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Abstract 

Data envelopment analysis (DEA) is a non-parametric technique to measure the relative 

efficiencies of a set of decision-making units (DMUs) with common crisp inputs and outputs. 

Ranking of DMUs is of great importance in DEA. One of the methods for ranking DMUs is 

to obtain cross efficiency. The cross-efficiency method was developed as a DEA extension to 

rank DMUs with the main idea being to use DEA to do peer evaluation, rather than in pure 

self-evaluation mode. In this paper, we propose cross efficiency for DMUs with fuzzy data 

and use the efficiency scores to rank the fuzzy DMUs. We consider the input and output values 

as triangular fuzzy numbers. Our proposed model is based on input and output α-cuts. We 

then elaborate on the model with a numerical example. 
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1. Introduction 

Data envelopment analysis (DEA) is a 

non-parametric technique to measure the 

relative efficiencies of a set of decision-

making units (DMUs) with common crisp 

inputs and outputs. The cross-efficiency 

method was developed as a DEA 

extension to rank DMUs with the main 

idea being to use DEA to do peer 

evaluation, rather than in pure self-

evaluation mode. Cross efficiency has 

been further investigated by [1]. There are 

mainly two advantages of the cross-

evaluation method. It provides an ordering 

among DMUs, and it eliminates unrealistic 

weight schemes without requiring the 

elicitation of weight restrictions from 

application area experts. Cross efficiency 

evaluation has been used in various 

applications, e.g., efficiency evaluations of 

nursing homes [2], R&D project selection 

preference voting, and others. Some 

researchers   have proposed several fuzzy 

models to evaluate the efficiency of DMUs 

with fuzzy data. [3] have used a-cut 

approach to measure the efficiency by 

BCC model t4J with fuzzy data. In this 

paper, we investigate cross efficiency for 

fuzzy data. The proposed model is based 

on input and output α-cuts. In most α-cut 

based methods, the resulting model is 

solved by comparing two intervals, i.e., 

interval of left-hand side and interval of 

right-hand side of each equality/ inequality   

constraints. The rest of the paper is 

organized as follow. In Section 2, we 

explain the CCR model with fuzzy data 

and compute efficiency intervals. In 

Section 3, we propose cross efficiency 

with fuzzy data, which is then used to rank 

fuzzy DMUs. In Section 4, we use a 

numerical example to elaborate on the 

proposed model. 

 

 

 

2. DEA model with fuzzy data 

Assume that we have a set of n fuzzy 

DMUs, each with m fuzzy inputs and s 

fuzzy outputs [4]. We consider the input 

and output values to be triangular fuzzy 

numbers, so that the ith input and the rth 

output of DMUj (j = 1, 2, …, n) are 

denoted by [5]  

( , , ), ( 1,2,..., )

( , , ), ( 1,2,..., )

L M R

ij ij ij ij

L M K

rj rj rj rj

x x x x i m

y y y y r s

 

 

 

respectively. To evaluate DMUP, we 

indicate the α-cuts (α ∈ [0,1]) of the fuzzy 

inputs and outputs of DMUP as follows[6]. 
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Therefore, the input and output values of 

DMUP are intervals and its efficiency is 

expressed as an interval, denoted by 

      R
p

L
pp ,,1,0  , which is 

obtained by the following two models[7]. 

The scores obtained by the above two 

models are the best and the worst 

efficiency scores for DMUP, respectively; 

that is to say, in Model (3), DMUP is in its 

best state while the other DMUs are in 

their worst state, and the situation is the 

other way round in Model (4). 
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(5) 

 

3. Cross efficiency with fuzzy data 

In this section, we intend to explain cross 

efficiency for fuzzy DMUs [8]. Assume 

that we have n fuzzy DMUs with 

triangular fuzzy inputs and outputs. We 

consider the α-cuts of inputs and outputs 

[9]. Cross efficiency is based on the 

multiplier form of the CCR model [10]. 

Suppose we are going to evaluate DMUP. 
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(6) 

The multiplier models for evaluating 

DMUP are the duals of Models (3) and (4), 

as follows. 

Suppose that the optimal solution to Model 

(5) is ),(
 R

ip

R

rp vu  and that of Model (6) is 

),(
 L

ip

L

rp vu  Using the weights obtained 

from Models (5) and (6) in evaluating 

DMUP, we have the following efficiency 

interval for jDMU  (j = 1, 2, …, n). 
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Considering the fact that 


pjE  is an 

interval and that Models (5) and (6) are 

used to evaluate 

DMUP, we have all the possible cases as 

follows. 
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Then the efficiency of jDMU  (j = 1, …, 

n) is defined as[11]: 

 , , 1,2..., , 0,1
L R

pj pj
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E E j n
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 

      

We now calculate the mean of all  

(j = 1, 2, …, n)  



pjE  for each jDMU  (j = 1, …, n). 


jE denotes the cross-efficiency score of 

jDMU  (j = 1, …, n) at the α ∈ [0,1] 

level[12]. 

Now, for each jDMU  (j = 1, 2, …, n) we 

define: 

   
1 1

max ,( 1,..., )R L

j pj pjR E Min E j n
n n

     

Then, we rank the DMUs based on the jR  

(j = 1, …, n) obtained, such that the 

jDMU  with a greater jR  (j = 1, …, n) 

has a better rank [13]. Since there might be 

multiple optimal solutions to Models (5) 

and (6) in evaluating nDMU , we use the 

following two models to select the optimal 

solution. 
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Table 1: α-cut of fuzzy DMUs 
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4. Numerical Example 

Using an example in which there are one 

input and one output with fuzzy triangular 

values, first provided by (Guo and Tanaka, 

2000), we investigate fuzzy cross 

efficiency. 

Table 2 contains five fuzzy DMUs with 

one input and one output, each with fuzzy 

triangular values. 

Table 2: DMUs with fuzzy triangular values 

SDMU  
Input (Loft, 

mean, right) 

Output (left, 

mean, right) 

1DMU  (1.5, 2, 2.5) (0.7, 1, 1.3) 

2DMU  (2.5, 3, 3.5) (2.3, 3, 3.7) 

3DMU  (2.4, 3, 3.6) (1.6, 2, 2.4) 

4DMU  (4, 5, 6) (3, 4, 5) 

5DMU  (4.5, 5, 5.5) (1.8, 2, 2.2) 

We explain this example with 0.1   

and 0.5  . 

First, for 1.0 , we present the optimal 

solutions obtained by Models (5) and (6) 

in Tables 3 and 4, respectively 

Table 3: Results of model (5) for 1.0  

SDMU  






 

v

R

u

R *
,

*
 

1DMU  (0.4532, 0.64521) 

2DMU  (0.2755, 0.3922) 

3DMU  (0.2856, 0.4065) 

4DMU  (0.1713, 0.2439) 

5DMU  (0.1544, 0.2198) 

 

Table 4: Results of model (6) for 1.0  

SDMU  






 

v

L

u

L *
,

*
 

1DMU  (0.5942, 0.4082) 

2DMU  (0.4219, 0.2899) 

3DMU  (0.4112, 0.2825) 

4DMU  (0.2267, 0.1695) 

5DMU  (0.2671, 0.1835) 

 

Table 5: Fuzzy cross-efficiency scores 

SDMU  
1DMU  

2DMU  
3DMU  

4DMU  
5DMU  

1DMU   1926.1,2092.011    0721.2,4825.012    3965.1,3253.013    7396.1,3690.014    6974.0,2345.015   

2DMU   1925.1,2093.021    0716.2,4825.022    3961.1,3254.023    7394.1,3690.024    6972.0,2345.025   

3DMU   1927.1,2092.031    0721.2,4826.032    3964.1,3254.033    7395.1,3691.034    6974.0,2345.035   
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4DMU   1926.1,2092.041    0719.2,4824.042    3964.1,3253.043    7395.1,3690.044    6973.0,2345.045   

5DMU   1926.1,2092.051    0720.2,4825.052    3963.1,3254.053    7395.1,3690.054    6973.0,2345.055   

1.0

jE   1927.1,2092.0
5

1   0721.2,4824.0
5

1   3965.1,3253.0
5

1   7396.1,3690.0
5

1   6974.0,2345.0
5

1  

1.0

jR  0.9835 1.5897 1.0712 1.3706 0.4625 

Ranking of DMUs at 1.0  

Finally, the fuzzy cross-efficiency scores 

for five fuzzy DMUs with one input and 

one output, each having fuzzy triangular 

values, are given in  

It is evident from the last row of Table 

5 that 2DMU  is the most efficient one 

at 1.0 . 

Now, for 5.0 , we present the 

optimal solutions of Model (5) in Table 

6 and those of Model (6) in Table 7. 

Table 6: Optimal solutions of Model (5) 

SDMU  






 

v

R

u

R *
,

*  

1DMU  (0.4742, 0.5714) 

2DMU  (0.2985, 0.3597) 

3DMU  (0.3074, 0.3704) 

4DMU  (0.1844, 0.2222) 

5DMU  (0.1747, 0.2105) 

Table 7: Optimal solutions of Model (6) 

SDMU  






 

v

L

u

L *
,

*  

1DMU  (0.5451, 0.4444) 

2DMU  (0.3774, 0.3077) 

3DMU  (0.3716, 0.3030) 

4DMU  (0.2230, 0.1818) 

5DMU  (0.2336, 0.1905) 

Finally, the fuzzy cross efficiency 

obtained for the fuzzy DMUs is presented 

in Table 4.7. It is obvious that DMU2 is the 

most efficient amongst all DMUs for 

5.0 , as well. Similarly, the fuzzy 

cross efficiency can be calculated for all 

 1,0 . 

We here briefly illustrate the concept of 

cross efficiency by adopting the cross-

efficiency matrix from Doyle and Green 

(1994). we have six DMUs.  is the (cross) 

efficiency of jDMU  based upon a set of 

DEA weights calculated for pDMU . 'This 

set of DMU weights gives the best 

efficiency score for pDMU  under 

evaluation by a DEA model, and End (in 

the leading diagonal) is the DEA 

efficiency for kDMU . The cross 

efficiency for a given jDMU  is defined 

as the arithmetic average down column j, 

given by (we point out that in Doyle and 

Green (1994), the efficiency score for 

DMU k is not included as part of the 

average.) 

 

Table 8:  Ranking of DMUs at 
2

1
  

SDMU  
1DMU  

2DMU  
3DMU  

4DMU  
5DMU  

1DMU   8059.0,3134.011    4780.1,6766.012    9994.0,4526.013    2265.1,5281.014    5422.0,3003.015   

2DMU   8060.0,3134.021    4779.1,6766.022    9993,4526.023    2265.1,5280.024    05422,3003.025   

3DMU   8059.0,3134.031    4778.1,6766.032    9992,4526.033    2264.1,5281.034    05421,3003.035   
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4DMU   8060.0,3134.041    4780.1,6766.042    9995,4526.043    2266.1,5281.044    05423,3003.045   

5DMU   8058.0,3133.051    4778.1,6766.052    9992,4526.053    2263.1,5281.054    05421,3003.055   

5.0

jE   8060.0,3133.0
5

1   4780.1,6766.0
5

1   9995.0,4526.0
5

1   2266.1,5281.0
5

1   5423.0,3003.0
5

1  

5.0

jR  0.4927 0.8014 0.5469 0.6985 0.242 
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