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Abstract 
Data Envelopment Analysis (DEA) models can be stated as two mutually dual linear 
programs referred to as the envelopment and multiplier models. The multiplier models are 
stated in terms of variable input and output weights (multipliers). Zero multiplier weight for 
an input or output causes efficient problems in multiplier model. This paper concentrates on 
a previously proposed DEA model developed by Wang and Chin (2010) and later improved 
by Wang et al. (2011) to find non-zero multi-plier weights. We will show that these models 
reveal shortcoming for certain classes of DMUs. In addition, we propose a general 
developed model to find a maximal element for a multiplier DEA model. 
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1. Introduction 
Data Envelopment Analysis (DEA) is a 
well-known nonparametric method-ology 
to assess the relative efficiency of a 
sample of homogeneous Decision Making 
Units (DMUs) with multiple inputs and 
multiple outputs. DEA models can be 
stated as two mutually dual linear 
programs referred to as the envelopment 
and multiplier models. The multiplier 
models are stated in terms of variable 
input and output weights (multipliers). 
We call the optimal solution of a 
multiplier DEA model as multiplier 
weights, in short (Banker et al. (1984); 
Charnes et al. (1978)). The analyst who 
employs DEA or the information 
provided by the multiplier weights face 
some well-known difficulties; (i) alternate 
optima (ii) zero weights. 
A zero multiplier weight for a input or 
output usually creates two important 
ambiguities. First, the need for parsimony 
in the selection of model inputs and 
outputs conveys a message that these are 
regarded as especially important to the 
appraisal process. Zero multiplier weight 
for an input or output sends a 
contradictory message to a manager as it 
implies that these are not regarded as 
important for the evaluation. Second, a 
zero multiplier weight for a input implies 
that the output can be produced without it. 
Alter-natively, a zero multiplier weight 
for a output implies that this output does 
not need to be produced (Bougnol and 
Dula (2012)). Multiplier weights with the 
heights number of positive component, a 
maximal element, for a multiplier DEA 
model is important from two different 
outlook; addressing the aforementioned 
ambiguities, other areas of DEA such as 
return to scale (Sueyoshi and Goto 
(2011); Sueyoshi and Sekitani (2007)). 
Recently, Wang and Chin (2010) and Wu 
et al. (2012) in order to deal with the 
alternate optimal solution in cross-
efficiency method (Sexton et al. (1986); 
Doyle and Green (1994); Liang et al. 

(2008); Oukil and Amin (2015); Wang 
and Chin (2010); Wu et al. (2016)), 
proposed to reduce the number of zero 
multiplier weights as a secondary goal. 
The models presented in this studies are 
almost identical, and they called the 
neutral DEA models. The first one 
attempts to reduce only the number of 
output zero weights and the second one 
attempts to reduce the both number of 
output and input zero multiplier weights 
simultaneously. 
The main idea behind the neutral DEA 
models is to find a maximal element in 
optimal solution set for a multiplier DEA 
model. Although this idea is innovative 
and addresses both mentioned problems, 
but we will see how these models are 
incapable of achieving their goal for those 
DMUs that themselves or their projection 
are located on the weak efficient portion 
of the efficient frontier. 
The aim of this paper is to provide a more 
comprehensive model to find a maximal 
element in optimal weight set of a 
multiplier DEA model, for brevity, 
optimal maximal element. For this 
purpose, first we see that the support set 
of all maximal element of a convex set for 
example K is identical. Next, an 
algorithm to identify the support set of 
optimal solution set will be proposed. 
Finally, as a result, a linear programming 
(LP) model which is a development of the 
neutral DEA models will be proposed, so 
their previous defects are eliminated. 
The paper is structured as follows: in 
Section 2 a survey of the theoretical 
background of the LP and the neutral 
DEA model are provided. In Section 3 the 
neutral DEA models are explored. In 
Section 4 the main model is presented and 
in Section 5 a numerical example is 
provided. Finally, Section 7 concludes the 
paper, and describes future works. 
 
2. Theoretical background  
First of all, we declare the notations used 
in this study. The n-dimensional 
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Euclidean space is denoted by nR  and 

non-negative section denoted by n
+
R . We 

symbolize the sets by capital letters, set 
members by lower-case letters, vectors 
and matrices in bold letters: vectors in 
lower case and matrices in upper case, all 
vectors are column vectors and the 
transpose of vectors and matrices by a 
superscript T. We also use 

n0  and 
n1  to 

show n-dimensional vectors with zero and 
one components, respectively. 
Furthermore the superscript ∗ for a 
variable displays the optimal value of 
variable.  
1.1. The Karush-Kuhn-Tucker (KKT) 
optimality conditions  
Consider the primal and dual LP models 
in canonical form: 

t

n

          min    cx
(P) s.t    A x b
                 x 0




 

T

t

m

        max b y
(D)   s.t   A y c
                y 0




 

 
Where nc R  and mb R . Let ms R  

and v nR


  are slack variables 

corresponding to the constraints tA x b  
and tA y c  from (P) and (D), 
respectively. Also assume that 

P
S  and 

DS  denote the feasible solution of primal 
and dual problems, respectively.  
 
Definition 2.1. (Bazaraa and et al. (2011)) 

Let
      P

x
S

s
 and 

D

y
S

v
 

 
 

.They  

Satisfy the complementary slackness 
condition (CSC) if:  

T Tx v=0 and y s= 0.  

If in addition nx + v > 0  and my + s > 0 , 
we say these solutions satisfy the strictly 
complementary slackness condition 
(SCSC) and, for brevity, is called a strict 
complementary solution.  
 
Theorem 2.1. (Bazaraa and et al. (2011)) 

Let 
      P

x
S

s
 and 

D

y
S

v
 

 
 

. Then they 

are respectively optimal if and only if 
satisfy the (CSC).  
 
Theorem 2.2. (Goldman and Tucker 
(1965)) If (P) and (D) are feasible then 
there exists a strictly complementary pair 
of optimal solutions.  
 
2.2. DEA  
Assume that there are n DMUs with m 
inputs and s output to be evaluated. A 
DEA data domain D is characterized by a 
data matrix  

 1 2 n

Y
P p ,p ,...,p

X
 
    

                   (1) 

 
With s m  rows and n columns. Y and 
X are output and input matrixes, 
respectively. We denote by J  the set of 

all n DMUs. The jth column j
j

j

y
p

x
 
    

 

where m
jy R  and s

jy R  are the 
output and input vectors, respectively, 
corresponding to the 

jDMU . We assume 
that (i) for no j is either 

j jx 0  or  y 0   (ii) no two columns 
of P are proportional. We also assume 
that mu R  and sv R  are output and 
input weight vectors corresponding to the 

jy  and jx .  

 
Definition 2.2. (Efficiency)  
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The efficiency of kDMU  with respect to 
the output and input weight vectors, u and 
v, is defined as follows:  

 
T

k
T

k

u yE k,u,v  
v x

   

 
Definition 2.3. (CCR Relative efficiency)  
The relative efficiency of kDMU  relative 
to the other sDMU  and with respect to 
the output and input weight vectors, u and 
v, is defined as follows:  

   
 j J

E k,  u,  v
RE k,u,v  

max E j,u,v

   

 
Charnes et al. (1978) measured the 
maximum relative efficiency of kDMU
using a (LP) model which is known as 
multiplier form. This model together its 
dual model which is also known as 
envelopment form are as follows:  

T
k

T
k

T T

max u  y          
CCR multiplier model 
s.t      v x   1     

         u Y v X zI 0 
         u  0,  v  0 



  

 

               (2) 

 
*
o  min         

CCR envelopment model 
                    (3) 

k

k

s.t    X  s x
Y s  y





  

 
 

0      
 
Where nR  .  
 
Definition 2.4. Let  * *

0 ,  is an optimal 

solution of the CCR envelopment model. 
If *

0 = 1, then the oDMU  is called CCR 
scale-efficient, otherwise it is called CCR 
scale-inefficient.  
We follow Charnes et al. (1986), and 
partition the set of all DMUs into the 

following six classes E',  EF,NE',  NE
and NF which called, respectively, 
extreme efficient, non-extreme efficient, 
weak efficient, extreme inefficient, non-
extreme inefficient, weak inefficient as 
follows.  
 
Definition 2.5. Let oW  display the 
optimal solution set of CCR multiplier 
model for oDMU . If oDMU  is CCR 
scale-efficient, then it will be classified 
into classes E',  E  and F, according to 
that all members of oW  are positive, one 
member of 

oW  is positive and no member 
of 

oW  is positive, respectively. Also, if 

oDMU  is CCR scale-inefficient, then it 
will be classified into classes NE',NE  
and NF, according to that the its CCR 
projection,  *

o ox , y , belongs to which 

class.  
 
Definition 2.6. (Cross- efficiency)  
Let  * *

k ku ,v , *  is an optimal solution of 

(2) for kDMU . Then  * *
kk k kk,u ,v   is 

referred to as the CCR-efficiency and 
reflects the self-evaluated efficiency. 
Furthermore,  * *

jk k kE j,u ,v   is referred 

to as a cross-efficiency value of jDMU  
and reflects the peer evaluation of kDMU  
to 

j DMU j J and ( j k)  . 
Due to the problem of alternate optima, 
the amount of jk varies from one 
optimal solution to the other. The 
following neutral DEA models were 
proposed to avoid the non-uniqueness in 
solutions by Wang and Chin (2010) 
proposed a neutral DEA model, aimed at 
reducing the number of zero output 
weights as a secondary goal, for kDMU , 
as follows:  
max    
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i ik
i I

r rk kk
r O

r rj i ij
r O i I

r rk

r i

s.t        x 1

           u y

           u y x 0,

     j J, j k     
           u y ,  r O
           u 0 ,  0,   i I, r O





 

 



  

 

 

    





 
   (4) 

 
Where ru  and i  are components of u 
and v, respectively. 
Wang et al. (2011) proposed another more 
general neutral DEA model that reduce 
the zero weights of inputs and outputs, 
simultaneously, as follows: 

i ik
i I

r rk kk
r O

r rj i ij
r O i I

m ax   
s.t        x 1

           u y

           u y x 0,

     j J, j k     





 

  

 

 

  

 





 

   (5) 

r rk

i ik

r i

           u y ,  r O
           x ,  i I
           u 0 ,  0,   i I , r O

 

  

    

 

 
Where 0  and 0  are the weighting 
coefficients for the two objectives   and 
  , satisfying the condition 1  .  
 
3. Analysis of neutral DEA models  
Here, we examine the ability of the 
neutral DEA models to reduce zero 
weights individually. You can simply see 
from Models (4) that if the variable  in 
Model (4) is positive at optimality, we 
have a solution with positive output 
weights. Also, if the variables ,   or 
both of Model (5) are positive at 
optimality, we have a solution with 
positive output weights, positive input 

weights or positive output and input 
weights, respectively. Hence, the main 
question is, under what conditions these 
variables are positive at optimality?  
 
Proposition 3.1. Consider Model (4).We 

have   is positive for each jDMU  in 

E,E ',NE and NE' .  
Proof. It is a direct result of Definition 
(2.5). 
 
Proposition 3.2. Consider Model (4).We 
have   is zero for each 

jDMU  in F and 

NF that have *S 0   in at least one 
optimal solution of the CCR envelopment 
model.  
Proof. It is followed from Definition (2.5) 
and Theorem (2.1).  
 
Proposition 3.3. Consider Model (5).We 
have   and   are positive for each 

jDMU  in E,E', NE and NE'. 
Proof. It is a direct result of Definition 
(2.5). 
 
Proposition 3.4. Consider Model (5). We 
have   is zero for each jDMU  in F and 

NF that have *S 0   in at least one 
optimal solution of the CCR envelopment 
model. Also, we have   is zero for each 

jDMU  in F and NF that have *S 0   in 
at least one optimal solution of the CCR 
envelopment model.  
Proof. It is followed from Definition (2.5) 
and Theorem (2.1).  
According to the above propositions, the 
neutral DEA models, models (4) and (5), 
are unable to reduce the number of zero 
weights of inputs, outputs or both for each 

jDMU F NF  . To give an illustration 
of what e.g. Proposition (3.4) mean, lets  

look at the following example. 
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Example 3.1. A illustrative example  
Consider six DMUs each with two inputs  
 
and one output. Data are shown in Table 
(1). The CCR production frontier is 
depicted in Figure (1). It is easy to see 
that  2 3 4E DMU , DMU , DMU , 

 1 5F DMU , DMU  and  6NF DMU  
The Table (2) displays an optimal 
solution of the CCR envelopment model 
for each DMUs. We have *

2s 1   for 

1DMU . Regarding to Theorem (2.1), 
*
1 0   in each optimal solution of CCR 

multiplier model for 1DMU . In addition, 
*
2 0   in each optimal solution of CCR 

multiplier model for 5DMU  by the same 
reason. 
Therefore, we have 0   for 

1DMU and 

5DMU  so the Model (5) will no longer be 
able to reduce the number of zero-input 
weights for these DMUs. As mentioned in 
the Introduction, this simple example 
reveals the weakness of Model (4) to 
reduce the number of zero weights for 4.  

 
 

Table 1: Data for the illustrative example 
DMUs 1 2 3 4 5 6 

i1 1 1 2 3 4 6 
i2 4 3 1 0.5 0.5 1 
o 1 1 1 1 1 1 

 
 

Table 2: CCR envelopment model optimal solutions 
 *1  *

2  *
3  *

4  *
5  *

6  *
1s   *

2s   *s   θ  
DMU1 0 1 0 0 0 0 0 1 0 1 
DMU2 0 1 0 0 0 0 0 0 0 1 
DMU3 0 0 1 0 0 0 0 0 0 1 
DMU4 0 0 0 1 0 0 0 0 0 1 
DMU5 0 0 0 1 0 0 1 0 0 1 
DMU6 0 0 0 0 1 0 0 0 0 0.667 
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4. A more general model for reducing 
zero weights  
In this section, we are going to present a 
developed model to find an optimal 
maximal element for the CCR multiplier 
model. First of all, we need to identify the 
support sets of the variables of the CCR 
envelopment and multiplier models. 
Below we mention some characterizations 
and properties of maximal element.  
 
4.1. Maximal elements and 
complementary solutions 
Definition 4.1. The support of a vector x 
denote by  x  and is defined as the 
index set of positive coordinates of x, that 
is,    ix i :  x 0    
 
Definition4.2 (Guler and Ye (1993)). We 
define  
1. a weak partial order,  , over Rn by 
declaring 1 2x x  if    1 2x x    

 
2. 1 2x x , 1 2x  and x  are equivalent, if 

1 2x x  and 1 2x x . 
 
3. maximal element x of nK R  under 
 , whenever x ' K  and x x '  imply 
x x ' , i.e.,  x Kx argmax x    
 
Lemma 4.1 (Guler and Ye (1993)). If K 
is a convex set, then all maximal elements 
of K are equivalent. 
 
Definition 4.3. we define the support of 
K,  K , as follows:  

     x KK x x arg,   max xfor      
 
A set of two nonempty subset of P, 
 1 2P ,  P , is a partition of P if 

1 2 1 2P  P P ,  P P     

Let o
0
po S

        
 and 

o
0
do

u
S

v

     
. 

We also assume that   
 o o s

os x X R
     , 

 
 

o m
o

o 0 n

s Y y R  and 

u y v X R

 
    

  
  

 
are slack vector corresponding to the 
output, input and DMU constraint sets in 
Model (3) and (2).  
 
Lemma 4.2. The following statements are 
equivalent for each pair 

o o
o o
p do o

u
, S S

v

                         
 . 

 

1. The pair 
o o

o o

u
,

v

                       
 is strictly 

complementary solution.  
 
2. The sets  

 
   

o o

o o

, µ , s ,{ ( ) ( )} {

}u  and { ( ) } s , v





   

  
  

 
are partitions of J, O, I, respectively.  
Proof. 1. → 2. is the direct result of 
Definition (1.1). For 2. → 1., we have  

o o o o
j j j jµ = 0 and µ 0 

for each j J
   


 

 
From 

o o

o o

µ  and( ) ( )
( )   J.( )µ

   

    
 

 
With the same argument, we also have  

o o
r r r rs u 0 and s u 0 

for each r O

   


 

 
and  

o o
i i i is 0 and s 0 

for each i I.

    


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Assume that o*
pS  and o*

dS  display the 
optimal solution sets corresponding to the 
CCR envelopment and multiplier models, 
respectively.  
 
Lemma 4.3. The following statements are 
equivalent for each pair 

o o
o o
p do o

u
, S S

v

                         
. 

 

1. The pair 
o o

o o

u
,

v

                       
 is strictly 

complementary solution.  
 

2. The solutions 
o o

o o

u
 and 

v

               
are 

maximal elements of o* o*
p dS  and S , 

respectively.  
Proof. (1. → 2.). The optimality of 

o o

o o

u
 and 

v

               
 is deduced by Theorem 

(1.1). Now, assume that 
o

o

      
 is not a 

maximal element. So, there is 
o

o*1
po  S

       
 such that 

o o o o
1 1

o o o o   and    .
                                             

  

Hence, there is    o o
0 1j \    . By 

Theorem (1.1), o
1jo 0   then o

jo 0  .  

On the other hand, o
1jo 0   then we must 

have o
jo 0   by Lemma (3.2). This is a 

contradiction and therefore we have 
o

o

      
 

is a maximal element and this complete 

the proof. (2. → 1.). By the Lemma (4.2), 
it is sufficient to show that the sets 

 
   

o o

o o

, µ , s ,{ ( ) ( )} {

}u  and { ( ) } s , v





   

  
 

 
are partitions of J, O, I, respectively. 
Consider o o,{ ( ) ( )}µ   . Assume that it 
is not a partition of J. By assumption and 
Theorem (2.1), we have
   o oµ     .  

 
So there is 0j J  such that

    o o
0j µ    . Regarding 

Theorem (2.2), there is a strictly 
complementary solution pair, 

oo
o* o*
p doo

u
, S S

v

                        

. By using Lemma 

(4.2), we conclude 

    o o

0j µ    . Without loss of 

generality, we assume that  o

0j    

and define  

 
o oo

o oo
: 1

for 0 <  < 1

                      




. 

 
 It is easy to verify that 

o o
*
p oo

 S   
              

  o

o
 
      


 which is a 

contradiction. We have therefore shown 
that o o,{ ( ) ( )}µ    is a partition of J. 
Likewise, we also have 

      o os , u  and s ),{ v} (      are 

partitions of O and I, respectively.  
Our key tool is the next algorithm. It 
clarify the support sets of  o*

pS  and 
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 o*
dS  to determine which one of the 

weights can be positive for oDMU ,o J .  
 
4.2. An algorithm to find support sets  
In outline, the algorithm is found on CSC. 
Regarding Theorem, we always have; (I) 
one and only one variable has a positive 
value from the two complementary 
variables in the optimality, (II) If the 
value of a variable is positive in an 
optimal solution, then the value of that 
variable is positive in each optimal 
maximal solution. We first obtain optimal 
solutions  0 0 0,s ,s   and  0 0 0u ,v ,z  of 

problems (3) and (2), respectively. Next 
we define  0IP : s , .  

 

   

#
0 P D

P 0 D 0

ID : v ,  I I \ I I ,

O : s ,  O : u ,

  

 
#

P DO I \ O O ,  P 0J : ) ( ,   

  #
D 0 P D J : z and J J \ J J     

 
According to the Lemma (3.2), the 
current solutions are strictly 
complementary if

# # #I ,  O   and  J   . We take 
this as stop criterion.  

 
 

Algorithm. Finding support sets for variables of the CCR models 
Step 1. Find arbitrary optimal solutions for models (3) and (2);  0 0 0,s ,s   and  0 0 0u ,v ,z  

Step 2. Provide sets # # #
P D P D P DI , I ,O  ,O , J ,J , I ,O  and J . 

Step 3. If # # #I ,  O  and J   , then go to the Step 4. Otherwise, go to the 
Step 4. Stop and P D P D P DI , I ,O ,O ,J  and J  are support set for s ,v,  s ,v,    and z, 
respectively.  
Step 5. If #I   go to the next step, else solve  

 
# #

i
i I i I

* *
p d

m

(

ax S                       max v

 s.t  ,s ,s S            s.t u,  ) v,  z S



 

   

 
, 

update # # #
P D P D P DI , I ,O  ,O ,J ,J , I ,O  and J  and repeat this step.  

Step 6. If #O   go to the next step, else solve 

 
# #

r
r O r O

* *
p d

m

(

ax S                       max u

 s.t  ,s ,s S            s.t u,  ) v,  z S



 

   

 
, 

update # #
P D P DO  ,O ,J , J ,O  and J  and repeat this step. 

Step 7. If #J   go to the Step 4, else solve 

 

# #
j j

j J j J

* *
p d

max                       max z

s.t  ,s ,s S            s( .t u,  v,  z) S
 

 



  

 
, 

update #
P DJ ,J  and J  and repeat this step. 
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Step 4 attempts to unfold that the 
members of o #I   belong to o o

P DI  or I .  
In addition, it is stop in a finite number of 
iterations with a partition of I du to 
Theorem (2.2). A similar argument is 
valid for Step 5 and Step 6.  
Suppose that  o o

P DI , I  and  o o
P DO , O  

are partitions of I and O, respectively, 
obtained by the above algorithm. In the 
following, we present a developed model 
of the neutral DEA models to find a 
maximal element of o*

dS  . 

T
ik ik

i I

rk rk kk
r O

rk rj ik ij
r O i I

max 
s.t        x 1

           u y

           u y x 0,

    j J, j k  





 



 

 

  

 





 

      (6) 

rk rj D           u y ,  r O                        (7) 

ik ij D

rk ik

           x ,  i I

           u 0 ,  0,
  i I , r O

  

  

 

                      (8) 

 
I It is clear that, the optimal value of the 
above problem always is positive if the 
data are positive. However, if constraint 
sets (7) and (8) are replaced by constraint 
sets rk D rk Du ,  r O  and ,  i I     , 
respectively, data no longer need to be 
positive.  

Lemma4.4. Let  o* o* *
ou ,v ,  is an 

optimal solution for Model (6).  
 
1. If the data domain, D, contains only 
positive data, we have *

o 0  . 
 
2. If *

o 0  , then the weight vector 

 o* o*u ,v  has the lowest number of zero 

multiplier weights among all optimal 
multiplier weights.  
Proof. (1.) CCR multiplier model has at 
least one optimal maximal element by 
Theorem (2.2) and Lemma (4.3). We 
denote it by  o* o*

u ,v  and define 

 o o
irro io d d:  Min y u , x r O ,i I      

 
Since all maximal element are equivalent, 
we deduce that 0 . So, Model (6) has a 
feasible solution with positive objective 
value and therefor *

o 0  . (2.) In this 
case, we have a solution with the same 
support set with  o*

dS  and this together 

with Lemma (4.1) result this part.  
 
5. Numerical examples  
To compare the neutral DEA models and 
the proposed model, we use a small 
numerical example involving six DMUs. 
Each DMU has three inputs and two 
outputs, which are shown in Table (3).  

 
 

Table 3: Data of DMUs 
DMUs DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 

i1 2 2 4 4 5 5 
i2 3 3 5 3 5 3 
i3 2 4 3 3 4 2 
o1 5 5 2 3 3 2 
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We evaluate the DMUs by CCR 
envelopment model and CCR multiplier 
model. The results of the evaluations are 
displayed in Table (4). Table (5) displays 
the support sets of variables u, and v and 

also the class of each DMU. Since u has 
only one component and its value always 
is positive at optimality, hence we exhibit 
only the support set of v. 

 
Table 4: Optimal weights obtained from CCR multiplier model (2) 

DMUs DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 
v1 0 0.500 0 0 0 0  
v2 0 0 0 0.333 0.200 0  
v3 0.500 0 0.333 0 0 0.500 
u1 0.200 0.200 0.133 0.200 0.120 0.200 

CCR-Efficiency 1.000 1.000 .267 0.600 0.360 0.400 
 

Table 5: The support set of v and the class of DMUs 
DMUs DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 

 v   1,2,3   1,2   3   2   2   2,3  

Class E F NF NF NF NF 
 

One of the main goals of this study was to 
proposed a model to resolve the zero 
weights issue. Especially, it was to 
develop the previously presented Models 
(4) and (5), which were difficult to deal 
with 

jDMU F NF  . Because of the same 
nature of these models, we compare our 
model (6) with Model (5) only here. For

1DMU E , both models succeed to find a 
solution with three nonzero input weights 
as claimed. For 

2DMU F , the CCR 
multiplier model gives * *

1 2 0.5,  0,     
and, *

3 0  . Model (6) give 
* *
1 2 0.250,  0.167,     and, *

3 0  ., 
and, v∗ 3 = 0 while Model (5) give

* *
1 2 0.5,  0.0,     and, *

3 0  . With 
regard to    v 1,  2   for 

2DMU , we can 
say that the proposed model give us an 
maximal element, however the solution of 
Model (5) is identical with the solution of 
CCR multiplier model. The CCR 
multiplier solutions for 3DMU  and 

4DMU are maximal elements according to 

the support set of v for these DMUs. 
Hence, none of the Models (6) and (5) can 
reduce the number of zero weights. The 
last DMU, 6DMU , belongs to NF. It has 

two input zero weights, * *
1 20,  0,     

and, *
3 0.5  , nevertheless, it can have 

one zero weight. Again it can be seen that 
Model (6) reduce the number of zero 
weights, * *

1 20,  0.2,     and, 
*
3 0.2  , although (5) has no success in 

this work. In short, it is observed that both 
models are able to find an optimal 
maximal element solution for all 

jDMU E E' NE NE'.       
Whereas this is only the proposed model 
which can also do this for 

jDMU EF NF.   
DMUj ∈ EF ∪ NF. Our Study only 
focuses on finding a maximal element in a 
DEA model, whereas it might be 
important to include a LP model as well. 
In fact, the inclusion of LP models would 
enable us to find a complementary 
solution for LP models in general.  
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6. Conclusion 
In this paper, it has been shown that the 
neutral DEA models has weak-ness in 
reducing the number of zero weighs for 
weak efficient and weak in-efficient 
DMUs. A novel approach has been 
introduced to resolve this issue. With a 
simple numerical example, it was shown 
how the proposed method can always find 
an optimal solution with the lowest 
number of zero components. Although the 
focus of the research was on the CCR 
multiplier model, however, it can be 
extended to other DEA models. Further 
studies are needed to develop the 
proposed model to LP models. 
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