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Abstract 

The primary models in data envelopment analysis (DEA), consider the inputs and outputs of 
the decision-making units (DMUs) as non-negative. However, in the real world, we face many 

cases where the data is negative. In this paper, we investigate the inverse DEA models to 

estimate the optimal level of inputs and outputs of DMUs based on target efficiency scores. 

We also assume that some input and output components are negative. In this way, we propose 
three different models in variable returns to scale (VRS) to determine optimal levels. In order 

to solve each model, we determine the counterpart DMU corresponding to the DMUs under 

evaluation. This DMU is obtain based on the additive model, and then we get the level of the 
target and the observed outputs corresponding to the DMU under evaluation to determine 

which of these three models to use to measure the efficiency of the DMU under evaluation. 

We apply the proposed approach with a numerical example and consider it to measure the 

optimal levels of inputs and outputs of bank branches. Also, we propose the results of paper. 
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1. Introduction 

DEA is an effective technique to measure 
the relative efficiency of a set of 

production units. These units use multiple 

inputs to produce multiple outputs. In the 

primary models, the inputs and outputs 
from the decision-making units are 

positive. In many applications, it is 

possible that some of the inputs and 
outputs of the decision-making units are 

negative. Many ideas for dealing with 

negative data have been proposed under 
the DEA framework, which can be 

classified into four categories. The first 

category is data transformation, whereby 

constants are added to the observations of 
factors with negative values to make them 

positive. Pastor [1] showed that input 

efficiency measured from the BCC model 
(Banker et al. [2]) under variable returns to 

scale will be the same when observations 

of output factors are transferred. Similarly, 

the efficiency of output will not be affected 
by the transfer of observations of input 

factors. However, input and output factors 

cannot be transferred simultaneously and 
efficiency is measured. When the inputs 

and outputs are negative data and the 

production technology has constant 
returns to scale, Seiford and Zhu [3] 

proposed to assign the smallest constant to 

any factor that can make them positive, 

and from conventional DEA models to 
measure add efficiency. While data 

transmission does not render efficient 

DMUs inefficient, and vice versa, the 
efficiency score increases as the constant 

is added to the output coefficient (Scheel, 

[4]). 
The second category is factor separation, 

which separates a factor with negative data 

into two factors. There are two types of 

separation, one is used to express the 
coefficient as the difference between two 

factors, and the other is used to separate 

the factor into two factors, one containing 
data with positive values and the other 

containing data with positive values. Data 
with negative values in most cases, 

negative observations are the difference 

between two values. For example, profit is 

the difference between sales and costs. 
Based on this idea, Halme et al. [5] used 

two factors to express a factor with 

negative data, where the minuend 
maintains the original input or output state 

and the subtrahend changes to the other 

state. A drawback noted in the paper was 
that as the number of agents increases after 

agent separation, efficiency may increase 

and some inefficient DMUs may become 

efficient. Emrouznejad et al. [6,7] 
proposed a semi-oriented radial measure 

(SORM), in which the factor with negative 

data is divided into two factors, one for 
positive data and the other for negative 

data. 

The third category is slack-based 
measurement (SBM). The limitations of 

this type of model are being able to handle 

negative data. The model presented in 

Mehdiloozad et al. [8] for density 
detection is an example. These methods 

are difficult to calculate the efficiency 

because negative values are involved. To 
solve this problem, Sharp et al. [9] 

proposed a modified slack-based 

measurement (MSBM) that uses the 

minimum values of individual inputs and 
the maximum values of individual outputs 

to adjust the evaluated DMU values to 

make them positive. In the next section, it 
will be shown that the transformed values 

do not meet the definition of efficiency and 

will produce biased results. Efficiency in 
Sharp et al. [9] is the product of the 

arithmetic mean of input factor efficiency 

and the harmonic mean of output factor 

efficiency. Instead of using the product, 
Pastor and Ruiz [1] used the average of 

two returns as the final efficiency and used 

model of Aparicio et al. [10] to find the 
target closest to the evaluated DMU. Lin et 

al. [11] used ranges, rather than original 
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observations, in an SBM model to 
calculate superlative efficiency. Lo and Lu 

[12] defined the efficiency of SBM in a 

complex way for output factors with 

negative data. This form is also biased as 
shown in the next section. Lin and Liu [13] 

proposed a super-efficiency model based 

on the directional distance function in the 
presence of negative data. They defined a 

similar bound to adjust the direction vector 

to make it positive in the extreme 

efficiency measure. 
The fourth category is the directional 

distance function (DDF) measurement. 

Conventional DDF models can handle 
negative data as long as the direction 

vector is positive, so inputs decrease and 

outputs expand as we move toward the 
efficient frontier. Portela et al. [14] 

proposed a range directional model 

(RDM) to measure performance in the 

presence of negative data. To ensure that 
the direction vector is positive, the largest 

value of each output factor and the 

smallest value of each input factor are used 
to adjust the corresponding observations of 

the evaluated DMU. The complement of 

the distance parameter is defined as 
efficiency. As noted in their paper, since 

the efficiency score is unable to 

incorporate all sources of inefficiency, it 

does not reflect the actual performance of 
the DMU. In the next section, it will be 

proven that this model will produce biased 

returns. The idea of Portela et al. [14] was 
used by Tavana et al. [15] to measure the 

efficiency of a two-stage system. Cheng et 

al. [16] proposed a type of radial 

measurement (VRM), which is a specific 
DDF model. 

The DDF measure has the limitation that it 

only shows the degree of inefficiency, 
without being able to provide measures of 

efficiency. While all existing methods for 

handling negative data have merits, they 
also have disadvantages and limitations, 

notably that the economic foundations are 

weak, although mathematically sound. For 

example, most methods allow all outputs 

to have negative data. From an economic 
point of view, this production process 

consumes resources to absorb inventory 

outputs instead of producing outputs. This 

type of production process generally does 
not exist. If there is, it will not be done by 

sane people. Conversely, most methods 

also allow all inputs to have negative data. 
In this case, the production process 

produces inputs at the same time as output. 

This kind of production process cannot 

exist in reality. In this paper, we propose 
an inverse DEA model that considers basic 

production theory to merge when some 

agents have negative observations.  
The objective of the inverse DEA 

approach is to estimate practical output 

levels under increasing inputs and 
maintain the efficiency score in the DEA 

framework. This inverse optimization 

problem can be used as a useful planning 

tool for managerial decisions by providing 
information such as the number of 

resources that should be invested to 

achieve an optimal level of 
competitiveness. In contrast, conventional 

DEA mainly focused on evaluating 

organizational performance. The idea of 
reverse DEA was first introduced by 

Zhang and Cui [17] and Wei et al.  [18] 

then formalized it using multi-objective 

linear programming (MOLP) techniques. 
After that, this problem has been 

investigated in many theoretical and 

applied publications.  
Hadi Venche et al. [19] was introduced a 

new inverse DEA to estimate inputs under 

increasing outputs and maintaining the 

efficiency score. Apart from these, a 
stream of literature has contributed to 

methodological developments such as 

input estimation for resource allocation 
(Zhang, Wang, and Cui [20]), 

intertemporal application. (Jahanshahloo, 

Soleimani-damaneh, and Ghobadi [21]), 
fuzzy inverse DEA (Ghobadi and 

Jahangiri [22]), inverse DEA with 

boundary changes (Lim [23]), undesirable 

outputs or inputs (Eyni, Tohidi, and 
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Mehrabeian [24]), Cost and income 
efficiency (Ghiyasi [25]). In addition to 

demonstrating the method presented in the 

above texts, inverse DEA has been widely 

used to deal with various real-world 
situations. For example: application on 

sustainability accession (Hassanzadeh, 

Yousefi, Saen, and Hosseininia [26]), 
Enterprise merger (Amin et al. [27]; 

Gattoufi et al. [28]). Gattoufi et al. [28] 

applied the inverse DEA approach in 
merger analysis for determining the level 

of inputs and outputs from the merging 

entities. The inverse DEA model of 

Gattoufi et al. [28] determines the 
quantities of inputs that can be saved by a 

merger when the output ordination model 

obtains additional outputs that can be 
produced for a given efficiency target. 

Amin et al. [27] proposed a general model 

for firms’ restructuring. The restructuring 
scenarios, namely consolidation and split. 

Emrouznejad et al. [29] proposed a new 

application of inverse DEA in 

environmental efficiency to determine the 

optimal allocation of 𝐶𝑂2  emissions 

reduction in Chinese manufacturing 

industries. Wegener and Amin [30] 
proposed an inverse DEA model for 

minimizing greenhouse gas emissions in 

the gas and oil industries. Gerami et al. 

[31] proposed a generalized inverse DEA 
model for firm restructuring based on 

value efficiency. 

 It can be said that the main contribution of 
this paper is as follows. In this paper, we 

present three inverse DEA models to 

obtain the optimal level of inputs and 
outputs based on the target efficiency in 

conditions where some of the input and 

output components are negative. In this 

regard, a simple algorithm to determine the 
optimal levels of inputs and outputs from 

the merging entities. We obtain models 

based on the process of merging inputs and 
outputs from two DMUs to create a new 

unit.  

It can be said that the continuation of this 
paper is organized as follows. The second 

section presents the inverse DEA model in 

merging process in presence of positive 

data. The third section present new three 
models in inverse DEA in presence of 

negative data. The fourth section illustrate 

models with a numerical example. The 
fifth section proposed an application in 

banking and at the end we present the 

results of the research. 
 

2. An inverse DEA approach for 

dealing with negative data 

Let 𝑛 DMUs as 𝐷𝑀𝑈𝑗 = (𝑋𝑗, 𝑌𝑗), where 

the input vector 𝑋𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗) ∈  𝑅𝑚 

are used to produce the output vector  

𝑌𝑗 = (𝑦1𝑗, … , 𝑦𝑠𝑗) ∈  𝑅𝑠. In the traditional 

case where all observations are 

nonnegative, the output orientation model 
for calculating efficiency of  

𝐷𝑀𝑈𝑜 = (𝑋𝑜, 𝑌𝑜) is as follows (Banker et 

al. [1]). 

𝜑𝑃∗
= max 𝜑𝑃                      (1) 

𝑆. 𝑡.  ∑ 𝜇𝑗
𝑛
𝑗=1 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑜 , 𝑖 = 1, … , 𝑚,                                          

∑ 𝜇𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 ≥ 𝜑𝑃𝑦𝑟𝑜,      𝑟 = 1, … , 𝑠,                             

∑ 𝜇𝑗
𝑛
𝑗=1 = 1,   𝜇𝑗 ≥ 0,  𝑗 = 1, . . , 𝑛. 

                                                         
Definition 1. 𝐷𝑀𝑈𝑜 = (𝑋𝑜, 𝑌𝑜) is 

efficient DMU if and only if  𝜑𝑃 ∗
= 1, else 

it is inefficient. 

The efficiency score of 𝐷𝑀𝑈𝑜 = (𝑋𝑜, 𝑌𝑜) 

based on the model (1) define as 
1

𝜑𝑃∗.  

Suppose (𝜇𝑗
∗, 𝜑𝑃∗

: 𝑗 = 1, … , 𝑛) be an 

optimal solution of model (1). The target 
points on the production frontier that 

𝐷𝑀𝑈𝑜 = (𝑋𝑜, 𝑌𝑜) uses to calculate 

efficiency obtain as 

(∑ 𝜇𝑗
∗𝑛

𝑗=1 𝑥𝑖𝑗, ∑ 𝜇𝑗
∗𝑛

𝑗=1 𝑦𝑟𝑗). 

In this section, we propose three inverse 
DEA for measuring efficiency in DEA. 

These models obtain the optimal level of 

outputs and based on the target efficiency 
score of the new unit created in the merger 
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process. Let �̅�𝑝  is the target efficiency 

score for the new unit created (the merged 
entity T) in the merger process by selecting 

𝐷𝑀𝑈𝑘 and 𝐷𝑀𝑈ℎ as units to merge in the 

inverse DEA process. 𝜇𝑗  is the intensity 

variable. DMUs k and h are consolidating 

their activities. Let's T show the merged 
entity generated by the consolidation and 

also F is the set of indices of all DMUs 

except k and h. Let 𝛽𝑟𝑘  and 𝛽𝑟ℎ  be the 

levels of the r-th input from the merging 
DMU k and DMU h, that is kept by the 

merged entity T respectively. In the 

conventional case where all observations 
are nonnegative, in this consolidation, we 

proposed the following output oriented 

inverse DEA model. 

 max ∑ 𝛽𝑟
𝑠
𝑟=1                        (2) 

  𝑆. 𝑡.  ∑ 𝜇𝑗𝑥𝑖𝑗𝑗∈𝐹 + 𝜇𝑇(𝑥𝑖𝑘 + 𝑥𝑖ℎ) ≤
(𝑥𝑖𝑘 + 𝑥𝑖ℎ), 𝑖 = 1, … , 𝑚,                            
∑ 𝜇𝑗𝑦𝑟𝑗𝑗∈𝐹 + 𝜇𝑇  (𝑦𝑟𝑘 + 𝑦𝑟ℎ + 𝛽𝑟) ≥

�̅�𝑝(𝑦𝑟𝑘 + 𝑦𝑟ℎ + 𝛽𝑟),   𝑟 = 1, … , 𝑠,   
∑ 𝜇𝑗

𝑛
𝑗=1 = 1,    𝜇𝑗 ≥ 0,  𝑗 = 1, . . , 𝑛, 

𝛽𝑟, free in sign,  𝑟 = 1, … , 𝑠. 
 

To calculate efficiency in the presence of 
negative data, we consider three different 

cases. 

First case: the output values of the 
observed DMU under evaluation and the 

corresponding target output values are on 

the positive efficiency frontier. 

The second case: the observed unit output 
values under negative evaluation and the 

corresponding target output values are on 

the positive efficiency frontier. 
The third case: the output values of the 

observed unit under evaluation and the 

corresponding target are both negative on 
the efficiency frontier. 

Now we present three different models 

to calculate efficiency and perform the 

merger process. These models are 

presented based on which of the above 

states the unit under evaluation has. 
In the following, we present inverse DEA 
models based on efficiency evaluation 

models. 

First, we consider, first case: 
If the DMU to be evaluated belongs to first 

case, in that both the target and observed 

outputs are positive, then we use model (1) 
to measure efficiency. We apply model (2) 

to perform merge process. 

Now, we consider second case, in this 

case, the target output is positive, and the 
observed output is negative, the efficiency 

is negative. We know that a DMU with 

negative observed output has a counterpart 
DMU with positive observed output in the 

first. This DMU has the same efficiency, 

but the opposite sign, as the DMU being 
assessed. The model for calculating the 

efficiency of 𝐷𝑀𝑈𝑜 = (𝑋𝑜, 𝑌𝑜) of second 

case is thus to calculate the efficiency of 

its counterpart DMU, −𝑦𝑟𝑜 , and the 

efficiency of 𝐷𝑀𝑈𝑜 is the negation of that 

of its counterpart DMU. In this case, we 

propose model (3) for evaluation 

efficiency of 𝐷𝑀𝑈𝑜 as follows. 

𝜑𝑁∗
= max 𝜑𝑁             (3) 

 𝑆. 𝑡.  ∑ 𝜇𝑗
𝑛
𝑗=1 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑜 , 𝑖 = 1, … , 𝑚,                                          

∑ 𝜇𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 ≥ 𝜑𝑁(−𝑦𝑟𝑜),𝑟 = 1, … , 𝑠,                              

∑ 𝜇𝑗
𝑛
𝑗=1 = 1,   𝜇𝑗 ≥ 0,  𝑗 = 1, . . , 𝑛.                                                      

Definition 2. 𝐷𝑀𝑈𝑜 = (𝑋𝑜, 𝑌𝑜) is 

efficient DMU if and only if  𝜑𝑁 ∗
= 1, 

else it is inefficient. 

The efficiency score of 𝐷𝑀𝑈𝑜 = (𝑋𝑜, 𝑌𝑜) 

based on the model (3) define as 
1

𝜑𝑃∗.  

Suppose (𝜇𝑗
∗, 𝜑𝑁∗

: 𝑗 = 1, … , 𝑛) be an 

optimal solution of model (3). The target 
points on the production frontier that 

𝐷𝑀𝑈𝑜 = (𝑋𝑜, 𝑌𝑜) uses to calculate 

efficiency obtain as 

(∑ 𝜇𝑗
∗𝑛

𝑗=1 𝑥𝑖𝑗, ∑ 𝜇𝑗
∗𝑛

𝑗=1 𝑦𝑟𝑗). 

Note that the counterpart of a DMU may 

lie outside of the production possibility set. 
Then, in this case, the counterpart DMU is 

super-efficient, and the efficiency score 

corresponding to this DMU is greater than 
one, and the original DMU has an 

efficiency less than minus one. See  

[32-33]. 
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Similarly, first case, let �̅�𝑁  is the target 
efficiency score for the new unit created 

(the merged entity T) in the merger process 

by selecting 𝐷𝑀𝑈𝑘 and 𝐷𝑀𝑈ℎ as units to 

merge in the inverse DEA process in the 

second case. 𝜇𝑗  is the intensity variable. 

DMUs k and h are consolidating their 
activities. Let's T show the merged entity 

generated by the consolidation and also F 

is the set of indices of all DMUs except k 

and h. Let 𝛽𝑟𝑘  and 𝛽𝑟ℎ  be the levels of the 
r-th input from the merging DMU k and 

DMU h, that is kept by the merged entity 

T respectively. In this consolidation for 
second case, we proposed the following 

output oriented inverse DEA model. 

 max ∑ 𝛽𝑟
𝑠
𝑟=1                        (4) 

  𝑆. 𝑡.  ∑ 𝜇𝑗𝑥𝑖𝑗𝑗∈𝐹 + 𝜇𝑇(𝑥𝑖𝑘 + 𝑥𝑖ℎ) ≤
(𝑥𝑖𝑘 + 𝑥𝑖ℎ), 𝑖 = 1, … , 𝑚,                            
∑ 𝜇𝑗𝑦𝑟𝑗𝑗∈𝐹 + 𝜇𝑇  (𝑦𝑟𝑘 + 𝑦𝑟ℎ + 𝛽𝑟) ≥

�̅�𝑁(𝑦𝑟𝑘 + 𝑦𝑟ℎ + 𝛽𝑟),   𝑟 = 1, … , 𝑠,            
∑ 𝜇𝑗

𝑛
𝑗=1 = 1,    𝜇𝑗 ≥ 0,  𝑗 = 1, . . , 𝑛, 

𝛽𝑟, free in sign,  𝑟 = 1, … , 𝑠. 

Finally, we consider third case, in this case 

both the target and observed outputs of the 

DMU to be assessed are negative, the 

efficiency score is the ratio of the target 
output to the observed output. The target 

point is the contraction point of the 

assessed DMU on the production frontier. 
That is, efficiency is the minimum 

contraction of parameter 𝜑𝑁𝐷 that keeps 

the point (𝑋𝑜, 𝜑𝑁𝐷𝑌𝑜) in the production 

possibility set. The model for calculating 
efficiency in this case is as follows. 

𝜑𝑁𝐷 ∗
= min 𝜑𝑁𝐷           (5) 

𝑆. 𝑡.  ∑ 𝜇𝑗
𝑛
𝑗=1 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑜 , 𝑖 = 1, … , 𝑚,                                          

∑ 𝜇𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 ≥ 𝜑𝑁𝐷𝑦𝑟𝑜,      𝑟 = 1, … , 𝑠,                                         

∑ 𝜇𝑗
𝑛
𝑗=1 = 1,   𝜇𝑗 ≥ 0,  𝑗 = 1, . . , 𝑛.                                                         

In this case, the target output namely 
∑ 𝜇𝑗

𝑛
𝑗=1 𝑦𝑟𝑗 and the observed output 

namely 𝑦𝑟𝑜  are negative, the constraint of 

∑ 𝜇𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 ≥ 𝜑𝑁𝐷 𝑦𝑟𝑜,      𝑟 = 1, … , 𝑠, 

implies that 𝜑𝑁𝐷 positive. Also, the 

constraint of ∑ 𝜇𝑗
𝑛
𝑗=1 = 1,   𝜇𝑗 ≥ 0,  𝑗 =

1, . . , 𝑛, implies that the target output 
∑ 𝜇𝑗

𝑛
𝑗=1 𝑦𝑟𝑗 is finite. Therefore, the 

minimum value of  
∑ 𝜇𝑗

𝑛
𝑗=1 𝑦𝑟𝑗

𝑦𝑟𝑜
= 𝜑𝑁𝐷 ,      

𝑟 = 1, … , 𝑠, occurs for an output with the 

slack output equal to zero, which is also 

finite. Then, we conclude that efficiency 

score is a positive finite value in the third 
case. See [34-35]. 

Similarly, first, and second case, let �̅�𝑁𝐷  is 

the target efficiency score for the new unit 
created (the merged entity T) in the merger 

process by selecting 𝐷𝑀𝑈𝑘 and 𝐷𝑀𝑈ℎ as 

units to merge in the inverse DEA process 

in the third case. DMUs k and h are 
consolidating their activities.  

Let's T show the merged entity generated 

by the consolidation and also F is the set of 
indices of all DMUs except k and h. Let 

𝛽𝑟𝑘  and 𝛽𝑟ℎ  be the levels of the r-th input 

from the merging DMU k and DMU h, that 

is kept by the merged entity T respectively. 
In this consolidation for third case, we 

proposed the following output oriented 

inverse DEA model. 

 max ∑ 𝛽𝑟
𝑠
𝑟=1             (6) 

  𝑆. 𝑡.  ∑ 𝜇𝑗𝑥𝑖𝑗𝑗∈𝐹 + 𝜇𝑇(𝑥𝑖𝑘 + 𝑥𝑖ℎ) ≤
(𝑥𝑖𝑘 + 𝑥𝑖ℎ), 𝑖 = 1, … , 𝑚,                            
∑ 𝜇𝑗𝑦𝑟𝑗𝑗∈𝐹 + 𝜇𝑇  (𝑦𝑟𝑘 + 𝑦𝑟ℎ + 𝛽𝑟) ≥

�̅�𝑁𝐷(𝑦𝑟𝑘 + 𝑦𝑟ℎ + 𝛽𝑟),   𝑟 = 1, … , 𝑠,            
∑ 𝜇𝑗

𝑛
𝑗=1 = 1,    𝜇𝑗 ≥ 0,  𝑗 = 1, . . , 𝑛, 

𝛽𝑟, free in sign,  𝑟 = 1, … , 𝑠. 
To select the appropriate model to 

calculate efficiency and perform merger 
process, one must know the signs of the 

target and observed outputs of the DMU to 

be assessed. When there are multiple 

outputs, the outputs of a DMU may not 
have the same sign, which is also the case 

for the target outputs. In this case, all the 

observed outputs and target outputs are 
aggregated, respectively, to result in one 

value with one sign for classification. This 

can be conducted in two steps. First, we 
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can use of additive model of Charnes et al. 
[32] to find a tentative target point as 

follows. 

 

 max ∑ 𝑠𝑖
−𝑚

𝑖=1 + ∑ 𝑠𝑟
+𝑠

𝑟=1          (7) 

𝑆. 𝑡. ∑ 𝜇𝑗
𝑛
𝑗=1 𝑥𝑖𝑗 + 𝑠𝑖

− = 𝑥𝑖𝑜,𝑖 = 1, … , 𝑚,                                          

∑ 𝜇𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 − 𝑠𝑟

+ = 𝜑𝑁𝐷𝑦𝑟𝑜,𝑟 = 1, … , 𝑠, 

∑ 𝜇𝑗
𝑛
𝑗=1 = 1,   𝜇𝑗 ≥ 0,  𝑗 = 1, . . , 𝑛,  

𝑠𝑖
− ≥ 0,𝑠𝑟

+ ≥ 0,𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠.          

where (∑ 𝜇𝑗
𝑛
𝑗=1 𝑥𝑖𝑗, ∑ 𝜇𝑗

𝑛
𝑗=1 𝑦𝑟𝑗  ) is the 

target point. We use the dual of this model 

to aggregate the target outputs and the 

observed outputs, respectively as follows. 

 min  ∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑜 + 𝑢𝑜 − ∑ 𝑢𝑟

𝑠
𝑟=1 𝑦𝑟𝑜 

 𝑠. 𝑡.   ∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑗 + 𝑢𝑜 −

∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑗 ≥ 0,   𝑗 = 1, … , 𝑛,        (8)       

𝑣𝑖 ≥ 1 ,  𝑢𝑟 ≥ 1,  𝑖 = 1, … , 𝑚,   𝑟 =
1, … , 𝑠. 

Suppose, (𝑢𝑟
∗ , 𝑣𝑖

∗, 𝑢𝑜
∗ : 𝑖 = 1, … , 𝑚, 𝑟 =

1, … , 𝑠 ) is an optimal solution of model 

(8).  In this case, (∑  𝑣𝑖
∗𝑚

𝑖=1 𝑥𝑖𝑜 + 𝑢𝑜
∗  ) and 

(∑ 𝑢𝑟
∗𝑠

𝑟=1 𝑦𝑟𝑜) show the aggregate target 

and aggregate observed outputs, 

respectively. See [36]. 

Based on their signs, appropriate models 
are applied to calculate efficiency. Models 

(1), (3), and (5) are solved for cases first, 

second, and third, respectively, to measure 

the efficiency for 𝐷𝑀𝑈𝑜 . To perform the 

merger process, we can solve models (2), 

(4), and (6) respectively. 

In the event that, there may exist multiple 
solutions. The DMUs in first case should 

be investigated to check if they can also be 

placed into third case to obtain a higher 
efficiency score if possible. We can look 

into this by solving model (8) again, by 

adding the constraints ∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑗 + 𝑢𝑜 ≤

0, ∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑜 ≤ 0. 

It is also possible model (5) have a higher 

efficiency.  To review this issue, the 
DMUs in third case should be investigated 

to check if they can also be placed into first 

case, we must solve model (8) again, by 

adding the constraints ∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑗 + 𝑢𝑜 ≥

0, ∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑜 ≥ 0.  

The DMUs for second case should be 

investigated to check if they can also be 
placed into first, and third case to obtain a 

higher efficiency score if possible. For all 

three cases, the highest efficiency score 

measured from different cases is the final 
efficiency score of the evaluated DMU. In 

the following, we will solve the 

corresponding model for the merger 
process, based on which model obtains the 

maximum efficiency score of the unit 

under evaluation. 
 

3. Case study 

In this section, we use of a data in Sharp et 

al. [9] for illustrating the proposed inverse 

DEA model in this paper in merger 
process. Each DMUs consume two inputs 

for producing three outputs that have been 

brought in Table 1. The data set are of the 
notional effluent processing system. 

DMUs have one positive input including 

cost, one non-positive input including 

effluent, one positive output including 
saleable output and two non-positive 

outputs including methane and CO2.  

At first, we solve model (8) to tentatively 
determine the model to be applied to 

measure the efficiency score of the DMUs. 

The objective value of model (8) is shown 
in the second column of Table (2). In the 

event that the objective value is zero, then 

the corresponding DMU is efficient; 

otherwise, it is inefficient. The third and 
fourth columns show the values of the 

aggregate target and aggregate observed 

outputs, respectively. 
We have three cases for the aggregate 

target and aggregate observed outputs 

values: Both the aggregate target and 

aggregate observed outputs are positive, in 
this case model (1) is used to measure 

efficiency; the aggregate target is positive, 

and aggregate observed outputs is 
negative, in which case model (3) is used 

to measure efficiency score, and both the 

aggregate target and aggregate observed 
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outputs are negative, in this case model (5) 
is used to measure efficiency score. Of the 

thirteen DMUs, DMUs 3, 4, 6, 7, 9, 10, 11 

and 13 belong to first case; DMUs 1, 2, 5, 

and 12 belongs to second case, and DMU 
5 is only DMU belong to third case. 

Column five shows the model to be apply 

for each DMU to measure efficiency score.  
Similarly, we have three cases for the 

aggregate target and aggregate observed 

outputs values: Both the aggregate target 
and aggregate observed outputs are 

positive, in this case model (2) is used to 

performing the merger process in the 
inverse DEA; the aggregate target is 

positive, and aggregate observed outputs is 

negative, in which case model (4) is used 

to performing the merger process in the 
inverse DEA, and both the aggregate target 

and aggregate observed outputs are 

negative, in this case model (6) is used to 
performing the merger process in  inverse 

DEA. The six column of Table (2) show 

the model to be use for each DMU to 
performing the merger process. 

Table 1:  Input–output data. (Sharp et al. [9]) 
DMU Input1 Input2 Output1 Output2 Output3 

1 1.03 -0.05 0.56 -0.09 -0.44 

2 1.75 -0.17 0.74 -0.24 -0.31 

3 1.44 -0.56 1.37 -0.35 -0.21 

4 10.8 -0.22 5.61 -0.98 -3.79 

5 1.3 -0.07 0.49 -1.08 -0.34 

6 1.98 -0.1 1.61 -0.44 -0.34 

7 0.97 -0.17 0.82 -0.08 -0.43 

8 9.82 -2.32 5.61 -1.42 -1.94 

9 1.59 0 0.52 0 -0.37 

10 5.96 -0.15 2.14 -0.52 -0.18 

11 1.29 -0.11 0.57 0 -0.24 

12 2.38 -0.25 0.57 -0.67 -0.43 

13 10.3 -0.16 9.56 -0.58 0 

 
 

Table 2:  The results of models for DMUs 

DMU Objective 
Aggregate 

target 

Aggregate 

observed outputs 
DEA model Efficiency 

Inverse DEA 

model 

1 0.4756 0.3656 -0.11 Model (3) 0.8963 Model (4) 

2 1.1489 0.9656 -0.1833 Model (3) 0.7005 Model (4) 

3 0 0.2656 0.2656 Model (1) 1 Model (2) 

4 9.1057 10.6923 1.5866 Model (1) 0.5936 Model (2) 

5 1.9649 1.0349 -0.93 Model (3) 0.7 Model (4) 

6 0.9481 1.9923 1.0443 Model (1) 0.8613 Model (2) 

7 0 0.1856 0.1856 Model (1) 1 Model (2) 

8 0 -36.8533 -36.8533 Model (5) 1 Model (6) 

9 0.59 0.74 0.15 Model (1) 0.9123 Model (2) 

10 4.1443 4.65 0.5057 Model (1) 0.3857 Model (2) 

11 0 0.33 0.33 Model (1) 1 Model (2) 

12 2.59 2.06 -0.53 Model (3) 0.4496 Model (4) 

13 0 8.98 8.98 Model (1) 1 Model (2) 
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Table 3: The results of inverse DEA process. 

Merge DMU 
Target 

Efficiency 
𝛽

1
 𝛽

2
 𝛽

3
 

𝛽
1

+ 𝑦
1𝑘

+ 𝑦
1ℎ

 

𝛽
2

+ 𝑦
2𝑘

+ 𝑦
2ℎ

 

𝛽
3

+ 𝑦
3𝑘

+ 𝑦
3ℎ

 

𝐷𝑀𝑈𝑘 = 𝐷𝑀𝑈3, 

𝐷𝑀𝑈ℎ = 𝐷𝑀𝑈4 
0.8 1.7764 0.1518 1.6520 10.5328 -1.0264 -0.6961 

𝐷𝑀𝑈𝑘 = 𝐷𝑀𝑈3, 

𝐷𝑀𝑈ℎ = 𝐷𝑀𝑈4 
0.9 1.1912 0.2088 1.6906 9.3624 -0.9123 -0.6187 

𝐷𝑀𝑈𝑘 = 𝐷𝑀𝑈3, 

𝐷𝑀𝑈ℎ = 𝐷𝑀𝑈4 
1 0.7231 0.2544 1.7216 8.4262 -0.8211 -0.5569 

𝐷𝑀𝑈𝑘 = 𝐷𝑀𝑈9, 

𝐷𝑀𝑈ℎ = 𝐷𝑀𝑈10 
0.8 3.0562 -0.0579 0.2343 8.7724 -0.6358 -0.0815 

𝐷𝑀𝑈𝑘 = 𝐷𝑀𝑈9, 

𝐷𝑀𝑈ℎ = 𝐷𝑀𝑈10 
0.9 2.5689 -0.0226 0.2388 7.7977 -0.5651 -0.0724 

𝐷𝑀𝑈𝑘 = 𝐷𝑀𝑈9, 

𝐷𝑀𝑈ℎ = 𝐷𝑀𝑈10 
1 2.1790 0.0057 0.2424 7.0180 -0.5086 -0.0652 

𝐷𝑀𝑈𝑘 = 𝐷𝑀𝑈1, 

𝐷𝑀𝑈ℎ = 𝐷𝑀𝑈2 
0.8 0.9804 -0.0755 0.2636 3.2608 -0.4810 -0.2228 

𝐷𝑀𝑈𝑘 = 𝐷𝑀𝑈1, 

𝐷𝑀𝑈ℎ = 𝐷𝑀𝑈2 
0.9 0.7993 -0.0488 0.2760 2.8985 -0.4275 -0.1980 

𝐷𝑀𝑈𝑘 = 𝐷𝑀𝑈1, 

𝐷𝑀𝑈ℎ = 𝐷𝑀𝑈2 
1 0.6543 -0.0274 0.2859 2.6087 -0.3848 -0.1782 

𝐷𝑀𝑈𝑘 = 𝐷𝑀𝑈5, 

𝐷𝑀𝑈ℎ = 𝐷𝑀𝑈8 
0.8 2.0333 -0.8333 -0.7600 10.1667 -4.1667 -3.8000 

𝐷𝑀𝑈𝑘 = 𝐷𝑀𝑈5, 

𝐷𝑀𝑈ℎ = 𝐷𝑀𝑈8 
0.9 0.7625 -0.3125 -0.2850 7.6250 -3.1250 -2.8500 

𝐷𝑀𝑈𝑘 = 𝐷𝑀𝑈5, 

𝐷𝑀𝑈ℎ = 𝐷𝑀𝑈8 
1 0 0 0 6.1 -2.5 -2.28 

 
 

We show the merged DMU by T. In the 

output-orientation, model keeps the 
amount of output of both DMUs, that is 

𝑥𝑇 = 𝑥𝑘 + 𝑥ℎ , and the models (2), (4), (6) 

find the maximum amount of the outputs 

of 𝐷𝑀𝑈𝑘 and 𝐷𝑀𝑈ℎ in order to reach the 

desired given efficiency target. Table (3) 

shows the levels of the outputs from the 

merging DMU k and DMU h, for 
predetermined target efficiency score of 

DMU T.  We present the results for 

different selection of 𝐷𝑀𝑈𝑘 and 𝐷𝑀𝑈ℎ as 
units to merge in the inverse DEA process 

and different target efficiency score in 

Table (3). 

 

4. Conclusion 

In traditional DEA models to measure 

efficiency, we assume that the data are 

non-negative. But, in the real world, we 
come across many cases where the data are 

negative. Existing methods for dealing 

with negative data have advantages. They 

also have disadvantages and limitations. In 
this paper, we first examined the 

performance evaluation models when the 

inputs and outputs have negative values. 
We showed that we can evaluate 



IJDEA Vol.4, No.2, (2016).737-749  

Gerami/ IJDEA Vol.12, No.2, (2024), 30-42 

 

39 
 

efficiency models based on whether the 
total target output and the total observed 

output have positive or negative values, we 

presented three different models to 

evaluate the efficiency of DMUs. These 
three cases are used to measure efficiency 

as long as total target output and total 

observed output are both positive, the first 
is positive and the second is negative and 

both are negative. Also, we explained how 

to use each of these models if these models 
have alternative optimal solutions. In the 

following, we presented inverse DEA 

models to perform the merger process of 

DMUs corresponding to each of the three 
modes. The presented models obtain the 

new level of the new unit created in the 

merger process to reach the target 
efficiency level. As future work, we can 

develop the presented models in other 

technologies, such as semi additive 
technology and FDH. We can also develop 

the proposed approach in this paper for 

other data structures such as two-stage 

network. 
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