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Abstract
This article presents an investigation of dynamical behaviors of perfect and defected fixed–fixed single-walled carbon nano-
tube (SWCNTs) model as a beam structures. The fundamental frequencies and modal participation factors for fixed–fixed-
supported SWCTS are considered through this analysis for the first time. Energy-equivalent model is implemented to find 
a relationship between the energy stored in atomic chemical bonding and potential energy of mechanical beam structure. 
Nanotube software modeler is exploited to create a geometrical structural of SWCNTs by defining its length of nanotube, 
bond distance between two atoms, and chiral angle. The tube of SWCNTs are simulated as fixed–fixed-supported structure 
at both ends, while bonding between each two atoms is modeled by 3D beam element with circular cross section. Paramet-
ric results are illustrated to display the effects of vacancy on activation and deactivation of vibration modes, fundamental 
frequencies, and modal participation factors of SWCNTs.

Keywords Free vibrations · Modal participation factors · Energy-equivalent model · Defected SWCNTs · Finite-element 
analysis · ANSYS mechanical APDL

Introduction

From 1991 till now, Carbon nanotubes (CNTs), discovered 
by Sumio Ijima, have huge amount of scientific research 
from numerous fields (i.e.; material science, mechanical 
science, chemistry, and physics sciences) and real applica-
tions (i.e.; nano-electronics, nano-switch, solar cell, medi-
cal tools, and nano-devices). CNT is the strongest material 
known until now, with astonishing mechanical properties 
(Eltaher et al. 2016).

To comprehend mechanical behaviors of CNTs, the 
experimental and theoretical studies (i.e.; atomistic mod-
eling, molecular simulation, and advanced continuum 
mechanics) are exploited. Krishnan et al. (1998) assessed the 
modulus of elasticity of SWCNTs using TEM. Salvetat et al. 
(1999) exploited AFM to evaluate shear and elastic moduli 
of SWNT ropes, which are in the order of 1 GPa and 1 TPa, 
respectively. They found that low inter-tube shear effect con-
trols the flexural deformation of SWNTs. Charlier (2002) 
investigated, theoretically, the effects of different types of 
imperfections, such as vacancies, or dopant on the electronic 
properties of CNTs. He concluded that vacancies drastically 
modify the electronic behaviors and characteristics of those 
nano-systems. Mielke et al. (2004) exploited the quantum 
mechanical theory and Tersoff–Brenner potential of molecu-
lar mechanics (MM) to explore the effects of vacancies and 
holes defects in the fracture of SWCNTs. Ma et al. (2004) 
studied magnetic behaviors of vacancies in graphene and 
SWCNTs using spin-polarized density functional theory.

Wang and Varadan (2006) investigated the wave char-
acteristics in CNTs, which was proposed from the discrete 
atomic nature, via beam theories. They recommended the 
Timoshenko beam model to analyze a wave transition in 
SWCNTs in case of terahertz frequency range. Soltani 
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et al. (2012) considered transverse vibrations of light axial 
waviness of SWCNT. They considered tube as a thin and 
thick beam, and so, they modeled it by Euler–Bernoulli and 
Timoshenko theories. Gajbhiye and Singh (2015) proposed 
different techniques including a potential of Tersoff–Brenner 
to study the vibration behaviors of open-end and capped-
end of SWCNTs. They concluded that zigzag and armchair 
structures display akin vibration features at lower vibration 
modes, and different dynamical features at very high reso-
nant frequencies. Zemri et al. (2015) exploited nonlocal 
Eringen and higher order shear beam theory to study the 
mechanical behaviors of FG nanobeams. Chaht et al. (2015) 
addressed static bending and static stability buckling behav-
iors of nonlocal FG nano-scale beams considering the effect 
of thickness stretching. Belkorissat et al. (2015) developed 
a new hyperbolic plate theory to study the vibrations of FG 
nonlocal Nano-scale plate. Eltaher and Agwa (2016) studied 
theoretically the vibration behaviors of SWCNTs carrying 
a concentrated mass under pretension. The study presented 
that the SWCNT resonator can sense a very minute mass 
weighting  10−1 zeptogram. Eltaher et al. (2016) examined 
material and size dependencies’ effects on nonlinear bend-
ing behavior of CNTs by energy-equivalent model. Ahouel 
et al. (2016) exploited both nonlocal Eringen and trigono-
metric shear theory to study mechanical behaviors of FG 
nonlocal Eringen nanobeams as well as neutral axis effects. 
Tahouneh et al. (2016) investigated the material properties 
of nanocomposites reinforced by CNT arrays using the rep-
resentative volume element (RVE). Agwa and Eltaher (2016) 
developed the modified continuum approach to examine the 
impacts of surface energy and surface tension on flexural 
vibrations frequencies of nano-mass sensor using carbyne 
materials. Bellifa et al. (2017) suggested zero shear theory 
to investigate the nonlinear postbuckling of nano-scale 
Eringen beams considered the axial displacement. Boua-
fia et al. (2017) examined the size and stretching effects on 
static transverse bending and flexural vibration of FG non-
local nano-scale beams implemented by the quasi-3D shear 
theory. Bounouara et al. (2016), Khetir et al. (2017), and 
Besseghier et al. (2017) employed zero shear and refined 
trigonometric shear theories to analyze buckling and vibra-
tion of FG nonlocal Eringen nano-plates attached with an 
elastic media. Mouffoki et al. (2017) presented the vibration 
behaviors of nonlocal hygro-thermal nanobeams modeled by 
two-unknown trigonometric shear deformation beam theory. 
Karami et al. (2017) studied tri-axial magnetic effects on 
wave propagations of anisotropic nonlocal-strain-gradient 
nano-plates.

Yazid et al. (2018) exploited two-variable refined plate 
to investigate static buckling of graphene orthotropic nano-
plates rested on elastic medium. Eltaher et al. (2018a, b) 
exploited energy-equivalent model and modified coupled 
stress to discover vibrational characteristics of SWCNTs 

modeled as a beam structure. The impact of size-parame-
ter, chiral vector translation indices, and orientation on the 
vibration behaviors are illustrated. Mokhtar et al. (2018) 
and Kadari et al. (2018) analyzed the buckling behavior of 
graphene sheet modeled by nonlocal Eringen differential 
form and simple shear plate theory. Bouadi et al. (2018) 
investigated critical buckling forces of graphene sheets that 
modeled by nonlocal higher order shear deformation theory. 
Esbati and Irani (2018) exploited stochastic finite-element 
methods to evaluate structural reliability and probabilistic 
fracture properties of CNTs. Hamza-Cherif et al. (2018) 
illustrated thermal effects on vibration of SWCNT nano-
beam surrounded by an elastic foundation. Shahabodini et al. 
(2018) developed a numerical multiscale analysis to study 
the vibrations of SWCNTs modeling its kinematics mem-
brane by Cauchy–Born rule. Bianco et al. (2018) developed 
the complete formulation of linear stiffness matrices, which 
is practiced in beam theory under constant and/or linear 
loading distribution in the longitudinal direction. Karami 
et al. (2018a, b) exploited a nonlocal-strain-gradient on 
higher order shell structural model to predict the mechani-
cal characteristics and waves of anisotropic nano-shells. 
Vila et al. (2018) deliberated the effects of axial and trans-
verse coupling on nonlinear vibrations of one-dimensional 
solid structures using inertia gradient continuum model. 
Ahmadabadi et al. (2018) illustrated the thermal depend-
ence of zigzag SWCNT diameter on the state of its density. 
Bakhadda et al. (2018) analytically examined bending and 
vibration response of four types of distributions of uniax-
ial-aligned CNT-reinforced plates rested on the Pasternak 
foundation by hyperbolic shear theory. Eltaher et al. (2019) 
exploited equivalent-continuum mechanics approach and 
finite-element method to characterize the mechanical behav-
iors of SWCNTs. Eltaher et al. (2019) studied the nonlinear 
postbuckling behaviors of curved carbon nanotubes using 
energy-equivalent model and Euler–Bernoulli beam kin-
ematic relations.

Nevertheless, CNTs are, perhaps, not like completely per-
fect structures as they are once supposed to be. Imperfections 
like vacancies and/or dopant extremely change the mechanical, 
electrical, and chemical properties of CNTs. Most of the previ-
ous studies considered the defects effect using only molecular 
simulations. The current paper propose a modified continuum 
mechanics model with finite-element simulation to present 
the effects of vacancies on the vibration behaviors and modal 
participation factors of fixed–fixed SWNCT. Sound effects of 
vacancy on deactivation and activation of mode shapes are pre-
sented for the first time for fixed–fixed-supported CNT struc-
tures. Coupled modes and uncoupled modes are also investi-
gated and presented. The atomic bond between adjacent atoms 
is modeled as beam element. The energy-equivalent model is 
recommended to extract the equivalent mechanical energy of 
the structure with that in the chemical bond between atoms. 
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Nanotube modeler is exploited to create a geometrical struc-
ture of CNTs to be impeded into the finite-element model to 
extract the modal participation factors and the vibration behav-
iors of these structures. Different orientation of CNTs, such 
as armchair and zigzag, are studied. Effect of tube length is 
also presented.

Geometrical structural of SWCNTs

Carbon nanotube, which is layer of graphene sheet wrapped 
into cylindrical shape with a diameter about 1 nm and a length 
up to many micrometers, is controlled by chiral angle orienta-
tion and tube diameter. The vector used to depict a chiral angle 
is as follows:

in which a⃗1 and a⃗2 are basis vectors. An integer pair (n,m) is 
used to specify structure orientation of CNTs, as presented 
in Fig. 1. The lattice basis vectors in Cartesian coordinates 
can be portrayed by the following:

where a =
√

3ac−c, is the lattice constant, and ac−c = 1.42 Å 
is the bond length. In case of n = m, the nanotube is called 
armchair structure. If m is equal to zero, SWCNT is called 

(1)C⃗h = na⃗1 + ma⃗2,
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a zigzag structure. Elsewhere, the nanotube is donated as 
chiral structure. Figure 2 shows three possible orientations 
of CNTs structure. Figure 2a represents the orientation of 
graphene sheets before rolling, whereas Fig. 2b shows the 
structure of grapheme sheet after rolling to NTs.

The relationships among nanotube diameter (dnt) and lat-
tice vectors basis can be represented by the following:

The relationships between chiral angle (�ch) and lattice 
vectors basis can be described as follows:

In case of zigzag and armchair orientations, the diameter 
of nanotube can be calculated by dt =

√

3na

�
 , and dt =

3na

�
 , 

respectively. Note the chiral angle in zigzag = 0, while the 
chiral angle in the armchair = 30. This is the maximum 
angle, after which the NT structure begins to repeat its 
orientation.

Chemical energies vs mechanical energies

To get a relationship between microscopic chemical energies 
of CNTs and their corresponding macroscopic mechanical 
energies, covalent bonding among carbon’s atoms is rep-
resented by a force filed. The force filed is represented by 
a potential energy of chemical bond Uch as follows (Rappé 
et al. 1992):

where UL is bond-stretching energy, U� is angle variation 
energy, UT is torsion energy, and U� is inversion energy.

When SWCNTs exposed to tension loads and transverse 
bending load in the 2D plane analysis, the most substantial 
energies included are bond-stretching and angle energies, 
and others can be neglected. Consequently, Eq. (5) can be 
reduced to the following (Wu et al. 2006; Shokrieh and 
Rafiee 2010; Eltaher et al. 2019):

where Ki is the stretching spring parameter, dRi is the ele-
ment of stretching, Ci is the rotational spring parameter, d�i 
is the element of rotation angle, and i is corresponding to 
the bond number.

By assuming that, the chemical covalent bond can be rep-
resented by beam structure, and based on continuum mechan-
ics, the total energy stored in beam element can be composed 

(3)dnt = a
√

n2 + m2 + nm.

(4)�ch = cos−1

�

2n + m

2
√

n2 + m2 + nm

�

.

(5)Uch = UL + U� + UT + U�,

(6)Uch = UL + U� =
1

2

∑

i

Ki(dRi)
2 +

1

2

∑

j

Ci(d�i)
2,

Fig. 1  Hexagonal lattice of graphene sheet and its orientations and 
basis vectors
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mainly from tension and bending deformations. Hence, the 
total mechanical energy of a beam is depicted by the following:

where E corresponds to Young’s modulus, L is the beam 
length, A is the beam cross-sectional area, I is the beam area 

(7)Um = UT + Ub =
1

2

EA

L
(ΔL)2 +

1

2

EI

L
(2�)2,

moment, ΔL is the stretching length, and 2� is the rotation 
angle due to bending moment. By equating chemical energy 
in single atom–atom bond described in Eq. (6) with Eq. (7) 
of total energy of the beam, it can be concluded that:

(8)Ki =
EA

L
and Ci =

EI

L
.

Fig. 2  Three possible structure orientation of SWCNTs



155International Journal of Advanced Structural Engineering (2019) 11:151–163 

1 3

Since the bond is circular cross-sectional, the geometrical 
parameters of the bond can be calculated by the following:

Substitute Eq. (9) into Eq. (8), the bonding diameter ( d ) 
and E modulus of equivalent beam element are as follows:

Dimension modification

In general, finite-element analysis of beam structure is 
insensitive to geometrical scale of nanometer in its analysis. 
Therefore, some adaptations from nano-scale to macro-scale 
units must be prepared before entering the input data into the 
finite-element model. Therefore, the following transforma-
tions have been implemented (Table 1).

Numerical results

Validation

First, the main core of this section is to confirm that the 
methodology of the present study is on the right track. 
The methodology in Gajbhiye and Singh (2015) repre-
sents carbon nanotubes as beam element and mass ele-
ment using the ANSYS program. The same methodology 
is used in the current work without using mass elements. 
Fixed–fixed boundary conditions for CNT (5, 5) are 

(9)A =
�d2

4
and I =

�d4

64
.

(10)d = 4

√

Ci

Ki

and E =
(Ki)

2

4�Ci

.

proposed. The material properties of CNTs are Young’s 
modulus E = 21.607 × 1012 Pa, Poisson ratio υ = 0.28, and 
density = 1.9 kg/m3. The geometric properties are: L = 69.29 
Å, d = 0.716 Å, t = 3.4 Å, and ac–c = 0.145 nm = 1.45 Å. as 
represented by Gajbhiye and Singh (2015).

The first seven fundamental frequencies of armchair 
nanotube (5, 5) are demonstrated in Table 2. As observed, 
the current results do not agree with that obtained by Gajb-
hiye and Singh (2015) with a maximum difference of 12.5% 
at fifth mode. This difference occurs, because the current 
model uses 3D beam element with uniformly distributed 
mass; however, Gajbhiye and Singh (2015) assumed the 
CNT as elastic beam with lumped carbon masses at tits two 
ends.

Effect of defect position of SWCNT

This section is devoted to illustrating the effect of defect 
position on fundamental frequencies and modal participa-
tion factor in case of zigzag and armchair orientations. Two 
defected positions are proposed, which are at one of the fixed 
ends titled with side defect and at the middle of the tube 
titled with middle defect, as shown in Fig. 3. A zigzag (10, 
0) and armchair (10, 10) orientations are supported from 
both sides for fixed–fixed configuration. Figure 3 illustrates 
the prefect and imperfect (defected) configurations of CNT 
in case of zigzag and armchair orientations.

3D beam element is exploited to describe and simulate 
the C–C bond, with the following geometrical properties 
d = 0.716 Å, t = 3.4 Å, ac–c = 0.145 nm = 1.45 Å, and 0.34 nm 
wall thickness, (Rappé et al. 1992) and the following mate-
rial properties: E = 5.49E12 Pa, υ = 0.3, and density = 1.7 kg/
m3. The overall length of SWCNT is 50 Å.

(a) Zigzag-capped SWCNT (10, 0)

Table 3 illustrates the effect of defect location on the first 
ten natural frequencies and the modal participation factors 
for Zigzag (10, 0) SWCNTs. It is worth noting that the first 
and second natural frequencies are equal in their values, but 
have different modal participation in case of prefect tube 
(un-defected). The defected conditions show significant 
changes in the first and second frequencies and their values 
become unequal. The modal participation is affected in case 
of side defect; however, the middle defect has no effect on 

Table 1  Modified dimensions for the finite-element model software

Division Units Original 
dimensions

Finite-
element 
dimensions

Length m L 1010 L
Density kg/m3 ρ 10− 4 ρ
Young’s modulus Pascal E E
Shear modulus Pascal G G
Frequency Hertz f 10−8 f

Table 2  First seven frequency 
values f (THZ) for capped 
CNT (5, 5) with CNT length 
L = 69.29 Å

Frequency no. 1 2 3 4 5 6 7

Gajbhiye and Singh 
(2015)

0.046 0.046 0.261 0.261 0.347 0.597 0.646

Present 0.042 0.042 0.248 0.248 0.390 0.619 0.645
Difference (%) 9.916 9.896 4.879 4.864 12.508 3.605 0.155
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the first two mode shapes. The third frequency increases 
from 610.80 to 647.22 GHz as defect occurs in the middle 
and decreases to 606.38 in case of side defect. However, 
their modal participation is not affected by the defect. As 
shown in Table 3, the middle defect is more significant on 
the fundamental frequencies than the side defect, which has 
the same value of natural frequencies at higher level with 
perfect tube.

The modal participation factor for the perfect and the 
two defected tubes are shown in Fig. 4. In case of free 

defect zigzag SWCNTs, the modal participation with dis-
placement in X-DIR (UX) is dominant in both second and 
third modes. The modal participation with displacement in 
Y-DIR (UY) is dominant in both first and seventh modes. 
However, the modal participation with displacement in 
Z-DIR (UZ) is mostly dominant in sixth mode. The modal 
participation with rotational around x-axis (RX), y-axis 
(RY), and z-axis (RZ) are dominant in the first, second, 
and third modes, respectively.

Fig. 3  Perfect, side defect, and 
middle defect (vacancy) of 
SWCNT with 50 Å length

Table 3  The first ten frequency values f (GHz) for zigzag CNT (10, 0) with CNT length L = 50 Å

1 2 3 4 5 6 7 8 9 10

Mode of vibration UY&RX UX&RY RZ RX RY UZ UY UX Weak Weak
Perfect 304.63 304.63 610.80 669.68 669.68 1036.00 1101.20 1101.20 1223.50 1226.10
Mode of vibration UY&RX UX&RY RZ RZ RX UZ Weak Weak Weak Weak
With middle defect 308.63 325.68 647.22 661.78 707.42 1066.00 1086.90 1134.30 1155.30 1196.20
Mode of vibration UX&RY UY&RX RZ RX RY UZ UX Weak Weak Weak
With side defect 300.39 318.74 606.38 696.06 714.57 1006.30 1137.90 1153.50 1205.90 1225.00
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The modal participation factors in cases of middle defect 
are the same as in case of non-defected cases, except in the 
RZ direction. The modal participation with rotational in RZ 
direction changes from third mode in case of non-defected 
tube to the third and fourth modes in case of middle defected 
tube, as shown in Fig. 5. The side defect tends to change 
the modal participation of first mode from UY&RX (as in 
the other cases of non-defected and defected with middle 
defect) to UX&RY. In addition, the side defect tends to 
change modal participation of second mode from UX&RY 
to UY&RX, as presented in Fig. 6.

(b) Armchair CNT (10, 10)

Table 4 illustrates the effect of defect location on the first 
ten natural frequencies and the modal participation factors 
for Armchair (10, 10) SWCNTs. It is worth noting that the 
first and second natural frequencies are equal in their values, 
but have different modal participation in case of prefect tube 
(non-defected). The defected conditions show significant 
changes in the first and second frequencies and their values 
become unequal. The modal participation is affected in case 
of side defect; however, the lower defect has no effect on the 
modal participation of the first two mode shapes.
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Fig. 6  Modal participation factor for zigzag (10, 0) CNT with side defect (length = 50 Å)

Table 4  First ten frequency values f (GHz) for armchair CNT (10, 10) with CNT length L = 50 Å

1 2 3 4 5 6 7 8 9 10

Mode of vibration UX&RY UY &RX Weak Weak RZ Weak Weak Weak Weak Weak
No defects 390.67 390.67 472.72 472.73 635.40 664.53 664.62 797.86 797.86 959.96
Mode of vibration UY

RX
UX
RY

Weak Weak RZ RZ Weak RY RX Weak

With middle defect 388.71 396.58 469.09 469.90 644.47 648.75 659.54 746.22 796.29 948.77
Mode of vibration UX

RY
UY
RX

Weak Weak RZ Weak Weak RY RX Weak

With lower defect 364.61 390.60 468.32 471.02 609.84 656.58 663.40 784.15 796.54 955.86

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pa
r�

ci
pa

�o
n 

Fa
ct

or

Mode Number

UX UY UZ ROT-X ROT-Y ROT-Z

Fig. 7  Modal participation factor for armchair (10, 10) CNT without defect (length = 50 Å)
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The third and fourth mode shapes do not have modal par-
ticipation at any direction, which are kept with the same 
behavior with the middle defect. As shown in Table 4, the 
middle defect is more significant on the modal participation 
more than the side defect.

The modal participation factor for the perfect and the 
two defected tubes are shown in Figs. 7, 8, and 9. In case 

of non-defected Armchair SWCNTs, the modal participa-
tion with displacement in X-DIR (UX) is dominant in the 
first mode. The modal participation with displacement in 
Y-DIR (UY) is dominant in the second mode. In addition, no 
participation is observed with displacement in Z-direction. 
The modal participation with rotational around Y-axis (RY), 
x-axis (RX), and z-axis (RZ) are dominant in first, second, 
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Fig. 8  Modal Participation factor for armchair (10, 10) CNT with middle defect (length = 50 Å)
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and fifth mode, respectively. All other modes have neither 
significant displacement nor rotational modal participations.

The modal participation factors in cases of side defect 
are the same as in case of non-defected cases, except at the 
eighth and ninth modes, the side defect created rotational 
modal participation about Y-axis and X-axis, respectively. 
The middle defect has changed the modal participation for 
all modes except the fifth mode, which is kept with rotational 
modal participation around Z-direction.

Length effects on the defected SWCNT at the middle 
position

As concluded from the previous results, the most significant 
position of the defect is at the middle of the tube, middle 
defect. Therefore, the effect of SWCNT length on the modal 
participation factors and natural frequencies are studied in 
this section for middle defected tubes. Both Zigzag (10, 0) 
and Armchair (10, 10) with different tube lengths, 50 Å, 100 
Å, 150 Å, and 180 Å are studied.

The effect of tube length on natural frequencies of Zig-
zag (10, 0) and Armchair (10,10) SWCNT’s are presented 
in Tables 5 and 6, respectively. As concluded, by increas-
ing the NTs lengths, the natural frequencies decrease for 
defected and non-defected tubes. In addition, the middle 
defect tends to reduce the stiffness at the modes with 
bending modal participations in tubes longer than 100 
Å. Short tubes with bending modal participation around 
X-direction and with translational modal participation in 
Y-direction shows lower natural frequencies due to middle 
defects. The defect has less significant effects on the long 
tubes due to the dominating of the length weakness than 
the defect weakness. First and second modes of the non-
defected tube have similar natural frequencies, and the 
third and fourth modes have similar natural frequencies as 
well. The middle defect changes the modal participation 
of these modes with less significant changes to the natural 
frequencies for the long tubes.

Table 5  First tenth frequencies (GHz) and active modes for zigzag CNT (10, 0) without and with middle defect at different lengths

1 2 3 4 5 6 7 8 9 10

L = 50 Å
 Mode of vibration UY

&
RX

UX
&
RY

RZ RX RY UZ UY UX Weak Weak

 Without defect 304.63 304.63 610.80 669.68 669.68 1036.00 1101.20 1101.20 1223.50 1226.10
 Mode of vibration UY

&
RX

UX
&
RY

RZ RZ RX UZ Weak Weak Weak Weak

 With middle defect 308.63 325.68 647.22 661.78 707.42 1066.00 1086.90 1134.30 1155.30 1196.20
L = 100 Å
 Mode of vibration UY

RX
UX
RY

RX RY RZ UY
RX

UX
RY

UZ Weak Weak

 Without defect 92.14 92.14 232.73 232.74 312.39 415.88 415.88 506.93 624.76 625.87
 Mode of vibration UY

RX
UX
RY

RY RX RZ UY
RX

UX
RY

UZ Weak Weak

 With middle defect 88.79 93.22 227.29 232.47 316.60 398.33 419.11 513.77 547.35 623.80
L = 150 Å
 Mode of vibration UY

RX
UX
RY

RX RY RZ UY
RX

UX
RY

Weak Weak UZ

 Without defect 43.32 43.32 114.13 114.13 209.42 212.14 212.14 330.69 330.69 339.98
 Mode of vibration UY

RX
UX
RY

RY RX UY
RX

RZ UX
RZ

Weak Weak UZ

 With middle defect 42.01 43.65 113.13 114.00 204.29 210.27 213.98 321.40 329.69 343.05
L = 180 Å
 Mode of vibration UY

RX
UX
RY

RX RY UY
RX

UX
RY

RZ Weak Weak UZ

 Without defect 30.42 30.42 81.14 81.14 152.89 152.89 174.42 241.57 241.57 283.20
 Mode of vibration UY

RX
UX
RY

RY RX UY
RX

UX
RY

RZ Weak Weak UZ

 With middle defect 29.59 30.61 80.71 81.09 147.61 153.31 175.80 237.51 241.09 285.32
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Conclusion

In this article, a continuum mechanics that is derived from 
the basis molecular simulation is adopted to investigate 
vibrational behaviors of fixed–fixed SWCNTs with vacancy 
defects at different lengths. A numerical finite-element 
analysis with the nanotube software modeler is exploited 
to study the problem. Effects of vacancy position and tube 
length on the natural frequencies, mode shapes, and modal 
participation factors are presented for both fixed–fixed-sup-
ported zigzag and armchair orientations. Conclusions from 
this study can be summarized as follows:

1. The defects tend to decrease the natural frequencies of 
short tubes either zigzag or armchair SWCNTs if the 
defect is in the middle or at near to the fixed edge. In 
this case, the reduction in overall stiffness is more than 
the reduction in overall mass of SWCNT.

2. The defect tends to increase the natural frequencies, if its 
position is not affecting the modal participation, I which, 
the reduction in overall mass is higher than the reduction 
in stiffness.

3. Twelve modes are satisfied to describe accurately the 
vibrational behaviors of zigzag (10, 0) SWCNTs. How-
ever, 20 modes should be developed in case of armchair 
(10, 10) to study its vibrational behaviors.

4. Increasing of SWCNT length tends to decrease the natu-
ral frequencies of perfect CNTs.

5. The tube length and defects may activate and deactivate 
mode shapes.

6. Mode shapes in X-DIR and Y-DIR are significant in 
lower frequencies. However, modes in Z-DIR are more 
pronounced at higher vibrational frequencies.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Table 6  First tenth frequencies (GHZ) and active modes for armchair CNT (10, 10) without and with middle defects at different lengths

1 2 3 4 5 6 7 8 9 10

L = 50 Å
 Mode of vibration UX

RY
UY
RX

Weak Weak RZ Weak Weak Weak Weak Weak

 Without defect 390.67 390.67 472.72 472.73 635.40 664.53 664.62 797.86 797.86 959.96
 Mode of vibration UY

RX
UX
RY

Weak Weak RZ RZ Weak RY RX Weak

 With middle defect 388.71 396.58 469.09 469.90 644.47 648.75 659.54 746.22 796.29 948.77
L = 100 Å
 Mode of vibration UX

RY
UY
RX

RZ RY RX Weak Weak Weak Weak UZ

 Without defect 139.20 139.20 310.98 317.81 317.81 419.73 419.78 450.87 450.89 511.26
 Mode of vibration UY

RX
UX
RY

RY RZ RX Weak Weak Weak Weak Weak

 With middle defect 138.20 140.44 310.06 313.44 317.72 415.46 415.95 449.94 450.57 513.53
L = 150 Å
 Mode of vibration UX

RY
UY
RX

RY RX RZ UX
RY

UY
RX

UZ Weak Weak

 Without defect 68.65 68.93 168.71 169.20 205.75 294.85 295.40 338.75 411.58 414.53
 Mode of vibration UY

RX
UX
RY

RY RX RZ UY
RX

UX
RY

UZ Weak Weak

 With middle defect 68.37 69.06 166.97 169.15 206.80 292.38 295.88 340.48 395.29 411.56
L = 180 Å
 Mode of vibration UX, RY

UY, RX
UY, RX
UX, RY

Weak Weak RZ UX UY UZ Weak Weak

 Without defect 49.71 49.71 125.32 125.32 171.88 223.49 223.49 283.34 335.70 335.70
 Mode of vibration UY

RX
UX
RY

RY RX RZ UY
RX

UX
RY

UZ Weak Weak

 With middle defect 49.33 49.96 124.44 125.29 172.62 221.25 224.23 284.56 325.29 335.48

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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