce appropriately the DEA-

inefficient boundary of the PPS. This 

paper proposed a method for finding all 

anchor DMUs of the PPS of the CCR 
model using two super-efficiency models 

(see models (3) and (4)). The necessary 

and sufficient conditions for a DMU to be 
an anchor DMU were stated and proved. 

The advantage of our approach is in 

determining inputs (outputs) of anchor 
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DMUs that can increase (decrease) 
without penetrating into the interior of the 

production possibility set. Another 

advantage of our approach is in clarifying 

the edges of the PPS on which anchor 
DMUs lie; whereas the aforesaid methods 

are unable to do these two advantages. 

Initial studies had shown that our approach 
can also be applied to BCC model. We 

suggest a deeper analysis in this subject as 

future works. Finally, the GAMs software 
has been utilized to run the models (3) and 

(4). 
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