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Abstract 

Multi-Criteria Decision-Making (MCDM) problems often involve a combination of 

qualitative and quantitative criteria for evaluating alternatives. A major challenge in such 

problems is employing a methodology that can simultaneously and effectively process both 

types of criteria. While Data Envelopment Analysis (DEA) is a well-established method for 

efficiency evaluation in quantitative-based problems, its inherent limitations in handling 

qualitative criteria reduce its applicability in more complex decision scenarios. In this study, 

we introduce a novel efficiency measurement approach using the Analytic Hierarchy Process 

(AHP) and establish a mathematical comparison with the CCR-DEA model. The proposed 

method integrates pairwise comparisons and weight derivations for qualitative and 

quantitative criteria, enabling efficiency analysis without requiring the conversion of 

qualitative data into numerical values. The findings demonstrate that AHP not only provides 

a meaningful efficiency assessment in the presence of mixed criteria but also exhibits 

structural similarities to DEA under specific conditions. This highlights the potential of AHP 

as a complementary tool for MCDM problems where both qualitative and quantitative factors 

play a crucial role. 
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1. Introduction 

In modern decision-making environments, 

evaluating alternatives based on multiple 

criteria is a fundamental yet challenging 

task. Many real-world problems require 

assessing a combination of both qualitative 

and quantitative factors, making the 

selection of an appropriate evaluation 

method crucial. Among the most widely 

used approaches for efficiency assessment 

are the Analytic Hierarchy Process (AHP) 

and Data Envelopment Analysis (DEA). 

While DEA is traditionally designed for 

problems involving strictly quantitative 

inputs and outputs, AHP provides a 

structured framework for handling both 

qualitative and quantitative criteria. 

However, a comprehensive and systematic 

approach that effectively integrates these 

methods for efficiency measurement 

remains an open research challenge. 

AHP, introduced by Saaty, is a multi-

criteria decision-making (MCDM) 

technique that employs pairwise 

comparisons to derive relative weights for 

criteria and alternatives. This method has 

gained widespread recognition across 

diverse fields, including management, 

engineering, and economics, due to its 

ability to process subjective judgments and 

combine them with numerical data. Over 

the years, various enhancements to AHP 

have been proposed, including hybrid 

models integrating artificial intelligence, 

optimization techniques, and fuzzy logic 

to improve decision accuracy in complex 

scenarios [1]. 

On the other hand, DEA, first proposed by 

Charnes, is a non-parametric approach for 

assessing the relative efficiency of 

decision-making units (DMUs). It 

evaluates how effectively each unit 

converts multiple inputs into desirable 

outputs, making it a powerful 

benchmarking tool in operations research 

and performance evaluation. One of 

DEA’s main advantages is its ability to 

handle multiple inputs and outputs without 

requiring an explicit mathematical 

function. However, DEA struggles with 

qualitative criteria, as it inherently relies 

on precise numerical values, requiring 

qualitative factors to be artificially 

converted into quantitative measures—an 

approach that can introduce bias and 

distort efficiency results [2]. 

In DEA-based efficiency analysis, a 

DMU’s performance is evaluated relative 

to a set of comparable units. Inputs may 

include labor, capital, and raw materials, 

while outputs typically represent 

measurable outcomes such as production 

volume or revenue. However, in many 

practical settings, qualitative aspects such 

as customer satisfaction, innovation, or 

service quality play a critical role in 

determining efficiency. Traditional DEA 

models are not well-equipped to handle 

these non-numerical attributes, limiting 

their applicability in decision-making 

contexts where qualitative criteria are 

crucial. 

This study proposes a new efficiency 

measurement approach using AHP to 

overcome DEA’s limitations in handling 

mixed qualitative-quantitative criteria. 

Unlike DEA, which requires data 

transformation for qualitative factors, 

AHP inherently incorporates both types of 

criteria without information loss. The 

paper provides a rigorous mathematical 

formulation of efficiency within the AHP 

framework and systematically compares it 

with the CCR-DEA model. By analyzing 

their structural similarities and differences, 

we demonstrate that under specific 

conditions, AHP-based efficiency 

measurement aligns closely with DEA 

results, validating its applicability as both 

an alternative and a complementary 

methodology. The findings suggest that 

AHP can serve as an effective decision-
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support tool in multi-criteria efficiency 

assessment, particularly in scenarios 

where qualitative criteria play a significant 

role alongside quantitative factors. 

 

2. Literature Review 

2.1. Analytic Hierarchy Process (AHP) 

The Analytic Hierarchy Process (AHP), 

introduced by Saaty, is a widely applied 

multi-criteria decision-making (MCDM) 

method designed to handle complex 

decision problems by structuring them 

hierarchically. This method enables 

decision-makers to systematically evaluate 

alternatives based on a combination of 

qualitative and quantitative criteria 

through pairwise comparisons. One of the 

key strengths of AHP is its ability to 

incorporate subjective judgments into a 

mathematical framework, making it 

particularly useful in decision-making 

scenarios where qualitative factors play a 

significant role [1]. 

Several studies, including Vaidya & 

Kumar et al. and Saaty 2008, have 

employed AHP for decision problems 

where criteria include both cost 

(undesirable) and benefit (desirable) 

factors. In these studies, alternatives are 

prioritized based on their relative 

performance, ensuring that those with 

higher benefits and lower costs receive 

better rankings [3,4]. Moreover, Ishizaka 

highlighted that while qualitative criteria 

in AHP are assessed through expert 

pairwise comparisons, quantitative criteria 

can either be directly incorporated or 

normalized before analysis to maintain 

consistency [5]. 

Recognizing the need to enhance AHP’s 

capability in efficiency measurement, 

researchers have explored hybrid models 

that integrate AHP with other MCDM 

techniques such as TOPSIS and DEA. For 

instance, Cheng et al. (2013) proposed 

AHP-DEA models, where qualitative 

criteria are weighted through AHP, while 

DEA processes quantitative inputs and 

outputs. These studies indicate that AHP 

can compensate for DEA’s limitation in 

handling qualitative data, making it a 

viable complementary approach for 

efficiency evaluation [6]. 

A key challenge in efficiency analysis is 

the simultaneous consideration of cost and 

benefit criteria, which is particularly 

relevant in cases where both tangible and 

intangible factors influence decision 

outcomes. Studies by Wang et al. and 

Jablonsky have compared AHP-based and 

DEA-based efficiency assessments, 

demonstrating that AHP provides a more 

flexible framework by allowing the 

inclusion of qualitative factors without 

requiring numerical conversion. Their 

findings suggest that while DEA is well-

suited for benchmarking homogeneous 

decision-making units (DMUs) based on 

measurable inputs and outputs, AHP 

extends applicability to scenarios where 

qualitative judgments are essential [7,8]. 

Given these insights, AHP presents itself 

as a powerful alternative or 

complementary method to DEA in 

efficiency evaluation, particularly in 

decision-making problems where 

qualitative and quantitative factors must be 

considered simultaneously. This research 

aims to build on these foundations by 

introducing a novel AHP-based efficiency 

metric and comparing its performance 

with CCR-DEA model, providing a 

structured framework for efficiency 

assessment in multi-criteria environments. 

 

2.2. Data Envelopment Analysis (DEA) 

Data Envelopment Analysis (DEA) is a 

powerful non-parametric mathematical 

programming technique that is widely 

used to assess the relative efficiency of 

decision-making units (DMUs) with 

multiple inputs and outputs. First, it 

introduced by Charnes, Cooper 1978. 

DEA evaluates the performance of a set of 
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DMUs without the need for a predefined 

functional relationship between inputs and 

outputs. Instead, it constructs an efficient 

frontier that represents the best possible 

performance achievable by the DMUs in 

the dataset [2]. 

The core principle behind DEA is to 

evaluate the efficiency of a given DMU by 

comparing it to a reference set of the most 

efficient units. Efficient DMUs are located 

on the frontier, while inefficient DMUs 

are those that are below this frontier. DEA 

calculates a technical efficiency score for 

each unit, representing how well it 

transforms inputs into outputs relative to 

the best-performing units in the dataset. 

DEA is based on the following key 

characteristics: 

1. Multiple Inputs and Outputs: DEA 

handles problems where multiple inputs 

and outputs are involved, making it 

particularly useful in complex decision-

making scenarios. 

2. Non-Parametric Nature: Unlike other 

methods such as regression, DEA does not 

require a specific functional form for the 

relationship between inputs and outputs, 

which allows it to model complex, non-

linear relationships without relying on any 

assumption about the production 

technology. 

3. Returns to Scale: DEA can be applied 

under two main assumptions about returns 

to scale: Constant Returns to Scale (CRS): 

As used in the original CCR model, where 

outputs increase proportionally with 

inputs. Variable Returns to Scale (VRS): 

As seen in the BCC model, which accounts 

for scenarios where outputs do not scale 

proportionally to inputs, providing greater 

flexibility for more heterogeneous units. 

DEA's flexibility and non-parametric 

nature make it widely applicable across 

diverse industries such as healthcare, 

education, banking, manufacturing, and 

public administration, where performance 

measurement is critical. Notable studies in 

these areas, such as bank efficiency (Coelli 

et al.) and healthcare sector analysis 

(Rossetti et al.), highlight its robustness in 

comparing and evaluating units with 

multiple dimensions of performance 

[9,10]. 

Despite its wide application, one of the 

main limitations of DEA is its exclusive 

reliance on quantitative data. It is 

particularly effective in settings where all 

performance indices can be quantitatively 

measured, such as production rates, 

financial outcomes, or service delivery 

times. However, qualitative criteria, such 

as customer satisfaction, service quality, or 

employee morale, which are increasingly 

important in decision-making, cannot be 

directly included in DEA models. This 

limitation has been recognized in the 

literature, where various studies (e.g., Färe 

et al., [11]) have pointed out the challenge 

of incorporating subjective, qualitative 

inputs into DEA-based models. 

Given these limitations, there has been a 

growing interest in combining DEA with 

other methodologies to better address both 

quantitative and qualitative aspects of 

decision-making. Notable among these is 

the integration of DEA with the Analytic 

Hierarchy Process (AHP), which allows 

for the incorporation of qualitative 

judgments through pairwise comparisons 

and weighted aggregation. This hybrid 

approach leverages the strengths of AHP 

in handling qualitative data while utilizing 

the rigor of DEA in evaluating the 

efficiency of DMUs. 

Our research introduces the efficiency of 

AHP through a novel approach, compares 

it with the efficiency of DEA, and 

demonstrates that there are similarities 

between these two methods. The proposed 

model does not require the conversion of 



Zarabi & Rezai Balf/ IJDEA Vol.13, No.2, (2025), 12-25 

 

16 

qualitative data into quantitative metrics, 

ensuring a more accurate and context-

sensitive evaluation of DMUs in decision 

problems that involve both qualitative and 

quantitative criteria. This combined 

approach is positioned as a complementary 

methodology for multi-criteria decision-

making in environments where both types 

of criteria are integral to the evaluation 

process. 

 

2.2.1. Efficiency  

Consider a set of n  alternatives or DMUs 

(decision-making units), where the vectors 

1( ,..., )j j mjx x x  represent the input values 

and 
1( ,..., )j j sjy y y  represent the output 

values for DMU j , for 0jy  ,, 0jx   

.The efficiency 1,...,j n , 0jx  , 0jy 

of DMU is then defined as the ratio of the 

weighted sum of the outputs to the 

weighted sum of the inputs: 

1

1

s

r rjr

m

i iji

u y
Efficiency DMUj

v x









      (1) 

where ijx denotes the value of input i  for 

DMU j  , and rjy represents the value of 

output r for DMU j . The weights ru and 

iv correspond to the outputs and inputs, 

respectively, and they are determined 

through the optimization model. 

 

2.2.2. CCR-DEA Basic Model  

In the CCR model, it is assumed that 

returns to scale are constant, and its 

fundamental formulation is expressed as a 

fractional programming problem: 

1

1

1

1

max

. . 1, 1,..., ,

0, 0, 1,..., ; 1,..., ,

s

r rkr
k m

i iki

s

r rjr

m

i iji

r i

u y

v x

u y
S t j n

v x

u v r s i m

 









 

   








  (2) 

where model (2) converted to linear model 

(3) by Charnes-Cooper transformations. 

1

1

1 1

max

. . 1,

0, 1,..., ,

0, 0, 1,..., ; 1,..., .

s

k r rj

r

m

i ij

i

s m

r rj i ij

r i

r i

u y

S t v x

u y v x j n

u v r s i m






 





  

   





 

     (3) 

If the objective function in model (3) 

results in a value of 1, then DMU k  is 

considered efficient. Conversely, if the 

efficiency value is less than 1, DMU k  is 

deemed inefficient, and improvements can 

be achieved by reducing inputs, increasing 

outputs, or a combination of both. 

 

2.2.3. Ranking  

In this section, we focus on ranking 

efficient DMUs using the Anderson-

Peterson [12] model. To do so, the 

efficient alternative is removed from the 

set of all alternatives, and the CCR model 

is used to evaluate it. The Anderson-

Peterson model is formulated as follows: 

1

1

1 1

max

. . 1,

0, 1,..., ; ,

0, 0, 1,..., ; 1,..., .

s

k r rk

r

m

i ik

i

s m

r rj i ij

r i

r i

u y

S t v x

u y v x j n j k

u v r s i m






 





   

   





 

    (4) 

The value of the objective function is 

greater than or equal to 1. The alternative 
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with the highest objective function value is 

ranked higher. 

 

3. Proposed Method 

In this paper, to improve evaluation 

accuracy and avoid the complexities of 

directly combining qualitative and 

quantitative criteria in a hierarchical 

process, we propose using two separate 

hierarchical processes (as shown in 

Figures 1 and 2). Initially, an independent 

hierarchical process is used to determine 

the weights of the alternatives based on the 

input criteria. Subsequently, another 

independent hierarchical process is carried 

out for the output criteria. In this method, 

both sets of criteria (input and output) can 

be either qualitative or quantitative, but 

they cannot simultaneously be treated as 

purely quantitative, as this would make 

data envelopment analysis (DEA) a more 

appropriate method for evaluating 

alternative efficiency. 

In the second step, the results from both 

processes obtained in the first step (the 

weights of the alternatives corresponding 

to input and output criteria) are combined 

to provide a final efficiency evaluation. As 

a result, a comprehensive ranking of the 

alternatives based on their efficiency is 

derived. This approach ensures that each 

set of criteria is analyzed independently 

and accurately, while preventing the issues 

related to the direct combination of 

qualitative and quantitative criteria in a 

single process. Ultimately, the efficiency 

index of each alternative is calculated by 

considering the weighted combination of 

both input and output criteria. 

The step of the AHP for n  alternatives and 

several criteria are as follows: 

Step 1. Define the Goal: The decision-

making goal is defined. 

Step 2. Define the Criteria:  The different 

criteria used to evaluate the alternatives 

are identified. 

Step 3. Construct Pairwise Comparison 

Matrices: For each criterion, the 

alternatives are compared against each 

other, and pairwise comparison matrices 

are constructed. 

Step 4. Calculate the Weights: The 

weights for each alternative are calculated 

based on the comparisons using 

mathematical methods. 

Step 5. Aggregate the Weights: The 

weights for each alternative across all 

criteria are combined, and ultimately, a 

ranking of the alternative is created. 

Assume there are n  alternatives, each 

associated with m cost (input) criteria and 

s profit (output) criteria. The AHP 

efficiency of alternative i , 1,...,i m , is 

given by: 

,

,

out ii

AHP

in i

W
E

W
                          (5) 

where ,out iW  and ,in iW  represent the 

weights of alternative i  relative to the 

output (profit) and input (cost) criteria, 

respectively. 

Theorem: Prove that the efficiency of 

AHP, calculated as the ratio of output 

weights to input weights, is equivalent to 

the absolute efficiency in DEA. 

Proof: Let us consider n alternatives, each 

with m quantitative input criteria and s
qualitative output criteria. Let matrix X  

represent the input data matrix, and matrix 

A  represent the pairwise comparison 

matrix for the input criteria, normalized 

column-wise. Suppose that v is the weight 

vector derived from the row average of the 

input criteria weights in matrix A . Thus, 

Xv is the weighted vector of the 
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alternatives with respect to the input 

criteria. 

Let kP  denote the pairwise comparison 

matrix between the alternatives for each 

output criterion k . Assume that matrix is 

normalized row-wise, and the resulting 

weight vector is ky , 1,...,k s . 

Similarly, let matrix Q  represent the 

pairwise comparison matrix between the 

outputs criteria, where its row-normalized 

form results in the weight vector u . 

Consequently, the weights of the 

alternatives relative to the output criteria is 

given by Yu , where is the matrix of output 

weights 
1[ ,..., ,..., ]k sY y y y . 

Now, referring to the definition of AHP 

efficiency for alternative i , calculated as 

the ratio of output weights to input 

weights, we express it as: 

1

1

,

s

ik ki k
AHP m

ij jj

y uYu
E

Xv x v





 



 

Where iky denotes the weight of 

alternative i  relative to output criterion k  

and ku is the weight of output criterion k .  

Also, ijx denotes the weight of alternative 

i  relative to input criterion j  and 
jv  is 

the weight of output criterion j . 

By examining equation (1), it becomes 

apparent that the structure of the 

numerator and denominator in AHP 

efficiency closely mirrors the design of the 

DEA-CCR efficiency formula. 

Specifically, if we assume that the output 

weights in AHP, ( ku ) are analogous to the 

output weights in DEA-CCR, ( ru ) and the 

input weights in AHP, (
jv ) correspond to 

the input weights in DEA-CCR, ( iv ) the 

structure of the formulas in both models is 

identical. Therefore, the two models can 

be regarded as functionally equivalent. 

Although in AHP, 
ijx  and iky  represent 

the weight of alternative i  relative to 

inputs and outputs criterion, but in DEA-

CCR (model 3), 
ijx  andboth are input 

 rjy  

and output values which are normalized in 

solving model. In this scenario, these 

values can be interpreted as the input and 

output weights for each decision-making 

unit (alternative) in the context of the 

respective input and output criteria. 

 

 

 

Optimal alternative 

 

Input 1 

1 3 

Fig. 1.  Hierarchical structure based on the input criterion  

 

n 

Input 2 Input m 

2 



IJDEA Vol.4, No.2, (2016).737-749  

Zarabi & Rezai Balf/ IJDEA Vol.13, No.2, (2025), 12-25 

 

19 
 

 

4. Numerical Example: 

Consider four bank branches, each 

evaluated using three quantitative input 

criteria and three qualitative output 

criteria. The input criteria are training 

hours for personnel, training costs, and 

number of personnel, while the output 

criteria are public relations, creativity, and 

discipline. The data for the input criteria is 

shown in Table 1. Since the output criteria 

are qualitative, pairwise comparison 

matrices are used to express their priorities 

as perceived by the decision-maker. These 

matrices are employed in Tables 6 through 

13. For the purpose of dimensionless 

scaling of the data, the sum of the column 

vectors has been employed. 

To determine the weights of the 

alternatives, two hierarchical processes are 

conducted: one for the inputs and one for 

the outputs. Initially, the hierarchical 

process for evaluating the alternatives 

relative to the quantitative input criteria is 

performed. Since the input criteria are 

quantitative, no pairwise comparisons are 

necessary. As a result, the weights of the 

alternatives based on input criteria are 

presented in Table 2. 

Additionally, the relative priorities of 

input criteria, as well as their normalized 

values along with the weights of each 

criterion, are presented in Tables 3 and 4 

respectively.

Table 1. Quantitative Inputs for Alternatives 

Training hours Training costs (per thousand) Number of personnel  Inputs 

12 11 10 A 

8 10 15 B 

11 7 10 C 

10 14 12 D 

Table 2. Weights of Alternatives Based on Criteria of Personnel Number, Training Costs, and 

Training Hours 

Training 

hours 

weights 

Training 

hours 

Training 

cost weights 

Training costs 

(per thousand) 

Personnel-basd 

wieghts 

Personnel 

count 
Alternatives 

0.293 12 0.262 11 0.213 10 A 

0.195 8 0.238 10 0.319 15 B 

0.268 11 0.167 7 0.213 10 C 

0.244 10 0.333 14 0.255 12 D 

1 41 1 42 1 47 Total 

 

Optimal alternative 

Output 1 

1 3 

Fig. 2.  Hierarchical structure based on the output criterion  

 

n 

Output 2 Output s 

2 
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Table 3. Pairwise Comparison Matrix for Input Criteria 

Training hours Training costs Personnel count  

1
2⁄  2 1 Personnel count 

3 1 1
2⁄  Training costs 

1 1
3⁄  4 Training hours 

4.25 3.333 5.5 Total 

Table 4. Normalized Pairwise Comparison Matrix and Average Weight of Each Criterion 

Weights Training hours Training costs Personnel count  

0.28 0.059 0.6 8.182 Personnel count 

0.366 0.706 0.3 0.091 Training costs 

0.354 0.235 0.1 0.727 Training hours 

1 1 1 1 Total 

 
The final weights of the alternatives based 

on the input criteria, which are determined 

by summing the products of each 

criterion's weight and the corresponding 

alternative's weight for that criterion, are 

shown in Table 5. 

 

Next, we proceed with the hierarchical 

analysis for the alternatives based on 

output criteria. Since the outputs are 

qualitative, the decision-maker determines 

the relative priority of the units with 

respect to the output criteria. The results of 

this analysis are provided in Tables 6 

through 13. 
 

Table 5. Weights of Alternatives Based on Input Criteria 

Alternatives Weights 

A 0.237 

B 0.256 

C 0.287 

D 0.220 

Table 6. Pairwise Comparisons of Alternatives Based on the Public Relations Criterion 

D C B A Option priority for public relations 

3 8 2 1 A 

2 6 1 1
2⁄  B 

4 1 1
6⁄  1

8⁄  C 

1 1
4⁄  1

2⁄  1
3⁄  D 

10 15.25 3.66 1.958 Total 
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Table 7. Normalized Weight of Each Alternative Relative to the Public Relations Criterion 
Option priority for 

public relations A B C D Weights 

A 0.510 0.546 0.524 0.3 0.472 
B 0.255 0.271 0.393 0.2 0.280 
C 0.063 0.045 0.065 0.4 0.143 
D 0.170 0.136 0.016 0.1 0.105 

Table 8. Pairwise Comparisons of Alternatives Relative to the Creativity Criterion 

Option priority for creativity A B C D 

A 1 1
3⁄  1

4⁄  2 

B 3 1 1
2⁄  1

2⁄  

C 4 2 1 3 

D 1
2⁄  2 1

3⁄  1 

Total 8.5 6.33 2.083 6.5 

Table 9. Normalized Weights of Alternatives Relative to the Creativity Criterion 

Option priority for 

public relations A B C D Weights 

A 0.11 0.052 0.12 0.307 0.147 
B 0.352 0.157 0.24 0.076 0.249 
C 0.470 0.315 0.48 0.461 0.431 
D 0.058 0.315 0.16 0.15 0.173 

Table 10. Pairwise Comparisons of Alternatives Relative to the Discipline Criterion 

Option priority for 

discipline 
A B C D 

A 1 1
4⁄  1

6⁄  2 

B 4 1 1
3⁄  1 

C 6 3 1 2 

D 1
2⁄  1 1

3⁄  1 

Total 11.5 5.25 1.833 7 

Table 11. Normalized Weight of Each Alternative Relative to the Discipline Criterion 

Weights  D C B A 
Option priority 

for discipline 

0.127 0.285 0.090 0.047 0.086 A 

0.217 0.142 0.181 0.190 0.347 B 

0.517 0.428 0.545 0.571 0.521 C 

0.139 0.142 0.181 0.190 0.043 D 

Table 12. Priority of Output Criteria Relative to Each Other 

discipline creativity public relations Priority of output criteria 

2 3 1 Public relations 

1
4⁄  1 1

3⁄  Creativity 
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1 4 1
2⁄  Discipline 

3.25 8 1.833 Total 

Table 13. Calculation of Criterion Weights Based on Output Indicators 

Weights Discipline Creativity Public relations Priority of output criteria 

512.0  615.0  375.0  546.0  Public relations 

128.0  077.0  125.0  182.0  Creativity 

360.0  308.0  5.0  273.0  Discipline 

Table 14. Weight of Each Alternative Relative to the Output Criteria 

 

Weights  Alternatives 

306.0  A 

254.0  B 

317.0  C 

123.0  D 

The hierarchical process continues by 

determining the priority of the output 

criteria, which is shown in Table 12. The 

calculation of the weights for each 

criterion based on the output indicators is 

presented in Table 13. 

Using the criterion weights from Table 13 

and the weights derived from the pairwise 

comparisons relative to the criteria in 

Tables 7, 9, and 11, the final weight of 

each alternative based on the output 

criteria is shown in Table 14. 

Next, we calculate the efficiency of each 

alternative, considering both the output 

and input weights from Tables 14 and 5. 

The calculated efficiencies are as follows: 

0.306 0.254
1.291, 0.992,

0.237 0.256

0.317 0.123
1.105, 0.559

0.287 0.220

A B

AHP AHP

C D

AHP AHP

E E

E E

   

   
 

The results indicate that Alternative A 

has the highest efficiency and is ranked 

first, Alternative C is ranked second, 

Alternative B is ranked third, and 

Alternative D has the lowest efficiency, 

ranked last. 

 

5. Efficiency Evaluation Using Data 

Envelopment Analysis (DEA) 

In this section, the alternatives from the 

given example are evaluated using the 

Data Envelopment Analysis (DEA) 

method. It is evident that DEA models rely 

on quantitative input and output indicators. 

The inputs are quantitative; however, 

instead of using qualitative outputs, the 

weights obtained for the alternatives 

relative to each output criterion are 

employed. These inputs are normalized, 

and the quantitative outputs are presented 

in Table 15. The efficiency of the 

alternatives is computed using the CCR 

model, as shown in Table 16. 

Table 15. Inputs and Outputs for Efficiency Evaluation of Four Alternatives 

Discipline 

weights  

Creativity 

weights  

Public 

relations 

weights 

Training 

hours 

weights 

Training 

cost 

 weights 

Personnel-

basd 

wieghts 

Alternatives 

0.127 0.147 0.472 0.293 0.262 0.213 A 

0.217 0.249 0.280 0.195 0.238 0.319 B 
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0.517 0.431 0.141 0.268 0.167 0.213 C 

0.139 0.173 0.105 0.244 0.333 0.255 D 

Table 16. Final Efficiency of Each Alternative Based on the CCR Model 

 

 

6. Comparison of AHP and DEA in 

Efficiency Evaluation 

In this research, two prominent methods—

Hierarchical Analysis (AHP) and Data 

Envelopment Analysis (DEA)—were 

compared for evaluating and ranking 

alternatives. In the AHP method, 

Alternative A emerged as the most 

efficient, while in the DEA-CCR model, 

Alternatives A, B, and C were recognized 

as efficient, with only Alternative D being 

classified as inefficient. For ranking the 

efficient alternatives, the Anderson-

Peterson (AP) model was employed, 

placing Alternative C in the first position 

and Alternative A second. This 

discrepancy demonstrates that each 

method evaluates efficiency criteria in 

fundamentally different ways. 

Nevertheless, in both methods, Alternative 

B was consistently ranked third and 

Alternative D ranked fourth, signaling a 

degree of convergence between the results. 

Using pairwise comparisons, AHP 

processes qualitative and quantitative 

criteria separately and calculates the 

efficiency index based on the ratio of 

output weight to input weight. Conversely, 

DEA is an optimization-based 

mathematical model that determines 

efficiency by maximizing the output-to-

input ratio. A key limitation of the DEA-

CCR model, when dealing with qualitative 

data is its inability to directly process such 

data, necessitating the conversion of 

qualitative values into quantitative ones. 

This transformation may diminish the 

accuracy of the results. Furthermore, the 

DEA-CCR model may classify multiple 

alternatives as efficient without providing 

sufficient differentiation, particularly 

when the number of alternatives is smaller 

than the total number of input and output 

criteria (usually, the number of 

alternatives must exceed three times the 

sum of input and output criteria). This 

necessitates models like AP for more 

precise ranking. 

Despite this, AHP’s flexibility in 

evaluating qualitative criteria yields a 

more transparent and definitive ranking, 

while, DEA excels in purely quantitative 

contexts. The difference in the ranking of 

Alternatives A and C between the two 

methods underscores how the chosen data 

processing approach influences the results. 

However, the consistent ranking of 

Alternatives B and D across both methods 

indicates a level of coherence in the overall 

ranking, which can guide decision-makers 

in selecting the most suitable method. 

 

7. Conclusions 

The primary objective of this study was to 

assess the efficiency of the Analytic 

Hierarchy Process (AHP) when addressing 

both qualitative and quantitative criteria in 

alternative evaluation. To achieve this, two 

distinct hierarchical processes were 

Ranking Super 

efficiency 

CCR 

efficiency 

Alternatives 

2 1.8531 1 A 

3 1.0494 1 B 

1 2.9178 1 C 

4 0.4332 0.52 D 
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employed for quantitative and qualitative 

criteria, ensuring a more accurate 

assignment of weights to each alternative. 

This approach facilitates a more 

comprehensive evaluation of alternatives 

in complex situations involving multiple 

criteria, eliminating the need to convert 

qualitative data into quantitative forms, 

which could compromise the precision of 

the results. We have also demonstrated 

that a similar structure relationship exists 

between the AHP method and the DEA 

technique. 

In comparison to the DEA-CCR method, 

which primarily relies on quantitative data 

for efficiency evaluation, the results 

revealed that DEA cannot process 

qualitative data effectively. Moreover, in 

DEA, multiple units can be classified as 

efficient simultaneously, necessitating 

additional models for ranking. On the 

other hand, AHP provided a more precise 

evaluation by using pairwise comparisons 

for both qualitative and quantitative 

criteria, enabling it to highlight significant 

differences in the ranking of alternatives. 

Ultimately, in this study, the alternatives 

were assessed using both AHP and DEA 

methods, with AHP proving to offer more 

reliable and accurate results, particularly 

in scenarios where both qualitative and 

quantitative criteria are present. 

“The authors declare that there is no 

conflict of interest regarding the 

publication of this article.” 

 

 

 

 

 

 

 

 

 

 

 

 

  



IJDEA Vol.4, No.2, (2016).737-749  

Zarabi & Rezai Balf/ IJDEA Vol.13, No.2, (2025), 12-25 

 

25 
 

References 

[1] Saaty, T.L., 1980. The Analytic Hierarchy 

Process, New York: McGraw Hill. 

International, Translated to Russian, 

Portuguese, and Chinese, Revised 

editions, Paperback (1996, 2000), 

Pittsburgh: RWS Publications. 

[2] Charnes, A., Cooper, W.W., Rhodes, E., 

1978. Measuring the efficiency of 

decision-making units. European Journal 

of Operational Research 2, 429-444. 

[3] Vaidya, O.S., Kumar, S., 2006. Analytic 

hierarchy process: An overview of 

applications. European Journal of 

Operational Research 169, 1-29. 

[4] Saaty, T.L., 2008. Decision making with 

the analytic hierarchy process. 

International Journal of Services Sciences 

1, 83-98. 

[5] Ishizaka, A., Labib, A., 2011. Review of 

the main developments in the analytic 

hierarchy process. Expert Systems with 

Applications 38, 14336-14345. 

[6] Cheng, E.W.L., Li, H., 2005. Analytic 

Hierarchy Process: An approach to 

determine measure for business 

performance. Measuring Business 

Excellence 9, 12-22. 

[7] Wang, J.J., Jing, Y.Y., Zhang, C.F., Zhao, 

J.H., 2009. Review on multi-criteria 

decision analysis aid in sustainable energy 

decision-making. Renewable and 

Sustainable Energy Review 13, 2263-

2278. 

[8] Jablonsky, J., 2016. Efficiency analysis in 

multi-period systems: an application to 

performance evaluation in the Czech 

higher education. Central European 

Journal of Operations Research 24, 

283-296. 

[9] Coelli, T.J., Rao, D.S.P., Battese, G.E. 

2005. An Interduction to Efficiency and 

Productivity Analysis (2nd ed.) Springer. 

[10] Rossetti, M.D., Kloeber, C.W., Gopal, 

A.R. 2017. The Green New Deal: Scope, 

Scale, and Implications. American Action 

Fourm. 

[11] Fare, R., Grosskopf, S., Lindgern, B. 

2009. A Review on the 40Years of 

Existence of Data Envelopment Analysis. 

Journal of Productivity Analysis, 31 (1), 

1-27. 

[12] Andersen, P., Petersen, N.C., 1993. A 

procedure for ranking efficient units in 

data envelopment analysis. Management 

Science 39, 1261-1264. 

 

 


